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Let’s call the whole thing off: evaluating gender and sex
differences in executive function
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The executive functions allow for purposeful, deliberate, and intentional interactions with the world—attention and focus, impulse
control, decision making, and working memory. These measures have been correlated with academic outcomes and quality of life,
and are impacted by deleterious environmental events throughout the life span, including gestational and early life insults. This
review will address the topic of sex differences in executive function including a discussion of differences arising in response to
developmental programming. Work on gender differences in human studies and sex differences in animal research will be
reviewed. Overall, we find little support for significant gender or sex differences in executive function. An important variable that
factors into the interpretation of potential sex differences include differing developmental trajectories. We conclude by discussing
future directions for the field and a brief discussion of biological mechanisms.
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INTRODUCTION

Executive function refers to a collection of abilities that allows an
individual to organize their behavior to respond to the current
environment and plan for future situations. These skills, including
attention, impulse control, decision making, and working memory,
allow an organism to attend to relevant variables, compare these
variables to past experiences, evaluate which responses would be
most effective, and inhibit inappropriate responses. Well-
developed executive functioning will contribute to an individual’s
success, socially, academically, and professionally. However,
disruption of executive function is associated with adverse
outcomes and is a component of numerous mental health
disorders, including attention deficit hyperactivity disorder
(ADHD), schizophrenia, and bipolar disorder.

However, it is well-known that the above named neuropsychia-
tric conditions are not typically matched between genders in
diagnosis rates, onset, severity, and/or prognosis. For example,
ADHD is more likely to be diagnosed in boys [1]. A meta-analysis
revealed that impulsivity was significantly more prevalent in boys
with ADHD versus girls, while no gender differences in attention
were indicated [2]. Moreover, the presentation of ADHD may differ
between the sexes, with impulsivity more often diagnosed in boys
[3]; however, other studies have reported similar presentation of
ADHD symptoms between the sexes [4-6]. Further, adult women
with ADHD have more severe symptoms if they were diagnosed
with ADHD as a child, while this relationship is not present in boys
[7]. The incidence of schizophrenia is higher in males [8], and may
be slightly more prevalent in men [9], and the initial presentation
is different by sex, with onset typically seen later in females
[10, 11]. Bipolar disorder equally affects men and women, but
again the onset and presentation differs, with onset occurring
later in women, and women showing more rapid cycling between
mania and depression than men [12]. These differences extend to

work in animal models of these disorders as well [13, 14]. One
question that emerges is whether fundamental sex and gender
differences in the different executive functions exist as a possible
mechanism contributing to the sex- and gender-disparate risk for
neuropsychiatric conditions. In this review, we examine the
evidence for baseline sex and gender differences in four essential
executive functions in both the human and animal literatures.

Executive function can be impacted by deleterious events
throughout the life span, including gestational and early life
insults, stress, drug abuse, and aging [15-20]. These adverse
environmental events are also linked to an increased risk for the
development of many, if not most, neuropsychiatric conditions
including mood disorders, dementias, psychosis, and neurodeve-
lopmental disorders such as autism and attention deficit/
hyperactivity disorder. Therefore, the present review will approach
the topic of sex differences in executive function with a particular
focus on differences related to developmental programming. We
conclude that (1) individual components of executive functions
may be enhanced in one sex or gender over another, but that
there is no systematic advantage, (2) that these effects depend
greatly on the modality of testing and the parameters tested,
suggesting that apparent differences in the abilities in executive
functions may in fact reflect different strategies employed by each
sex and gender when confronted with a challenge or ambiguous
situation and (3) early life adversity can disrupt executive function,
with important influences of both gender/sex and age/timing on
the severity and expression of these effects.

Human gender differences in attention

Attention and impulsive action are often measured concurrently,
within the same tests, and will therefore be discussed collectively
here. A wide variety of neuropsychological tests are available,
including the widely used continuous performance task (CPT).
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While the specifics of the task can vary (type of stimulus
presentation (visual vs. auditory) or the required response), the
basic strategy of the CPT remains the same. In the CPT, individuals
must respond correctly to target stimuli, and inhibit responding to
incorrect stimuli (e.g., presentation of the letters A and B, in which
responding should occur only on the presentation of A (target)
and never to B (foil)). If the target is presented repeatedly, in rapid
succession, followed by a single presentation of the foil, it can be
difficult to inhibit responding to the foil, which is a measure of
impulsive action. Similarly, if the target is only presented very
infrequently, the subject is required to pay close attention, and
errors of omission are a measure of inattention.

Age of testing, as well as the specific testing modality, impact
the findings of gender differences in attention. In a normative
sample of 8- and 10-year-old children tested with a standard
neuropsychological battery, girls were found to have better scores
on attention as compared to boys [21]. However, testing later,
during adolescence, using the CPT, revealed no gender differences
in attention [22].

Another study that examined the full life span (ages 17-90)
failed to find any gender differences in attention; however,
women were found to have slower reaction times [23], consistent
with another report using adults that reported slower reaction
times in females, but no gender differences in attentional
performance [24]. Another study that used responses in an online
format of the CPT from a very large number of respondents (n =
9-11,000/gender) also indicated a slower reaction time in women,
as well as gender differences, such that females made more
omission errors, while males made more commission errors
(responding inaccurately to the foil); however, it was noted that
the effect size of these differences was quite small [25].

Human gender differences in impulsive action

Analysis of typically developing 8- and 10-year-old children found
that girls were less impulsive than boys [21]; however, by
adolescence, girls scored higher in impulsive action in the CPT
compared to boys [22]. Similar to the findings in adults, 9-10-year-
old boys were found to have faster reaction time in a go-no/go
task as compared to girls, a finding that was also seen in 9-17-
year-old population [26, 27]. In that population, boys were also
found to be more impulsive [26]. The fact that boys may have
faster reaction times may underlie or contribute to the noted
increase in impulsive action, particularly when tested in CPT, as
premature responses are more likely with a faster reaction time
and are coded as impulsive behavior.

Sex differences in animals in attention and impulsive action

The five-choice serial reaction time task (5CSRTT) has been used to
assess attention and impulsivity in mice [28], and is considered the
gold standard for evaluating executive function deficits in rodents.
This task is analogous to the CPT used to assess sustained and
selective attention in humans [29], and screen for ADHD [30]. This
operant task requires localization of brief visual stimuli presented
randomly in one of five locations. A large number of correct target
detections indicates good attentional performance as reflected by
high response accuracy accompanied by few errors. The intertrial
interval (ITl) can be manipulated to make the task more
challenging. A longer ITl can increase premature responding,
while a variable length [Tl can challenge attentional systems, as an
animal can no longer rely on timing strategies to indicate the
presence of the cue. Assessment of higher executive function in
rodents is relatively time and resource intensive, limiting the
broad adoption of these assays in research. Consequently, there
are limited studies overall, and of those, only very few that include
females.

Attention. In one of the earliest studies to assess both male and
female mice in the 5CSRTT, no sex differences were identified in
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acquisition of the task, or performance metrics (accuracy,
omissions, premature responses); however, female mice were
reported to have faster reaction times [31]. Importantly, this paper
also reported how changes in task difficulty impacted perfor-
mance. When the intertrial interval (ITl) was lengthened, impulsive
errors increased acutely in both males and females, but males
rapidly habituated, while female premature responding persisted.
Similarly, in adult rats, females appear to be more adversely
affected by increasing task difficulty. Females, more so than males,
showed a greater decrement in attention under challenging 5C
parameters, either a shorter stimulus and variable intertrial interval
(ITI; [32] or when the ITI was long [33]). Environmental changes
have also been shown to impact performance in a sex-dependent
manner, with males showing an increase in susceptibility to
performance decrements. Exposure to a mild stressor was found
to decrease attention and increase impulsive responding in male
mice, while female accuracy was not affected [31]. This group also
tested animals that were ad lib fed (rodents are typically food
restricted for the 5CSRTT to increase motivation to perform) to
remove the stress and motivation factors. In this context, females
outperformed males, and were more accurate and had fewer
premature responses. Vitamin D deficiency has also been
examined in adult mice. Similar findings were observed here, as
it was shown that males were the only sex affected, with vitamin
D-deficient males showing an increase in reaction time, less
accurate performance, and more inattentive errors in the 5CSRTT,
while there were no adverse effects of vitamin D deficiency in
females [34].

Impulsive action. To examine impulsive action in rodents, the
5CSRTT is used. In our work, we did not observe any sex
differences in attention, but did note a higher rate of impulsive
errors in adult females versus male mice under baseline task
conditions [35]. Similarly, using a modified version of the 5CSRTT
to allow for testing in younger animals, adolescent female mice
were found to make more impulsive errors [36]. Reaction time
has also been examined, and no sex differences have been
reported [33, 35, 37]. When parameters are changed to make the
task more difficult (shorter stimulus and variable intertrial
interval), males have shown increased impulsive action [32].
Similarly, in another study, males made more premature
responses (impulsive action) when the ITI was long [33].
Additionally, male rats were found to be more impacted by a
variable ITl, leading to more impulsive errors in 5CSRTT, while
female performance remained robust, even in the face of
increasing task difficulty [38]. However, another study using a
two-choice task found that with increasing difficulty (long ITI), in
adolescence, males were more impulsive than females, while as
adults, females made more premature responses as compared
to males [37]. Clearly, there are important developmental
differences with regard to impulsive behavior, as it has also
been reported that male rats showed greater preference for
novelty and increased activity earlier in life, whereas these
behaviors emerged later, during adolescence, in females [39].

Overall, considering both human and animal studies, one can
conclude that large gender or sex differences in attention and
impulsive action are absent. Baseline differences in attentional
performance are not described; however, the extent to which
subjects are adversely affected by task difficulty or environ-
mental stressors differs by gender/sex, such that females appear
to be more adversely affected by task difficulty and males by
environmental perturbations. There may be support for an
increase in impulsive action in males, potentially related to a
faster reaction time seen in human studies. In animals, a few
studies support increased impulsive action (at baseline) in
female animals; however, males appear to be more impacted by
increases in task difficulty or changes in the testing
environment.
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Decision making and impulsive choice
Aberrant decision-making processes are seen in a variety of
neuropsychiatric conditions, including autism, psychosis, mood
disorders, and addictions, reflecting both vulnerabilities in the
ability to use this executive function, and in many cases
contributing to worsening outcomes.

The process of decision making involves two key components:
the ability to determine the most likely outcomes from a given
choice, and the ability to weigh different choices according to
probable outcomes and select an optimal choice. We can think of
these processes as first, establishing the rewards and risks of
various choices through learning when making decisions in
unfamiliar circumstances, often measured in the early phases of
decision-making tasks, and second, making selections when
substantial evidence has been collected about relative rewards
and risks among various options, often measured later in decision-
making tasks.

Therefore, the potential role for sex and gender differences to
influence decision-making processes could occur during the early
stages of evidence collection and learning, or later, through
differential weighting of risk and reward between sexes and
genders. However, evidence collection processes are likely to be
heavily influenced by rates of risk and reward. In fact, as discussed
below, a differential sensitivity to risk versus reward, and the
balance of risk versus reward in a given task, shifts the influence of
sex and gender in decision-making tasks. While there is an
apparent gender/sex effect in decision making, this appears to be
driven by sex differences in the assessment of risk, not rewards,
causing females to avoid frequent loss even if this is covertly
advantageous, especially during learning in unfamiliar circum-
stances [40, 41]. When a task is run where loss frequency is
controlled, or once sufficient evidence has been collected about
risks and rewards, males and females are equally adept at making
optimal decisions.

Human gender differences in decision making and impulsive
choice

The most frequently employed decision-making task in humans is
the lowa Gambling Task (IGT), which was originally developed
several decades ago as a method to examine the ability of losses
to drive shifts in decision making in neuropsychological patients
through long-term estimations of value. The ubiquity of this task
means that there is quite a bit of data on the role of gender and
sex, but confounds in the design [42, 43] mean that the
interpretation of these data becomes challenging. At first glance,
there appear to be differences in performance between genders
on this task. However, careful analyses have shown that these are
driven by gender differences in tolerance for frequency of loss
rather than magnitude of gains, which are confounded.

Briefly, the IGT involves four decks of cards, each of which has
cards that gain money, and cards that lose money. Over the long
term, two of these decks (A and B) have a net loss of $250 over
every ten cards, and two of these decks (C and D) have a net gain
of $250 over ten cards. However, the decks differ not only in their
“final outcome”, but in the probability of choosing a losing card on
any turn; decks A and C have a rate of five losses and five gains
over every ten cards, while B and D have a rate of one loss and
nine gains over every ten cards. Finally, decks C and D have cards
that have smaller individual gains ($50 per card) versus decks A
and B ($100 per card); thus, there is no deck with both large
individual gains and a beneficial final outcome. Thus, for ideal
performance, participants have to make a counterintuitive
decision to forgo large gains (which are frequent in deck B) in
favor of smaller gains (deck C) and often to select more frequent
losses (as in deck D). Participants in these experiments usually
have 100 chances to pick a card from any of the decks.

A number of studies have shown that men tend to outperform
women at the IGT, specifically by choosing from decks C and D
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more frequently [42, 44-47]. However, many studies have failed to
find any gender difference in this task [42, 48, 49], suggesting this
effect is modulated by environmental factors to which men and
women may be differentially susceptible and that are not
typically controlled for between genders, such as stress and
anxiety [46, 50-53]. Performance on this task is often rated by the
number of “gain” cards from the C and D decks a participant
collected at the end of 100 trials. Critically, both men and women
prefer deck D with a net gain over time and only one loss per ten
cards, over the other three decks. However, men tend to develop
a preference for a deck (C) with frequent losses of smaller
magnitude, while women maintain a preference for a deck with
rare losses, although of large magnitude (B) [42]. Given additional
trials past 100, women develop a preference for deck C [42, 44],
suggesting that women weight the frequency of loss more highly
than men, while men rate the magnitude of loss more highly,
when these options are put into conflict.

Because the IGT varies both frequency of loss and magnitude of
loss, avoiding frequent loss can mean enduring losses of higher
magnitude. However, it is possible to vary the frequency of loss
while holding the magnitude of loss constant. In scenarios such as
this, we would expect that this would lead to no sex differences in
learning to make optimal choices, or even show enhanced
performance in women by avoiding frequent loss. There is
support for both of these possibilities in tasks where only loss
frequency or loss magnitude are varied and the other option is
controlled. In a modified version of the IGT, when men and
women are given a choice only between decks A and C, which
both have frequent losses, people of both sexes prefer deck C,
with a net gain. However, when the task is modified to contain
only decks B and D, which both have rare losses, people fail to
distinguish that B leads to a greater magnitude of loss than D and
choose them at equivalent rates [54, 55]. This suggests that
observed gender differences in decision making as measured by
the IGT are driven by wishing to avoid frequent loss, not by a
gender difference in the ability to detect loss magnitude.

Another kind of decision-making task that varies only the
frequency of loss/reward while keeping the magnitude of these
outcomes constant is probabilistic decision making, sometimes
called a multiarmed bandit task. These kinds of tasks provide two
or more items which vary in the probability of reward, but provide
the same size of reward across options. These kinds of tasks have
been recently used to examine decision-making strategies,
particularly whether a participant chooses to explore unknown
options versus choosing to exploit options with which they have
prior experience. Studies in humans have largely found no gender
difference in bandit task performance [56-58], suggesting that the
ability to identify items with a high probability of reward does not
vary as a function of gender. When the learning phase of this kind
of task was specifically examined, one study found that women
were quicker to learn to choose an option associated with a high
probability of reward [57]. A different probabilistic repeated
gambling task where there was no learning component (deciding
whether a number was likely to be higher or lower than a
provided number) found no differences in choices as a function of
gender [59]. This suggests that observations that women avoid
frequent losses in the IGT may be the other side of the coin
wherein men are willing to make choices associated with a higher
probability of loss, even when loss is highly probable.

A final form of decision-making task varies the magnitude of
outcomes and varies the cost of the high-magnitude option, either
as temporal delay (delay discounting) or in probability of
occurrence (probability discounting, also called a risky decision-
making task). These kinds of tasks typically ask whether a person
would prefer an immediate and guaranteed small reward, versus a
larger reward at some delay, or with some chance of occurring.
These kinds of discounting tasks have generally failed to show
baseline gender differences in the tendency to prefer an
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immediate reward [60-62], though gender can interact with other
conditions such as alcoholism to result in gender-specific effects
[60]. Fewer studies have been conducted with probability
discounting in humans with gender-specific analysis, but these
have generally not seen evidence for gender differences in
healthy controls [62, 63].

Overall, these findings support the idea that there is little
gender difference in decision making in general. However, this is
dependent on a task design that controls for the frequency of
gains and losses, compared to the magnitude of these events, as
the avoidance of frequent losses would lead to the observation of
decreased performance in the IGT and increased performance in
bandit tasks, as described above. These findings are consistent
with a broader literature indicating greater sensitivity of women
and female animals to both rewarding and punishing outcomes,
indicating that while decision making itself is not consistently
different between genders, the information used to influence
decisions may be processed differently by men and women.

Animal sex differences in decision making

The subject of sex differences in animal models of decision
making was recently beautifully reviewed by Orsini and Setlow
[41]. Here, we will discuss this literature with an emphasis on
drawing connections to the human findings. Briefly, several
different gambling-type tasks have been developed for testing
in animal models in operant chambers, and again, the relationship
between the magnitude of negative outcomes versus the
frequency of negative outcomes [64] appear to determine
whether there is a female advantage or a male advantage. A
clear finding across animal tasks tested so far is that females will
avoid making choices associated with frequent negative out-
comes, such as shock or unpalatable food, even if these options
are also associated with higher magnitude positive outcomes
(more palatable food) [41]. However, in tasks where options differ
only in the cost or probability of a positive outcome, without
punishment, there is either no sex difference or a female
advantage.

As in human tasks, animal tasks can include an overt negative
outcome, and as in human literature, these tasks lead to females
avoiding frequent negative outcomes. A rodent version of the IGT
compared choices in an operant chamber for a long-term
advantageous option (with small amounts of palatable pellets
and occasional highly unpalatable pellets), and a disadvantageous
option (with large amounts of palatable pellets but more frequent
punishment by delivery of highly unpalatable pellets). Perfor-
mance at the end of this task did not differ between sexes, but
males learned to stay with the advantageous option more quickly,
despite punishment. Females, in contrast, were more likely to shift
to the other option following punishment, suggesting that the
avoidance of deleterious outcomes was more motivating [65].
Paralleling this, Orsini and colleagues recently employed a rodent
risky decision-making task where animals were asked to choose
between an option that resulted in a small food reward, and an
option that resulted in a larger food reward paired with some
probability of footshock. Females showed a strong preference for
the safe option, although smaller, than the risk of footshock [66].
These findings are consistent with those from the human
literature indicating that females weight deleterious outcomes
more highly in decision making.

The vast majority of tasks evaluating decision making in rodent
models at this time involve active punishment to make a high-
magnitude reward less attractive. As noted above, the human
literature indicates that tasks which set up a conflict between the
ability to detect profitable options with the desire to avoid
frequent negative outcomes lead to an apparent deficit in female
decision making. Because of this, it is helpful to compare the
findings from the rodent version of the IGT to a task that changes
the probability of negative outcomes while holding these at the
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same magnitude. The “rat Gambling Task”, in contrast to the tasks
described above, is more similar to a “bandit-style” task, in that
losses involve the omission of a food reward, rather than an
actively deleterious outcome such as unpalatable food or a shock.
In addition, it involves forced choices, where females and males
are obligated to pick each of the options in isolation, before being
allowed to choose. Here, females learn more quickly than males to
choose the advantageous option [67].

In delay discounting tasks, where animals choose between a
small immediate food reward, and a larger food reward that
occurs on a variable delay, there have largely been no significant
sex differences reported [68-70], suggesting again that without
active aversive outcomes, intact females and males assess reward
outcomes similarly or with a slight tendency in females towards
the detection of positive outcomes. Further, developmental time
is a critical lens through which sex differences should be viewed.
In a study that tested animals at early adolescence, late
adolescence, and adulthood, an interesting pattern of sex
differences was noted, and this related more to the develop-
mental pattern of impulsive choice, as opposed to a simple sex
main effect. In females, an inverted U-shaped curve was identified
with impulsive choice peaking at late adolescence; however, in
males the curve was quite different, remaining relatively high
throughout adolescence, and decreasing only in adulthood [39].

Overall, as in the human data, animal decision-making research
suggests that there is not a clear-cut sex difference or advantage,
but a difference in outcome sensitivity that, critically, benefits
males when punishments are severe and benefits females when
punishments are minimal. Thus, again, while decision making itself
does not appear to differ between animals of different sexes, the
information processing that supports decision making does.

WORKING MEMORY
Working memory performance is the ability to maintain in mind a
particular set of information, particularly a sequence of stimuli or
events, for use in the immediate future to either repeat this
sequence (for example, to maintain a trace of what the current
topic of conversation is) or to avoid it (for example, to avoid
rechecking a location that was just searched when looking for an
object). As such, it is essential for normal cognitive and social
function. Neuropsychiatric conditions, particularly schizophrenia,
are often associated with profound working memory impairments.
As described above, working memory appears to be a unitary
construct applied to any sequence of information, be it spatial,
verbal, or associated with some other grouping of stimuli.
However, these stimulus domains are supported by significantly
different neural circuits, which are known to show sex and gender-
disparate function—for example, hippocampal and temporal lobe
circuits in processing spatial information versus cortical regions
important to verbal, speech, and language processing. It transpires
that the type of information that a human or animal is asked to
maintain in working memory appears to influence the direction of
observed sex differences—however, in large part there appear to
be no sex differences in working memory function.

Human assessment of working memory

Working memory tasks can ask a person to keep in mind, for a
short period of time, an item or series of items, such as a sequence
of letters or numbers in n-back tasks, a particular object in delayed
match to sample/delayed nonmatch to sample tasks, or a set of
recently visited or noted spatial locations, as in object location
tasks or human analogs of the radial arm maze.

Tasks designed to measure working memory have largely failed
to identify any sex differences across a wide developmental range,
from young children to elderly populations, though there are
significant age-related changes in this ability. Young children
show no sex differences in spatial working memory [71-73], and
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the same is true for adolescents [74], young adults [75-77], and
aged adults [78]. When a gender disparity in working memory
ability has been seen, women outperform men, particularly in
spatial and location-based tasks [79-81], though this may differ at
very high working memory loads [82]. A recent meta-analysis
explicitly directed at identifying potential sex differences in
working memory affirmed a female advantage in object location
memory and suggested that there may be a male advantage in n-
back tasks [83]. However, this analysis was limited to studies
directly listing sex differences as a dependent measure, which
reduced the sample from 2072 relevant papers to 69, suggesting a
possible influence of publication bias for papers identifying a sex
difference and removing ones that did not observe differences
that justified doing an exploratory sex differences analysis, despite
the best attempt of the authors of this meta-analysis to avoid this.
Further, this study identified a sex difference not in working
memory as a general construct, but in specific domains in which
working memory is applied.

One potential mechanism that could produce a slight tendency
for sex- and gender-disparate performance in different working
memory tasks is the existence of sex-specific strategies in working
memory. In a spatial working memory task in adolescents where
there were no sex differences detected in successful performance,
there were nevertheless substantial differences in patterns of
neural activity as measured by fMRI [74], such that girls showed
reduced activation of the default mode network, while boys
showed activation in regions previously associated with spatial
working memory function. This finding suggests that either there
may not be a single canonical network necessary for working
memory, or that the baseline activity of the default mode network
versus task-focused networks may differ between sexes. Altering
the types of information available in spatial working memory tasks
reveals gender-specific behavioral strategies such that women
appear to rely on allocentric cues to direct behavior, whereas
removal of global spatial or directional cues impairs performance
in men [84]. This finding helps to resolve discrepancies with the
animal literature, discussed below, that has tended to find a male
advantage in working memory tasks, and suggests that the trend
towards a female advantage in human working memory tasks may
be related to the availability of allocentric information in a given
task as conducted in the laboratory.

Animal assessments of working memory

The assessment of working memory in rodents has often relied on
spatial working memory, particularly the radial arm maze task. As
discussed below, this task has often, but not always, identified a
male advantage in the task, which is in conflict with the general
trend of no sex difference or a female advantage in working
memory assessed in humans. The magnitude of differences in
performance in the radial arm maze is not large, and idiosyn-
crasies in the way the task is typically assessed and reported may
drive this apparent discrepancy between the human and animal
literatures. In rodents and nonhuman primates, a number of
object-based tasks, including delayed match to sample, delayed
nonmatch to sample, novel object recognition, and spatial object
recognition, have largely identified no sex difference in
performance.

The radial arm maze task employs a number of arms (typically 8
or 12) arranged like spokes from a center hub, and some or all of
these arms may be baited with a small food reward. The most
typical measure for this task is the total number of arm entries to
collect all the available food. Males have repeatedly been shown
to use a lower number of total arm entries to complete this task
[85-89], but there have also been a number of papers showing no
sex difference in this measure [90, 91]. This result has often been
interpreted to mean that males are better at maintaining in mind
which arms have already been visited, and thus that males have
an advantage in working memory in general. However, there are a
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number of caveats to this interpretation. First, the size of the maze
relative to a rodent may shift the preponderance of available cues
away from allocentric cues and towards global spatial cues, and
thus the kind of information that females use preferentially in
working memory may be less available. Second, the literature on
decision making discussed above revealed a female bias in the
avoidance of negative outcomes, suggesting that at some point in
running the maze, females may prioritize checking to ensure a
food reward has been collected from a previously visited arm
rather than risk losing out on that food reward. Several pieces of
evidence suggest that female rodents engage in exactly this
strategy when solving the radial arm maze. First, in a study which
did not find an overall sex difference in the total number of arm
entries, it was found that females engaged in a higher degree of
“vicarious trial-and-error”, pausing and investigating arms with
head entries before moving on to another arm, suggesting that
females were investing more effort into determining whether or
not a food reward had been collected at a given arm than males
[90]. Second, a study in mice found that although females had
higher total number of arm entries at the end of the maze, the
number of arm entries before an arm was repeated was identical
between sexes [88]. This latter measure is much less frequently
reported, but is likely more directly related to a true working
memory construct as it reflects the maximum number or “span” of
arms that can be visited before an animal makes a first error. The
overall error rate in radial arm maze testing, then, may reflect
increased reliance in males on a behavioral strategy that may
result the loss of a possible food reward, consistent with the
decision-making literature.

Other tasks used in rodents and nonhuman primates that do
not rely on the collection of multiple food rewards have found
either no evidence of a sex difference or a trend towards a female
advantage. These tasks involve the ability to hold in mind a given
item (object, smell), and then determine whether it is the same
(delayed match to sample), is different (novel object recognition),
or has moved location (spatial object recognition). Note that the
latter two tasks have both a long-term memory version that is
tested over multiple days, or can be tested in a short period of
time in a single day to assess working memory. Versions of these
tasks where working memory was assessed found that female
rodents were advantaged at recognizing a novel object [92] and at
an olfactory delayed match to sample task [93]. Delayed match to
sample tasks are frequently employed in nonhuman primates, but
limitations in the numbers of animals used in a given experiment
often limit the ability to investigate sex differences. However, two
studies, one examining baboons [94] and one examining both
chimpanzees and rhesus macaques [95] both failed to detect any
sex difference in the performance of delayed match to sample.
Overall, data from these object recognition tasks, combined with
the human literature, suggest that there is not a strong sex
difference in working memory, and to the extent that there is, this
favors females, indicating that the male enhancement in radial
arm maze performance is probably due to nonworking memory
mechanisms such as sex differences in decision making.

Programming

We have now described how specific executive function
components are evaluated in humans and animals, and reviewed
the evidence for sex differences in these endpoints. While there is
limited evidence to support baseline differences in executive
function abilities, there is some support for gender/sex differences
in the cognitive strategies used during testing as well as how
different challenges, either within the task or as part of the
environment, affect performance. As mentioned in the introduc-
tion, deficits in executive function are a component of numerous
mental health disorders, including schizophrenia, bipolar disorder,
ADHD, and autism. Interestingly, the etiology of each of these
disorders is known to have a developmental component, and to
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be influenced to a greater or lesser extent by environmental
stressors. Therefore, in the following section, we will discuss work
that has examined how executive function deficits arise from
adverse events in early life, and how these programming events
may interact with gender/sex to differentially impact executive
function outcomes.

Developmental processes in early life can substantively affect
executive function. Deleterious conditions can lead to broadly
ranging cognitive deficits that surpass the influence of sex [35, 73,
96, 971. Longitudinal studies in China and India, where substantial
differences in early life conditions occur (often on a gendered
basis), reveal that early life education alters whether men or
women outperform each other in cognitive tasks [98-100] and
that height is independently predictive of cognitive performance
[101]. Because height is an indicator of the quality of gestational
and early life conditions, these studies suggest that the evaluation
of executive function in humans should control for educational
attainment, parental investment, and factors that reflect quality of
early life. A number of environmental exposures occurring either
during prenatal or early postnatal development have been shown
to affect executive function, including dietary changes, and
exposure to toxins, infection/inflalmmation or glucocorticoids
(GCs) being the most well-studied. For health outcomes in
general, an emerging theme suggests that male offspring tend
to be more adversely affected by early life adversity than females
[102-106], an observation documented in both humans and
animal models. To what extent this applies to executive function
shall be discussed here.

Glucocorticoids are routinely given to babies in utero when
there is imminent risk for a preterm delivery, in an effort to
accelerate lung development. However, this treatment is not
without adverse effects. In one study that examined children
given the synthetic GC dexamethasone, exposed girls had
increased inattention at ages 7-10, compared to a reference
population, while boys did not show any increase in negative
effects [107]. Similarly, in a study using baboons, female baboons
made more errors in discrimination and reversal learning tasks
after prenatal exposure to dexamethasone, while males were not
affected [108]. Therefore, with regard to the effects of early GC
exposure on executive function, girls appear to be more adversely
affected.

Maternal diet during pregnancy can also adversely affect the
development of executive function in offspring. Using the 5CSRTT,
we have shown that offspring from mouse dams fed a diet
deficient in protein, a model of low birth weight at term, showed
an increase in inattention, while offspring from dams fed a high fat
diet, a model of excessive gestational weight gain, showed
increased impulsivity [35]. Interestingly, these effects did not differ
across the sexes, with both male and female offspring showing
similar levels of errors. In another model of in utero growth
restriction (maternal nutrient restriction of 70% of ad lib fed
animals through gestation and lactation) in baboons, attentional
deficits and impulsivity were detected in males but not females
[109]; however, the samples sizes were quite small (n=3-4/
group), and this study was likely underpowered to adequately
assess sex differences.

An investigation into prenatal drug use found that metham-
phetamine or methylphenidate given to dams during pregnancy
affected the offspring, with both drugs increasing impulsive action
in the offspring, with only very subtle sex differences observed
[110]. Similarly, in an animal model used to examine autism-
related endophenotypes, valproic acid administration to pregnant
dams increased inattention, with no effect on impulsivity, in both
male and female offspring, with very minor task-dependent sex
differences noted [38].

Other maternal and/or pregnancy related-challenges have been
examined, as well. A complicated delivery was associated with
greater risk for ADHD diagnosis, and the effect size was bigger in
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boys than girls [111]. Maternal smoking has also been shown to
increase the risk for ADHD, and at least one study found this risk
did not vary by gender [112]. Environmental exposures to
toxicants have been examined as well. Prenatal urinary concen-
trations of phthalate metabolites were found to be associated
with inattention and behavioral difficulties in boys, but not girls
[113]. Mild traumatic brain (mTBI) injury in rats was also found to
have complex effects on executive function that varied by sex.
mTBI led to more impulsive errors in the 5CSRTT in control males;
however, more impulsive errors were identified only in females
when examining offspring from nutrient-restricted dams [114],
indicating that early life environment can also establish a sex-
dependent risk profile for future insults.

The literature on early life adversity and programming of
working memory and/or decision making is extremely limited,
even more so, with regard to sex/gender differences. Exposure to
the glucocorticoid dexamethasone during the first trimester
adversely affected spatial working memory only in girls, but not
in boys [115], while prenatal exposure to pesticide (at very low
levels) was associated with decreased neuropsychological scores
in girls, but not boys aged 6-11 years [116]. With regard to
decision making, no sex difference was observed using the rodent
gambling task in rats, either in control animals or those exposed to
vitamin D deficiency [67], and similarly, in a study that used
females only, there was no effect of early life stress (maternal
deprivation) on performance in the rodent gambling task [117].

Potential biological mechanisms contributing to gender/sex
differences
Given the diversity of behaviors that are incorporated by executive
function, there are a number of brain regions that have been
linked to these varied endpoints. However, it is also worth noting
that much of this work was largely or exclusively conducted in
males, and may therefore fail to identify circuitry or neurochem-
istry unique to females (see below), particularly given the male
—female differences in executive function strategies we have
previously described. The prefrontal cortex has received signifi-
cant attention with regard to executive function, with links to
attention, impulsivity, and working memory, including both
medial PFC (mPFC) [118-120] and the orbitofrontal cortex (oPFC)
[121, 122]. Normal PFC function requires a balance between
excitatory drive from glutamate neurons and inhibitory drive from
GABA neurons, and both GABA [120, 123, 124] and glutamate
[124, 125] have been linked to executive function. Given the
breadth of behaviors that contribute to executive function, the
associated neurochemistry is correspondingly broad [126], indi-
cating roles for dopamine and opioids [118, 127, 128], and
acetylcholine [129], in addition to GABA and glutamate. Relevant
to understanding sex/gender differences in executive function is
the fact that sex differences in these key neurotransmitter
systems, specifically within brain regions important in executive
function (prefrontal cortex, striatum) have been observed. Basal
sex differences in serotonin and dopamine were noted in the PFC
of adolescent and adult rats [130], while sex differences in
nicotinic receptor responses within PFC have been noted in
rodents early in development [131]. Sex differences in dopamine
receptor expression within striatum have also been documented
[132]. Importantly, interesting genotype X sex interactions have
been noted for two dopamine-related genes (COMT and DAT1) in
a population cohort, such that COMT and DAT1 alleles associated
with ADHD-related symptoms (inattention and hyperactivity) and
a full ADHD diagnosis in boys, but there was no association in girls
[133]. In animals, adolescent treatment with fluoxetine (a selective
serotonin reuptake inhibitor) improved attention in females, but
led to impairments in males, indicating that the effect of serotonin
on attentional performance varies by sex [134].

Additionally, differences in structural brain development may
contribute to sex differences in the programming of executive
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Are there baseline sex differences in executive function?
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 Sex differences in developmental programs
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Fig. 1 Summary of sex and gender differences in executive function. Literature review supports the finding that there are small and subtle to
no sex and gender differences in executive function. However, sex differences do emerge in the context of developmental programming, the
interaction with genotype, and potential underlying biological differences

function. Brain development in early life involves the over-
production of neurons and their connections, which are later
sculpted by neural activity, so that weakly active connections are
removed during a process called “pruning” [135]. Overproduction
of dendritic spines (a marker for excitatory synapses) is greatest in
the PFC, and synaptic pruning occurs most slowly in the PFC,
continuing well into the postnatal period. During synaptic
pruning, “weak” synapses are eliminated, while functional
synapses are strengthened. In the PFC, it is primarily excitatory
synapses that are targeted for elimination [136]. Synaptic pruning
is a key developmental process, as deficits in synaptic function are
linked to neurodevelopmental disorders [137, 138] and executive
function deficits [114]. Further, executive function deficits have
been suggested to relate to more subtle changes in neural
function or microstructure rather than gross changes in neuron
number or morphology [138]. Further, the very fact that PFC
development continues well into postnatal development (into the
20s for humans) renders this brain region uniquely vulnerable to
environmental perturbations, during pregnancy, early life, and into
adolescence. Importantly, there are documented gender differ-
ences in cortical maturation [8] and complexity [139], particularly
through adolescence.

As gender/sex differences in brain maturation are apparent, one
can then question whether gender/sex differences can be
identified in the cellular or molecular mechanisms that contribute
to cortical maturation. A critical role for microglia and astrocytes in
the process of synaptic pruning has been identified, specifically
involving the complement system [140]. Complement proteins,
Cl1qg and C3, are expressed on weak synapses that are then
targeted for phagocytosis and clearance by microglia, a process
first identified in the developing visual system [140]. Sex
differences in this process are unknown; however, given the
importance of microglia in synaptic pruning, one can speculate
that sex differences in microglial numbers or function may alter
the process of synaptic pruning in a sex-dependent manner. And
in fact, sex differences in microglia have been recently character-
ized. The developmental trajectory of microglial population within
the brain differs by sex [141, 142], and early postnatal removal of
microglia leads to both sex-dependent and sex-independent
behavioral changes [142]. Further, microglial responses to
environmental insults are also known to differ by sex [143],
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including responses to acute or chronic stress [144, 145] or alcohol
exposure [146].

FUTURE RESEARCH DIRECTIONS
In this review, we examined the evidence for baseline sex and
gender differences in executive functions. Our overall conclusion
is that while individual factors may show a tendency towards a sex
bias (e.g., increased impulsive action in males, reduced reaction
time in males, avoidance of frequent punishment in females,
improved working memory in females), sex differences in
executive function are not overwhelming (Fig. 1). Within-sex
variability often far exceeds between-sex variability, and in few
cases could one look at a given person or animal’s data in these
experiments (where provided) and be able to classify them by
their responses as male or female. The fact that many studies draw
different conclusions on whether there is a gender/sex difference
in executive functions based on small modifications to task design
suggest that differences in strategy and outcome preference drive
apparent effects on executive function, rather than a difference in
ability between genders/sexes. It would be incorrect to conclude
that gender and sex is the primary factor driving individual
differences in executive function and cognitive performance.
With this in mind, two critical future directions present
themselves. First, the sex differences in strategy suggest that
different circuit and/or molecular mechanisms are utilized by males
and females to solve the same cognitive problems. This means that
even though ability may be the same, the strategies employed are
unlikely to be supported by the same neurobiological mechanisms.
Indeed, investigations of male and female cognitive performance
have identified sex-specific signaling patterns that suggest sex
differences at a molecular level driving apparently similar cognitive
performance in wild types, but differential susceptibility to a
genotype associated with autism and neurodevelopmental dis-
orders [147]. Thus, it is critical that females and males of all species
continue to be examined, to determine the mechanisms support-
ing executive function across genders and sexes. Indeed, this work
may identify alternative pathways that can be harnessed and
enhanced in patients with disorders associated with executive
function deficits, as literature suggests that there may be sex-
specific circuit engagement [148-151].
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An additional critical future research direction is implied by the
fact that disorders with large sex and gender differences in
presentation often occur at different times of life. For example,
neurodevelopmental disorders such as ADHD and autism tend to
affect boys more frequently, while mood disorders appearing in
adolescence and young adulthood are more frequently noted in
girls and women. Further, schizophrenia diagnoses in males peak
between 46 and 55 years of age, while in females the peak of
diagnoses occur later, between ages 56 and 65, and at an early
timepoint (age 18-29), the prevalence rate is more than double in
males [139]. These observations suggest that sex and gender
interact with developmental processes to influence specific
deficits in executive functions in specific disorders. For example,
while working memory processes are largely similar between
healthy women and men, women with Obsessive-Compulsive
Disorder (OCD) tend to have more severe working memory
deficits than men with OCD [77]. Neurodegenerative and brain
injury effects on executive function may also reflect different risks
for men versus women [76]. Future studies should expect that sex
and gender interact with their causal mechanism of interest, and
specifically examine how executive functions are impacted
differently in men and women, or male and female animals, by
specific genotypes and environments.
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