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Sex differences in major depression and comorbidity of

cardiometabolic disorders: impact of prenatal stress and
Immune exposures

Jill M. Goldstein'?, Taben Hale®, Simmie L. Foster*, Stuart A. Tobet@° and Robert J. Handa3®

Major depressive disorder topped ischemic heart disease as the number one cause of disability worldwide in 2012, and women
have twice the risk of men. Further, the comorbidity of depression and cardiometabolic disorders will be one of the primary causes
of disability worldwide by 2020, with women at twice the risk. Thus, understanding the sex-dependent comorbidities has public
health consequences worldwide. We propose here that sex differences in MDD-cardiometabolic comorbidity originate, in part, from
pathogenic processes initiated in fetal development that involve sex differences in shared pathophysiology between the brain, the
vascular system, the CNS control of the heart and associated hormonal, immune, and metabolic physiology. Pathways implicate
neurotrophic and angiogenic growth factors, gonadal hormone receptors, and neurotransmitters such as gamma amino butyric
acid (GABA) on neuronal and vascular development of HPA axis regions, such as the paraventricular nucleus (PVN), in addition
to blood pressure, in part through the renin-angiotensin system, and insulin and glucose metabolism. We show that the same
prenatal exposures have consequences for sex differences across multiple organ systems that, in part, share common pathophysiology.
Thus, we believe that applying a sex differences lens to understanding shared biologic substrates underlying these comorbidities
will provide novel insights into the development of sex-dependent therapeutics. Further, taking a lifespan perspective beginning
in fetal development provides the opportunity to target abnormalities early in the natural history of these disorders in a sex-

dependent way.
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INTRODUCTION

Major depressive disorder (MDD) topped ischemic heart disease as
the number one cause of disability worldwide in 2012 [1], and
women have twice the risk of men [2-4]. MDD has been
associated with multiple general medical illnesses, the number
one being cardiovascular disease (CVD). In fact, the comorbidity of
MDD and CVD, with a substantial prevalence [5-11], will be one of
the primary causes of disability worldwide by 2020, with women
at twice the risk [12-14]. MDD is an independent risk factor for the
development and progression of coronary artery disease [5, 7, 10,
15, 16]. Although the risk for CVD alone is higher in men [17], this
difference attenuates after menopause in women, and heart
disease is the number one cause of death of women in the U.S.
and in most middle-income countries. Given that we have no
effective treatments for the comorbidity of MDD and CVD, one
reason for the high death rate for CVD in women may be due, in
part, to unrecognized and untreated MDD. In fact, numerous
prospective studies demonstrated significantly elevated risks of
coronary heart disease, myocardial infarction, or cardiac death
among participants with depression [11, 18-22]. Depression
predicts first cardiovascular events even among otherwise healthy

people [21], and particularly in women [19, 21], with a risk of
1.5-6-fold.

Although the incidence of sex differences in MDD has been
known for many years, even recent studies of brain circuitry and
genes associated with mood dysregulation and MDD per se do
not design studies to investigate sex effects nor incorporate even
current sex-dependent knowledge into development of thera-
peutics. MDD is associated with abnormalities in stress response
circuitry, i.e., brain circuitry regulating the hypothalamic pituitary
adrenal (HPA) axis [23-28], including hypothalamus (HYPO),
amygdala (AMYG), hippocampus (HIPP), anterior cingulate cortex
(ACC), and ventromedial prefrontal and orbitofrontal cortices
(vmPFC, OFC) [26, 27, 29-32], areas that are among the most
sexually dimorphic in the brain, i.e, areas that develop in sex-
dependent ways and function differently across the lifespan. HIPP,
HYPO, AMYG, and PFC are dense in sex steroid and glucocorticoid
receptors (GRs) [33-35] coupled with cytokine receptors [36-39],
in particular, TNF-q, IL-1B, IL-6, the major co-activators of the HPA
axis [36, 37, 40, 41]. In fact, activity in these areas has been
associated with cortisol response [27, 42-46], autonomic dysfunc-
tion characterized by loss of parasympathetic cardiac tone [47, 48],
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Fig. 1

Prenatal stress and inflammation programs the fetal brain to increase the risk for depression and cardiometabolic disorders in

adulthood. Diagrammatic representation of programming factors that can permanently affect the developing brain. Accordingly, prenatal
stressors and immune responses can act through elevations in maternal glucocorticoids; This can involve changes in expression of a number
of molecular targets such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF1), gamma amino butyric acid (GABA)
signaling pathways that can act on neurons, glia, or vasculature to permanently alter neural circuitry and physiology. Of importance, there are
sex biases in this mechanism which may represent interactions between glucocorticoid receptor (GR), estrogen receptor (ER), and androgen

receptor (AR) signaling

and immune responses [36-39], brain activity, and hormonal
physiology that we previously showed varied by sex [26, 49].

A number of studies demonstrated fetal risk factors for MDD
[14, 50-52], with final common pathways involving abnormalities in
maternal stress responses that are associated with fetal abnormal-
ities in HPA axis development, or prenatal stress models of MDD.
The HPA axis modulates inflammatory responses and microglial
activation across the lifespan [53, 54], and neuroinflammation is
associated with mood, autonomic nervous system (ANS), and
vascular and metabolic disturbances. These HPA-immune connec-
tions have given rise to so-called prenatal stress-immune models of
MDD and cardiometabolic disorders. We demonstrated that if these
fetal stress and immune risk factors occur during a critical period of
the sexual differentiation of the brain (2nd-3rd trimester), they
impact highly sexually dimorphic brain regions [24] and the
vasculature [55-57] in sex-dependent ways. We also argue here
(see Fig. 1) that maternal prenatal glucocorticoid (GC) excess and
immune pathway abnormalities beginning in fetal development are
associated with sex-dependent impacts on the offspring’s brain
circuitry that regulates mood, autonomic cardiac regulation, blood
pressure, and metabolism, resulting in lifelong recurrent MDD,
shared with dysregulation of hormone and immune responses to
stress, autonomic dysfunction, and cardiometabolic dysregulation
later in life [34, 58-60].

Although population-level studies have demonstrated substantial
sex differences in comorbidities with major public health implica-
tions worldwide, the pathways to explaining comorbidity are
unclear. In part, this is due to a lack of focus on sex differences in
diseases. However, beyond that, typically investigators studying the
brain rarely think about the heart and associated vascular system or
adiposity and vice versa. Moreover, studies focused on CVD and
MDD generally begin in adulthood with the notion that either MDD
causes CVD or metabolic syndrome (MetS), or CVD-MetS results in
MDD. Given the substantial comorbidity worldwide, common fetal
causes will have important implications for prevention or attenua-
tion of disability in many countries [61], particularly in women.

IMPORTANCE OF CONSIDERING COMORBIDITY AND SEX

In medicine, disorders are traditionally thought of as separate
entities and development of therapeutics are treated as such. Even
the funding of research is predicated on a unitary approach to the
study of disorders, i.e., divisions of funding streams through separate
institutes at the National Institute of Health. However, we argue that
more severe, long-term disability and greater expense to the
healthcare system lies in the comorbidity of one or more disorders
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that share symptomatology and pathophysiology. Further, we argue
here that a focus on sex differences in this shared pathophysiology
will provide critical insights into understanding this comorbidity that
will lead to the development of sex-dependent therapeutics with
greater efficacy and implications that cross organ systems.

We propose that there are shared developmental origins
implicating prenatal stress and immune pathways, suggesting a
shared biological substrate as the basis for an increased likelihood of
several disorders arising in the same individual. The conceptualiza-
tion of prenatal maternal stress [62, 63] can include multiple kinds of
maternal gestational exposures (both external or internally driven),
such as obstetric conditions (e.g., preeclampsia, fetal growth
restriction), maternal over- or undernutrition, or other environmental
and psychological exposures. These exposures have been
associated with abnormal immune responses, such as increased
pro-inflammatory cytokines, that necessitate a maternal anti-
inflammatory GC response in the in utero environment, thus the
name, prenatal stress-immune models of disease vulnerability in the
offspring. The pathways through which these stressors impact fetal
growth and brain development in the offspring are not well
understood, but likely involve genetic and epigenetic mechanisms
mediated by hormones, growth factors, and/or markers of immune
function that cross the placenta. Shared biological substrates can be
envisioned on at least three levels (anatomical, molecular/biochem-
ical, and genetic) that produce comorbid risk for these disorders
with fetal origins that are sex dependent. Previous critical reviews by
our team supported this case for MDD-CVD risk [24, 56] with respect
to prenatal stress defined exclusively by excess GC exposure during
development. Here, we expand this argument to mechanisms that
implicate sex differences in the vasculature itself, blood pressure,
metabolism, and the shared impact of the immune system.

ANATOMY OF STRESS AND ROLE OF PARAVENTRICULAR
NUCLEUS

It is first important to understand the neuroanatomy of stress
response circuitry in order to have a better understanding of the
brain regions that are affected during development and why they
have such widespread implications for disease vulnerability across
the lifespan, and in particular, the key role that is coordinated by
the paraventricular nucleus (PVN) in the HYPO. Historically,
emotions and visceral function have been intimately associated,
the latter of which is controlled by the ANS, coordinated to a large
extent by the HYPO [64, 65]. Subsequently, a more complex
network has been implicated including highly sexually dimorphic
brain regions [66-71], such as AMYG [72, 73], HIPP, cingulate
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cortex [65, 74], medial PFC, and periacqueductal gray [75]. MDD
has been characterized as maladaptive stress-induced neuroplas-
tic alterations in the medial prefrontal cortico-amygdalo/hippo-
campo-hypothalamo-brainstem circuits [76, 77]. We and others
previously demonstrated sex differences in this circuitry in healthy
adults and deficits in MDD [26, 28, 49, 78]. Our findings are
consistent with other studies of negative-high arousal stimuli [79-
82], and sex differences to aversive cues [83-86]. Further, we
demonstrated that some of these brain activity deficits in stress
circuitry were significantly associated with loss of parasympathetic
control in MDD women, including the HYPO [47, 48]. This is
consistent with the fact that dysregulation of the nucleus of the
solitary tract (which directly connects to the PVN), by the vagus
nerve, and parasympathetic motor nuclei in the brainstem
(innervated by preautonomic neurons in the PVN), can affect
heart and cardiovascular function [16, 64, 87].

The PVN is the key brain region central to HPA axis function,
implicated in MDD [88] and one of the most highly vascularized
regions in the brain [89, 90]. It lies at the dorsal limit of the classical
HYPO flanking the top of the third ventricle and has been
implicated in a broad array of homeostatic and behavioral
functions ranging from neuroendocrine and cardiovascular func-
tions to affective, ingestive, and defensive behaviors [91, 92]. In
rodents, its development can be regulated by GCs and gamma
aminobutyric acid (GABA), with females being particularly vulner-
able to GABA disruption in PVN neuronal [93, 94] and vascular
development [95]. Previous human postmortem studies demon-
strated that corticotropin releasing hormone (CRH)-producing
neurons in PVN were increased in hypertension [96] in the same
region as in MDD and regulated by estradiol [88], also suggesting
a link for understanding sex differences in brain abnormalities (i.e.,
PVN) associated with MDD and cardiometabolic risk. This is not
surprising since the PVN has been implicated in MDD and CVD in
postmortem studies [88, 96, 97] and, in our work, in in vivo human
structural [66] and functional imaging studies of sex differences in
stress response circuitry in healthy adults [26, 66, 98], MDD
subjects [28, 99], and ANS function [47, 48]. Further, we and others
have demonstrated sex-dependent effects of GC excess in rats
and mice on PVN and AMYG morphology [93, 100-102] and on
expression of growth factors that regulate PVN and hippocampal
function [103-107]. Thus, the PVN is a critical key relay station for
understanding comorbidities among depression, CVD, and related
MetSs.

Neurons of the PVN express receptors for almost all steroid
hormones and from this arises the potential for sex differences in
PVN function that could be driven by circulating sex steroid
hormones. Moreover, steroid hormone receptors are among the
markers that indicate different zones within the pvn. For example,
cell groups reportedly contain immunoreactive estrogen
receptors-a (ir-ERa), ERB, androgen receptors (ARs), or GRs [108,
109]. Defects in the healthy development of the PVN provide an
anatomical basis to predict shared comorbidity for disorders
related to the functions of neurons normally located in or around
the PVN. A number of mechanisms may lead to long-term
alterations in PVN function that may or may not be sex
dependent. These include changes in gene expression, cell death,
connectivity, neuronal phenotypes, or positions thereof, or
relationships to unique vasculature. Further, we and others have
demonstrated environmental perturbations during development
(e.g., obstetric complications or chronic social/psychological
stress) cause changes in gene expression within the neurons of
the PVN, in response to a common circulating factor (such as GCs),
and perhaps as a function of epigenetic marks that are placed on
DNA in response to such stimuli [110, 111]. For example, perinatal
exposure of rats to the synthetic GC (sGC), dexamethasone (DEX),
changed the methylation state of the brain-derived neurotrophic
factor (BDNF) gene [110, 112] and/or levels of prepro-thyrotropin
releasing hormone (TRH) [111]. Similarly, levels of maternal
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behavior altered the adult expression of GRs [113] and estrogen
receptors [114]. In many cases, such influences have been shown
to be sex dependent.

The vast majority of approaches to brain development examine
neuronal, glial, and vascular factors independently, with notably
less emphasis on vascular factors. The vascularization of the PVN is
extensive compared to the surrounding tissue [115] and this
density develops late in development [95, 116]. Therefore,
alterations in PVN vasculature may provide another anatomical
substrate to help explain shared comorbidities. In mice, PVN
vascularization at birth is similar to the rest of the forebrain.
Increased vascularization, however, becomes readily discernible
by the second postnatal week [95]. Whatever drives the increased
vascularity does so over a period of time when the PVN receives
similar blood flow as the rest of the HYPO. Postnatal angiogenesis
in the mouse PVN that would be later during prenatal human
development may be driven by neural signals as suggested by the
term “angioneurins” [117], but intrinsic to the unique environment
and components of the PVN. Interestingly, neural activity may
impact the development of the vasculature, since GABAg receptor
signaling caused a 20% decrease in vascular characteristics of
length or branch points [95].

The effectiveness of the blood brain barrier (BBB) may be a
variable with significant impact in highly vascularized regions like
the PVN. Disruption of BBB function in general might make the
PVN appear selectively vulnerable because of the dense vascular-
ization. In development, there is debate as to when the BBB
“closes” or begins to regulate the flow of macromolecules into and
out of the brain parenchyma. Our previous results suggested that
perinatal GABAergic [95] or GC [118] treatments influence BBB
development. Evidence currently exists for both sex-dependent
GC [119] and reproductive hormone [120] influences on some
aspects of BBB function, such as permeability and expression of
molecular pumps.

Puberty and PVN

Puberty has been considered as a legitimate hormone-sensitive
critical period in development rivaling that of early periods of
brain differentiation [121]. Stress at puberty may unmask
neuropsychiatric and neuropathological consequences of fetal
programming [122]. The key question is what the nature of such
programming is that the effect is delayed until another stimulus at
puberty. At the molecular level, one can speculate epigenetic
programming early in development may render genetic controls
different at later points in development, such as shown with
maternal grooming on GR methylation [113]. At a cellular level,
one might look toward changes in immune cells such as microglia
where long-term changes in cell numbers might result from early
stimuli [123, 124]. Another group of cells to consider are those
involved in neurovascular units. Maternal treatment with DEX
caused BBB disruption in offspring prior to puberty independent
of sex [57]. Lack of BBB competence was not apparent after
puberty. However, astrocytes and pericyte components of the BBB
differed as a function of fetal exposure, but dependent on sex.
Disruption in BBB components in offspring from DEX-treated
mothers may affect BBB function under specific physiological
challenges, resulting in altered neuronal signaling. For example,
spontaneously hypertensive rats have a breakdown of the BBB
within the PVN, causing a feed-forward loop that increases blood
pressure [125]. Although there may be previous permeability
during a critical period, it would be detrimental to an organism to
have a prolonged loss of BBB integrity, especially in a brain region
like the PVN. Therefore, a repair process that maintains the
ultimate BBB competency, but with underlying sex-dependent
alterations in components, may result in susceptibility to further
challenges. The emergence of sex differences in BBB components
after puberty may be a critical substrate for sex-selective
responses to stress after puberty. Thus, importantly, prenatal
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processes involved in sexual differentiation of the brain in regions
regulating HPA axis and stress-immune responses in the offspring
may be potentiated and/or enhanced after puberty.

PRENATAL MATERNAL PROGRAMMING OF HPA AXIS IN
OFFSPRING DEVELOPMENT

There is a long history of work characterizing the HPA axis as
central to understanding the development of MDD. Studies in
humans and model animals demonstrated consistent HPA axis
dysregulation associated with MDD, most notably elevated plasma
cortisol levels, high cerebrospinal fluid CRH levels, and high
cortisol secretion on DEX suppression test, although in some
studies, hypocortisolemia [126-131]. These findings were not due
to medication [132, 133]. Postmortem work has reported
substantial decrease in the density of GR mRNA in MDD in frontal
cortex, dentate gyrus, and subiculum, suggesting downregulation
of GRs affecting the negative feedback system of the HPA axis and
resulting in dysregulation of cortisol release [134].

Increasing evidence in rodent models has shown that
perturbations in utero can cause long-term changes in the HPA
physiology of the offspring, and, as seen in humans, they can
increase disease risk in adulthood. These factors organize the HPA
axis and ANS and their control of adult physiological functions and
behaviors. A common signaling pathway between mother and
fetus for many prenatal stressors includes rises in circulating GCs
of maternal origin. Treatment with sGCs can mimic the prenatal
stress-induced elevations in endogenous maternal GCs. Further,
inhibition of 11B-hydroxysteroid dehydrogenase (113-HSD), a
placental enzyme that metabolizes GCs and acts as a buffer to
maternal GCs [135], can also cause long-term changes in adult
physiological parameters, including cardiac and metabolic func-
tion, neuroendocrine responses to stress and anxiety- and
depressive-like behaviors in adulthood [136].

Studies in rodents show that prenatal stressors [137-139] can
program the HPA axis causing elevated neuroendocrine responses
to stress in adulthood. The effects of prenatal stress can be
mimicked by prenatal exposure to GCs [140]. Of interest, the
effects of prenatal stress on adult stress reactivity have been
reported to be more profound in adult female offspring,
depending on timing of the exposure [141-143]. Prenatal stressors
elevate basal ACTH and CORT levels, increase the peak and extend
the duration of the response to stressors in adulthood [140, 143].
Underlying these effects, are studies showing increased apoptosis
in the PVN of fetal female, but not male, rats following chronic
maternal immobilization [144]. The neuroendocrine changes in
adulthood correlate with changes in anxiolytic behaviors [143].
Late gestation sGCs treatment resulted in increased anxiety and
depressive-like behaviors in adult female, but not male, offspring
[145]. This is consistent with clinical findings, since mood disorders
have been characterized by a hyper-reactive HPA axis with disease
risk greater in women than in men.

In contrast, postnatal treatment of rat pups with sGCS [146]
blunted the stress-induced activation of the HPA axis in adulthood
through elevated feedback inhibition, suggesting that the timing
of GC exposure is important for directing the type of response
observed and this may also impact sex-biased dysregulation.
Further evidence of potential targets that are disrupted by
prenatal stress and GCs comes from studies [147] that show the
administration of 5-alpha-reduced neurosteroids to adult prena-
tally stressed rats reversed the effects of prenatal stress on the
adult HPA axis, which occurred in a sex-dependent fashion. Given
that sex-dependent changes can occur following prenatal
perturbations, the importance of central changes in the factors
regulating the HYPO and ANS stress-responsivity and how
they impact long-term changes in cardiovascular, metabolic,
and behavioral associated diseases are important future
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considerations. These topics will be addressed independently in
the next sections of this review.

PRENATAL PROGRAMMING OF IMMUNE FUNCTION

As discussed above, throughout the lifespan there is substantial
bidirectional communication between the neuroendocrine stress
pathways, ANS, and immune system [53, 54]. This crosstalk
regulates both inflammation and mood. Many of the products of
neuro-immune communication (cytokines, growth factors, neuro-
transmitters) can cross the placenta, such that immune activation
experienced by the mother impacts the developing fetal immune
system, brain, and vasculature, and we hypothesize perhaps
programs future risk for neuro-immune diseases, including MDD
(illustrated in Fig. 1).

Alterations in the inflammatory response of offspring may
contribute to propensity to develop MDD, as depression has been
proposed as an inflammatory disease. Evidence for an inflamma-
tory basis for depression comes from several observations: (1)
systemic immune responses are associated with a “sickness
syndrome” of low mood, sleep disturbance, fatigue, anorexia; (2)
pro-inflammatory cytokines, including IL-1B and IL-6, are elevated
in the serum and plasma from patients with depression; and (3)
anti-viral cytokine therapies used, such as interferons given to
treat Hepatitis C, can induce depression [148]. Further, anti-
inflammatory therapies including NSAIDs and biologics, amelio-
rate depressive symptoms and are under investigation in clinical
trials as new antidepressants. Selective serotonin reuptake
inhibitors (SSRIs) have been found to reduce levels of cytokines
in MDD patients [149]. The immune dysregulation so common in
MDD may, in part, be programmed by maternal immune
dysregulation. Furthermore, there is a sex difference in the
behavioral consequences of maternal immune programming that
has been increasingly explored in preclinical models.

In general, investigations on how maternal immune responses
impact development of offspring take one of two approaches.
One approach models the lower levels of inflammation that are
induced by activation of the HPA axis after a stress challenge. The
other models mimic an over-exposure to bacterial or viral
infection in pregnant mothers, for example, by injecting pregnant
rodents with bacterial lipopolysaccharide (LPS) and/or the viral
stimulus poly I:C, or both. This approach, termed “maternal
immune activation (MIA)”, consistently results in neurodevelop-
mental changes in the offspring that have been associated with
phenotypes related to sex differences in autism and schizophrenia
[150]. Although depression and anxiety behaviors have not been
well studied in this model, rats exposed to low dose LPS at
prenatal day 10 had enhanced anxiety and depressive behaviors
associated with reduced adult neurogenesis [151]. Further,
prenatal LPS increased depression and anxiety-related behaviors
in adult male offspring [152]. A priming effect in the MIA model
has also been postulated such that the initial maternal immune
exposure is considered a “first hit”, and a “second hit” at some
point after birth amplifies the behavioral phenotype [153, 154].
This is consistent with recent work by our group demonstrating
the impact of chronic social adversity on maternal prenatal
immune activation abnormalities and neurodevelopment in the
offspring [155].

Interestingly, based on the limited amount of data looking at
sex differences in these models, the type of stress-immune
challenge and level of inflammatory response experienced by the
mother has been associated with sex differences in behavior of
the offspring. However, timing of the exposure impacts whether
the effect has greater consequences for male or female offspring.
This may explain why in some studies higher inflammation (such
as in the MIA models) led to greater anxiety or depressive (and
neurodevelopmental) phenotypes in male offspring [152, 156],
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while work by our group and others [57, 110, 157, 158] resulted in
increased anxiety and depression in female offspring.

Peripheral and central immune mechanisms can participate in
how maternal immune dysregulation impacts the developing fetal
immune system and brain, predisposing to increased risk for MDD
in a sex-dependent manner. These mechanisms may include: (1)
peripheral cytokines that act on brain, (2) microglial activation in
the brain, (3) placental immune activation, (4) immune program-
ming of the offspring immune system. First, prenatal and early life
stress induces peripheral cytokines in the mother and fetus that
change HPA axis function and are associated with sex-dependent
risk for MDD [14, 52]. These prenatal studies are consistent with
other studies associating mood disorders with innate immunity
dysregulation [159-162]. The major cytokines studied include
tumor necrosis alpha (TNF-a), interleukin- (IL)-13, and IL-6 [163-
165]. These cytokines are present in the maternal uterus, cross the
placenta and BBB [166, 167], and are found in the fetal circulation
and brain. Chronically elevated immune activation in mother and
offspring as measured by cytokines predisposes to increased
oxidative stress [168-170], the neural impact of which differs by
sex [57, 110, 157, 158]. Exposure to cytokines and oxidative stress
may lead to abnormalities in regions such as ACC, HIPP, and HYPO
resulting in increased risk of negative stress response circuitry
deficits and ANS dysregulation in the offspring.

Microglia

In addition to peripheral cytokines released by peripheral immune
cells, central immune cells also may be important in fetal brain
development. Microglia in particular are increasingly being
recognized as being crucial in integrating environmental signals
to regulate brain development. In addition, they exhibit vast sex
differences in their response to these signals [171]; (see McCarthy
et al,, in this NPP edition). They express cytokine receptors as well
as receptors for innate immune activators (i.e., TLR4, receptor for
LPS). Although “activated” microglia are associated with neuro-
behavioral alterations and neuroinflammatory pathology, there is
a significant sex difference in how microglia respond to the same
immune challenge [154]. The microglia in females during LPS
exposure reflect a completely distinct transcriptional signature
from males, as determined by RNA-sequence profiling, with male
microglia exhibiting a more mature phenotype after in vivo
exposure [172]. In disorders such as chronic pain, T lymphocytes
rather than microglia infiltrate and communicate directly with
neurons in females [173]. This remains to be investigated in the
context of prenatal immune activation and major depression.

The placenta is partially fetal, and therefore specific to the sex of
the fetus. Although not typically considered an immune organ, the
placenta also expresses cytokine and pattern recognition recep-
tors and transmits information (through unclear pathways) to the
fetal brain [174]. Some of this information may be through
placental microbiome changes. Restraint stress led to microbiome
changes in the mother, increased IL-1f in the placenta and brains
of female (but not male fetal mice), decreased BDNF in the
placenta and AMYG of adult female offspring, that was associated
with increased anxiety like behaviors [175, 176].

Prenatal immune activation can also have significant effects in a
sex-dependent way on the innate and adaptive immune response
in the offspring, which again may contribute to the MDD risk in
the adult offspring, although this type of immune programming is
almost completely not understood. In a non-human primate study,
pregnant rhesus macaques were injected with poly I:C LC to mimic
viral infection [177]. The offspring exhibited increases in several
cytokines, not just the expected pro-inflammatory cytokines, such
as IL-1B, but a pronounced increase in allergic, Th2-mediated type
inflammation. This observation is consistent with clinical studies in
patients and preclinical studies in rodents, where maternal
inflammation from either infection or non-infectious stress has
been found to predispose to Th2-associated atopy (allergic
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diseases including asthma and eczema) in offspring of both sexes
[178, 179]. The exception to this observation is when the mother
has an autoimmune disease, for example, experimental auto-
immune encephalitis (EAE) modeling of multiple sclerosis. In this
case, the offspring of both sexes become more susceptible to
induction of the autoimmune disease, associated with Th1-type
inflammation [156]. Interestingly, in the non-EAE induced off-
spring, the males but not females showed increased depressive
and anxious behaviors.

PRENATAL PROGRAMMING OF CARDIOVASCULAR AND
AUTONOMIC FUNCTION

Exposure to a variety of prenatal stressors including the
administration of a sGC, such as DEX, dietary restriction, and
inflammation can also program changes in cardiovascular function
in adult offspring. While the ultimate phenotype of the
cardiovascular dysfunction or pathology varies with the type
and timing of prenatal insult, there are consistent changes that
increase the risk of future CVD. In many cases, these can be
tracked to changes in autonomic control of cardiovascular
function with a key relay station being the PVN.

11B-HSD is normally expressed in the placenta and protects the
fetus by buffering any elevations in GCs based on its ability to
convert active GCs to inactive GCs. Prenatal GC exposure, resulting
from increased endogenous transmission across the placental
barrier secondary to reduced 113-HSD expression, from elevations
that can overwhelm placental 11 B-HSD, or after exogenous
delivery of sGC to pregnant dams impact cardiovascular function
in adult offspring in animal models of prenatal stress. Specifically,
fetal increases in GCs can program changes in cardiovascular
function in male and female rodent offspring, resulting in
adulthood in increased vascular sensitivity to norepinephrine
[180, 181], neuropeptide Y [182], electrical field stimulation [182],
increased peripheral resistance, and reduced cardiac output [183].
With respect to blood pressure, both hypertension [184, 185] and
hypotension [180, 186] have been reported. Moreover, adult
offspring of prenatally stressed dams were more susceptible to
elevations in blood pressure in response to high salt diet [187],
angiotensin Il (Ang 1) [181], and restraint [180, 182, 188]
suggesting the coincident programming of other physiological
systems as well.

Excessive prenatal GC exposure has also been shown to result in
male-specific impairment in sinoatrial node function and
increased susceptibility to myocardial ischemic damage [189]. In
addition, prenatal stressors have been shown to induce female-
specific enhanced endothelin responsiveness [190] and impaired
parasympathetic function (although males were not tested in the
latter) [191]. Such results support the hypothesis that the in utero
environment not only programs adult physiology, but it does so in
a sexually dimorphic pattern, likely influenced by timing of
exposure.

The effects of GC excess are thought to be mediated by central
mechanisms, since GCs are readily found in neonatal rat brain
following administration because of the immature BBB [192]. Data
implicate the ANS as a mechanism that is targeted by prenatal
stress or over-exposure to GCs or inflammatory molecules. In rats,
O’Regan et al. [193] showed that prenatal DEX exposure caused a
hypertensive phenotype in adult female offspring due to mild
stressors, such as handling. These animals were also more
sensitive to amphetamine, suggesting altered sympathetic
responses, and further implicating coincident changes in mood
dysregulation and anxiety-like behaviors.

Further support of underlying ANS dysfunction in prenatal DEX-
exposed female offspring comes from studies showing that
prenatal DEX treatment significantly reduced TRH and core body
temperature (CBT), another marker of autonomic function, in
female, but not male, offspring [194]. These have also been
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reported to be dysregulated in MDD. Of interest, there are no
effects on overall activity in these studies, thereby ruling out
activity as a source of the changes in arterial pressure or CBT.
Together, these data show altered ANS activity in prenatal DEX-
treated adult females that are consistent with findings regarding
depressive and anxiety symptomatology and related to greater
cardiovascular problems with age.

As in humans, prenatal GC exposures in rodents are coupled
with inflammatory responses, known to be associated with
hypertension and heart disease. Inflammation is an early mediator
of hypertension and heart disease, as with MDD. Fetal exposure to
an inflammatory environment can cause persistent negative
consequences on the cardiovascular system of the adult offspring,
as previously discussed for depressive symptomatology. For
example, prenatal exposure to IL-6 resulted in hypertension,
enhanced cardiovascular response to stress, and increased HPA
axis activity in adult rats, with a greater effect observed in females
[195]. This is interesting as prenatal IL-6 exposure has also been
implicated in neurodevelopment and behavioral abnormalities
associated with schizophrenia [150]. In addition, injecting the
endotoxin LPS to pregnant dams produced diastolic dysfunction
[196], associated with cardiac pathological remodeling in the heart
involving hypertrophy, fibrosis [197], and apoptosis [196] in the
adult offspring. The functional consequence of a prenatal
inflammatory environment was impaired diastolic [196] and aortic
dysfunction characterized by altered reactivity and connexin
expression [198].

Prenatal stress alters the renin-angiotensin system (RAS)

The PVN receives afferent angiotensinergic projections from the
subfornical organ (SFO), a circumventricular organ that is
positioned outside the BBB and responds to circulating Ang Il
(see Fig. 2). Activation of angiotensin type 1 receptors (AT1R)
within the SFO ultimately stimulates the sympathetic and inhibits
parasympathetic neural pathways through relays in the PVN. Thus,
abnormal development of the RAS in pre-ANS brain circuitry after
prenatal GC excess may play an important role underlying
increased risk of adult ANS imbalance. For example, prenatal
[181] and perinatal [199] stress have been shown to increase the
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Fig. 2 The paraventricular nucleus of the hypothalamus is a central
player in the control of behavior, neuroendocrine function, and the
autonomic nervous system. This figure shows a diagrammatic
representation of some of the brain areas involved in regulating
brainstem autonomic nuclei: NTS nucleus of the solitary tract; RVLM
rostral ventral lateral medulla. Programming changes in the PVN can
influence coincident changes in anxiety and depressive-like
behaviors, stress-related neuroendocrine responses, and autonomic
stress responses. The PVN also receives important input from
circumventricular organs that have an incomplete blood brain
barrier (BBB) such as the subfornical organ (SFO) which can respond
to circulating peripheral signals such as angiotensin Il (Ang Il). PS
parasympathetic, SYM sympathetic, AT1R angiotensin |l receptor
subtype 1. Motor X: motor nuclei of the vagus nerve (cranial nerve
X). Dashed lines indicate principal projections of the PS nervous
system, dotted lines indicate principal projections of the SYM
nervous system
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hypertensive response to Ang Il infusion. Moreover, prenatal GC
exposure has been shown to increase renal AT;R expression [185,
186, 200], renal Ang Il production [201], and plasma renin activity
[193]. However, the direction of RAS activity in male versus female
offspring varied with the nature or timing of prenatal stress.

The role of enhanced RAS activity in cardiovascular control is
further supported by studies showing that acute AT;R blockade
lowered BP, partially normalized parasympathetic dysfunction,
and fully normalized BP variability in adult male sheep that were
prenatally exposed to sGC (females not tested) [202]. A maternal
low-protein diet caused corticosterone-dependent increases in
AT, receptor expression coupled with reduced methylation of the
AT, receptor promoter [203]. Importantly, in addition to changes
in angiotensin receptor expression, inhibition of corticosterone
production in utero prevented hypertension in these offspring
[203].

Prenatal stress has also been reported to alter the activity of the
central RAS. Central infusion of losartan, an AT;R antagonist,
reduced blood pressure and heart rate in the offspring of sGC-
treated but not control male sheep (females not tested) [204].
Prenatal sGC exposure resulted in increased AT;R expression in
the brainstem [204] and increased Ang Il levels relative to the
protective Ang(1-7) in the dorsal medulla [205] of adult offspring.
While the mechanisms underlying increased RAS activity following
prenatal stress are unknown, a cis-acting GC responsive element
has been identified on the AT,,R promoter [206]. Together, these
studies suggest prenatal stress alters the RAS through epigenetic
programming of angiotensin receptor expression during gestation.

PRENATAL PROGRAMMING OF ADULT METABOLIC FUNCTION
Animal studies have shown that prenatal stressors during late
gestation predispose offspring to metabolic disorders in adult-
hood [207, 208]. Late gestation exposure of rodents to sGC
increases gluconeogenesis in adult male, but not female offspring
[193, 209], and alters insulin production by reducing the mass of
pancreatic B-cells and their capacity to secrete insulin [210].
Prenatal GC exposure also increases circulating triglycerides,
promotes storage of fat in the liver [211], and decreases fatty
acid uptake in visceral adipose tissue [212] of adult offspring.
Whereas, most studies have only examined adult male offspring,
high fat diet-induced hepatosteatosis has been shown to be more
profound in female offspring of DEX-treated dams [194]. This was
coupled with female-biased decreases in adult circulating insulin-
like growth factor 1 (IGF-1) [194].

GCs alter B-cell mass and function

During development and in adulthood, GCs have been shown to
cause insulin resistance, hyperglycemia, and modulate p-cell
proliferation to alter the total mass of pancreatic B-cells [213].
Support for this also comes from earlier studies that have shown
that maternal food restriction can permanently decrease B-cell
mass of neonates, secondary to elevated fetal corticosterone
levels, regardless of post-weaning nutrition [214, 215]. In vitro
studies showed that DEX treatment of embryonic pancreas caused
a decrease in B-cell numbers and increase in acinar cells, whereas
removal of GR signaling in acinar precursors increased p-cell mass
[216]. Hence, a mechanism whereby DEX can modulate B-cell
mass is by decreasing differentiation into B-cells. This differentia-
tion step begins early in the third week of gestation in the rat
(G14.5-15.5) [216]. In addition, GCs have been shown to be pro-
apoptotic in a number of tissues including the pancreas where
they activate the intrinsic mitochondrial cell death pathway,
ultimately resulting in the activation of caspase-3 [217]. GCs have
also been shown to program B-cell dysfunction through inhibition
of pancreatic duodenal homeobox 1 (Pdx1), a transcription factor
involved in B-cell maturation [216]. Impaired B-cell function and
number have been reported following in utero DEX exposure
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during the last trimester [210, 218, 219], yet there are few studies
examining sex differences in pancreas development or the effects
of DEX on developing (-cells. Moreover, since normal pancreatic
B-cell function is dependent upon an appropriate autonomic
innervation [220, 221] in adulthood and during development
[222], the same factors that underlie prenatal stress induced
changes in cardiovascular function may similarly be involved in
the programming of metabolism.

Growth hormone-IGF axis as target and mediator of fetal
programming

Growth hormone (GH) and IGF-1 are independent and opposing
risk factors for the development of metabolic disorders such as
type Il diabetes (T2D). GH, secreted by the anterior pituitary gland,
promotes the expression and secretion of IGF-1 by the liver, but in
mice lacking IGF-1, GH causes insulin resistance [223], whereas IGF-
1 administration improves insulin sensitivity and contributes to
glucose and FFA (free fatty acid) uptake [224]. Insulin and IGF-1 are
closely related hormones controlling different aspects of growth
and metabolism and they have tremendous overlap in function as
each can bind to both the insulin receptor and the IGF-1 receptor
[225]. During development, IGF-1 maintains (-cell mass [226] and
the maturation of -cells [227]. Prenatal DEX has been shown to
cause growth restriction and reduced long-bone growth following
weaning, with more severe growth restriction in females [194] and
this correlated with decreases in circulating IGF-1. Insulin and IGF-1
appear to regulate overlapping responses. Thus, hyperinsulinemia
produces early infant growth, whereas hypoinsulinemic babies
were small [228]. Likewise, IGF-1 regulates glucose metabolism in
states of insulin resistance. Administration of IGF-1 to Insulin
Receptor knockout (IRKO) mice decreased plasma glucose levels by
action through the IGF1R on skeletal muscle [229].

Prenatal stress and MetS in adulthood

Preclinical studies have shown that late gestation stressors
predisposed offspring to MetS in adulthood [207, 208]. Corre-
spondingly, late gestation exposure to sGC increased liver
enzymes involved in gluconeogenesis in adult male, but not
female offspring [193, 209], and altered production of insulin by
reducing pancreatic B-cells and their capacity to secrete insulin
[210]. Prenatal GCs also increased circulating triglycerides and
storage of fat in the liver [211] and decreased fatty acid uptake in
visceral adipose tissue [212]. Whereas, most of these studies were
restricted to the examination of adult male offspring, we have
previously demonstrated that high fat diet-induced hepatostea-
tosis was more profound in female offspring of DEX-treated dams
which was coupled with sex-specific reductions in circulating IGF-
1 [194]. Taken together, these studies highlight the role of
prenatal GC exposure, whether from prenatal stress or treatment
with sGC, on the impact of glucose homeostasis programming
and risk for adult MetS.

The programming of MetS by prenatal stress may be initiated very
early in gestation and have sex-selective effects expressed as
different metabolic phenotypes in adult males and females. For
example, O-linked N-acetyl glucosamine (O-GIcNAC) transferase
(OGT) is expressed by the placenta and senses changes in maternal
energy homeostasis to regulate epigenetic marks on chromatin
[230]. Gestational stress during the first week of pregnancy in a
mouse causes reductions in placental OGT which give rise to
changes in offspring endocrine and hypothalamic mitochondrial
function and body weight [231, 232]. Prenatal stress induced
reductions in placental OGT were only found in male placentas,
suggesting a pathway whereby early changes in placental OGT
regulated sex-selective epigenetic modification of genes important
for adult metabolism. Note that the earlier timing of stress induction
resulted in greater impact on male than female placentas.

Gestational stress can also foster adult MetS by organizing
hypothalamic nuclei controlling energy homeostasis [233]. A surge
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of circulating leptin occurs in development that peaks about
postnatal day (PD) 9-12 in male and female rats [234]. Gestational
malnutrition advanced the leptin surge, leading to hypothalamic
leptin insensitivity in adult male offspring (females not tested)
[235], while delaying the postnatal leptin surge led to diet-induced
obesity in female rats (males not tested) [236]. Therefore, leptin is
thought to be an important player in the development of both
orexigenic and anorexigenic projections from the arcuate nucleus
[237] and specifically acts during development to program the
function of autonomic brainstem nuclei in adulthood [222].
Similarly, intrauterine growth restriction caused hyperleptinemia
followed by leptin resistance by PD21 in female, but not male rats
[238], while a leptin antagonist increased food intake in adult
male, but not female offspring [239]. Together, these studies
suggest sex-biased roles for the postnatal surge of leptin in the
rodent, which can impact the development of hypothalamic
regulation of energy balance in adulthood.

These studies are critical as we think about mechanisms to
explain the high rate of the comorbidity of obesity and MetS with
major depression. In fact, some have argued the importance of
understanding distinctions between atypical and more classical
depressive phenotypes, the former being more highly associated
with overeating and weight gain and hypo- or normal cortisol
levels than the classical melancholic depression, characterized by
loss of appetite and weight and hypercortisolemia [240, 241].

SUMMARY COMMENT

The comorbidity of MDD and risk for CVD and associated MetS will
be one of the primary causes of disability worldwide by 2020, and
women are at twice the risk of men. In fact, these disorders are
independent risk factors for memory decline and Alzheimer’s
disease, which will overwhelm our economy without effective
treatments. Thus, it is a major public health problem with
substantial economic, social, and disease burden, particularly for
women. Sex differences in MDD-cardiometabolic comorbidity
originate, in part, from pathogenic processes initiated in fetal
development that involve shared pathophysiology between the
brain, the vascular system, the CNS control of the heart and
associated hormonal, immune, and metabolic physiology. We
hypothesize that prenatal stress and immune disruptions that
occur during key gestational periods of the sexual differentiation
of the brain will result in sex-dependent effects, dependent on
exposure timing, on brain development in highly sexually
dimorphic regions that regulate mood, stress, metabolism, and
energy balance, the ANS, and the vasculature itself. Pathways
implicate neurotrophic and angiogenic growth factors, gonadal
hormone receptors, and neurotransmitters (such as GABA) on
neuronal and vascular development of HPA axis regions, such as
the PVN, in addition to blood pressure, in part through the renin
angiotensin system, and insulin and glucose metabolism. The
same prenatal exposures have consequences for sex differences
across multiple organ systems that, in part, share common
pathophysiology. Thus, we believe that applying a sex differences
lens to understanding shared biologic substrates underlying these
comorbidities will provide novel insights into the development of
sex-dependent therapeutics. Further, taking a lifespan perspective
beginning in fetal development provides the opportunity to target
abnormalities early in the natural history of these disorders. By
doing so, we believe this will increase the efficacy of these
therapeutics even for one of the disorders and will move us closer
to the ideals of precision medicine.
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