
Research Article
Machine-Learning Approach to Optimize SMOTE Ratio in Class
Imbalance Dataset for Intrusion Detection

Jae-Hyun Seo 1 and Yong-Hyuk Kim 2

1Department of Computer Science and Engineering, Wonkwang University, 460 Iksandae-ro, Iksan-si, Jeonbuk 54649,
Republic of Korea
2School of Software, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea

Correspondence should be addressed to Yong-Hyuk Kim; yhdfly@kw.ac.kr

Received 30 April 2018; Revised 6 August 2018; Accepted 2 October 2018; Published 1 November 2018

Academic Editor: Giosuè Lo Bosco

Copyright © 2018 Jae-Hyun Seo and Yong-Hyuk Kim. 1is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

1e KDD CUP 1999 intrusion detection dataset was introduced at the third international knowledge discovery and data mining
tools competition, and it has been widely used for many studies. 1e attack types of KDD CUP 1999 dataset are divided into four
categories: user to root (U2R), remote to local (R2L), denial of service (DoS), and Probe. We use five classes by adding the normal
class. We define the U2R, R2L, and Probe classes, which are each less than 1% of the total dataset, as rare classes. In this study, we
attempt to mitigate the class imbalance of the dataset. Using the synthetic minority oversampling technique (SMOTE), we
attempted to optimize the SMOTE ratios for the rare classes (U2R, R2L, and Probe). After randomly generating a number of tuples
of SMOTE ratios, these tuples were used to create a numerical model for optimizing the SMOTE ratios of the rare classes. 1e
support vector regression was used to create the model. We assigned each instance in the test dataset to the model and chose the
best SMOTE ratios. 1e experiments using machine-learning techniques were conducted using the best ratios. 1e results using
the proposed method were significantly better than those of previous approach and other related work.

1. Introduction

1e early IDS (intrusion detection system) [1] is divided into
the host-based IDS (HIDS) and the network-based IDS
(NIDS). HIDS has the advantage of analyzing the system log
and resource usage information by the host and user.
However, installing an IDS in each host increases the
management points and wastes more resources. If network-
level packet analysis is not possible and the attacker takes
control of the system, the IDS may be interrupted. NIDS
has advantages that it does not need to install an IDS on
each host, and NIDS can perform analysis at the entire
network level. However, there is a disadvantage in which it is
possible to confirm only the attack via the IDS, and it is
difficult to confirm the attack attempt at the system level. In
early 2003, the IDS was losing the trust of users due to the
problem of generating false positives. 1e causes of false
positives are due to the development of erroneous rules,
traffic irregularities, and limitations of pattern matching

tests. Even though the IDS problem has not been solved to
date, “pattern matching” is still being used as a basis for
security solutions.

Intrusion detection attacks [2] are divided into misuse
detection and anomaly detection. In misuse detection, de-
tected attacks are compared with existing signatures in the
database to determine whether they are intrusions. While
misuse detection detects only the known attacks, anomaly
detection detects a new type of attack that has a pattern
different from the normal traffic and the known attack types.

Many researchers have studied intrusion detection. In
general, researchers attempted to distinguish the normal class
from attack classes using the publicly available intrusion
detection evaluation dataset and to identify the exact attack
type. However, the classification of rare classes in a huge real-
time dataset requires a long computation time, and then it is
difficult to achieve good efficiency. It is necessary to create and
test many experimental datasets to improve classification
performance by adjusting the class ratio.

Hindawi
Computational Intelligence and Neuroscience
Volume 2018, Article ID 9704672, 11 pages
https://doi.org/10.1155/2018/9704672

mailto:yhdfly@kw.ac.kr
http://orcid.org/0000-0002-1587-788X
http://orcid.org/0000-0002-0492-0889
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/9704672

In this paper, we present a novel method that optimally
adjusts the SMOTE [3] ratios for rare classes. 1e number of
cases for the tuple of SMOTE ratios is too large to test all the
cases. For that reason, we propose the following efficient
method. We randomly generated some tuples of SMOTE
ratios and used these tuples to create a model using a support
vector regression (SVR) [4]. We input a number of tuples for
SMOTE ratios to the SVRmodel, and we chose the best tuple
of SMOTE ratios. Experimental results using the proposed
method were significantly better than those of the previous
approach [5].

1e contributions wemake through the proposedmethod
are given as follows. We suggest how to find the SMOTE
ratios that show good performance with very few tests. Hence,
we dramatically reduce the amount of computations required
to find the best SMOTE ratios. We are sure that the proposed
method is helpful for the study of class imbalances.

1e remainder of this paper is organized as follows.
Section 2 explains the related works on the KDD CUP 1999
dataset [6] and class imbalances. In Section 3, we present the
background of this research. In Section 4, we suggest a new
method by creating a numerical model using sampled
SMOTE ratios. In Section 5, we explain our experimental
environments, procedures, and results. 1e paper ends with
our concluding remarks in Section 6.

2. Related Work

2.1. KDD Dataset. Leung and Leckie [7] studied anomaly
detection using unsupervised learning algorithms on the
KDD CUP 1999 intrusion detection dataset. 1ese re-
searchers proposed density-based clustering and grid-based
clustering algorithms. In density-based clustering, a cluster
includes a minimum number of data points. 1e approach
has the advantage of filtering outliers or finding clusters with
arbitrary shapes. In the grid-based approach, all clustering
operations are conducted on a grid structure. 1e method
has the advantage of a fast computing speed. With the
method, a classifier can learn from unlabeled data and detect
new types of attacks that were previously unseen. 1e ex-
perimental results showed that the accuracy of their method
is similar to one of existing methods, and the method has
several advantages in terms of computational complexity.

Meng [8] studied intrusion detection machine-learning
techniques on the KDD CUP 1999 dataset. 1ere have been
many studies using popular methods, such as artificial neural
networks, SVM [9], and decision trees. However, these
methods were rarely used in large-scale real intrusion de-
tection systems. 1is researcher aimed at practical anomaly
detection and conducted a comparative study with artificial
neural networks, SVMs, and decision trees using the same
environment as previous studies. In the analysis of the
experimental results, the intrusion detection system with
machine-learning techniques showed a high dependency on
the test environment, and this researcher concluded that it
was important to find a suitable method for applying
machine-learning techniques to real environments.

Davis and Clark [10] reviewed the data preprocessing
techniques used in anomaly-based network intrusion

detection systems. 1e research focused on network traffic
analysis and feature extraction/selection. Most of studies on
NIDS dealt with the TCP/IP packet headers of network traffic.
Time-based statistics can be derived from the headers to detect
network scans, network worms, and DoS attacks. Recent, full
service responses are analyzed to detect attacks targeting
clients.1is focuses on which attack classes can be detected by
the reviewed methods. 1is review shows the trends that
scrutinize packets to extract or select the most relevant fea-
tures through targeted content parsing. 1ese context-
sensitive features are required to detect network attacks.

Staudemeyer and Omlin [11] used a long short-term
memory recurrent neural network (LSTM-RNN) to evaluate
the classification performance using the KDD CUP 1999
dataset. LSTM networks can learn “memory” and create
a model with time series data. 1e LSTM is trained and
tested on their modified KDD CUP 1999 dataset. 1e LSTM
network structure and parameters were obtained through
experiments. Several performance measures were used to
analyze experimental results. 1eir results showed that
LSTM-RNN can learn all the unknown attack classes in the
training dataset. Furthermore, they found that both receiver
operating characteristic (ROC) curves and area under the
curve (AUC) were well suited for evaluating LSTM-RNN.

Kim et al. [12] proposed a system-call-language-modeling
method based on LSTM for designing an anomaly-based host
intrusion detection system. 1ese researchers used an en-
semblemethod to solve the false-alarm rates problem that was
common in conventional intrusion detection systems. 1e
method can effectively learn the semantic meaning and in-
teractions of each system call that existing methods cannot
handle. 1ese researchers demonstrated the validity and ef-
fectiveness of their method through several tests on publicly
available benchmark datasets, and their method has an ad-
vantage in that it is easy to transplant to other systems.

Kim et al. [13] investigated artificial intelligence intru-
sion detection systems that used the deep neural network
(DNN) and conducted experiments on the KDD CUP 1999
dataset. Data preprocessing (such as data transformation
and normalization was conducted) was used to input the
dataset into the DNN model. When a learning model was
created, the DNN was used for data refinement. 1e full
dataset was used to verify the learning model. Performance
measures, such as the accuracy, detection rate, and false-
positive rate, were used to verify the detection efficiency of
the DNN model, and the model showed good performance
for intrusion detection.

Le et al. [14] studied deep-learning algorithms to solve
the problem of machine-learning techniques (such as SVM
and k-NN) that had high false-positive rates in intrusion
detection systems. 1ey found six optimizers that are ap-
plicable to the LSTM-RNN model to be the best suited for
intrusion detection systems. 1e LSTM results using the
Nadam optimizer were better than previous approaches,
with an accuracy of 97.54%, a detection rate of 98.95%, and
a false-positive rate of 9.98%. In Table 1, the studies related to
intrusion detection are summarized.

Seo [5] tried to adjust the class imbalance of train data to
detect attacks in the KDD 1999 intrusion dataset. He tested

2 Computational Intelligence and Neuroscience

with machine-learning algorithms to find efficient SMOTE
ratios of rare classes such as U2R, R2L, and Probe. He
studied to improve the performance of classification fo-
cusing on detection of rare classes. 1e number of instances
of rare classes in the train data was increased by 12, 9, and
1.5 times, respectively. 1e recall metrics of k-NN tests were
increased to 0.11 in U2R class and 0.02 in R2L class. 1e
metrics of SVM tests were increased to 0.02 in U2R class and
0.08 in R2L class, and those of decision tree tests were in-
creased to 0.25.

2.2. Class Imbalance. In the study of Japkowicz [15], most
previously designed concept-learning systems assume that
a training dataset is generally well balanced. 1is assumption
is not necessarily correct. In practice, most instances represent
one class, and only a small number of instances represent
other ones. 1ese researchers tried to experimentally dem-
onstrate that a class imbalance degrades the performance of
standard classifiers. 1ese researchers compared the perfor-
mance of several methods that were previously proposed by
other researchers.

Japkowicz and Stephen [16] studied class imbalance.
Class imbalance has been reported to degrade the perfor-
mance of some standard classifiers. 1ey conducted a sys-
tematic study by answering the following three problems.
First, they attempted to understand the concept complexity,
the size of the training set, and the class imbalance level.
Second, they discussed several basic resampling or cost-
modifying methods to compare the efficiency of the pre-
viously proposed class imbalance problems. Finally, they
conducted studies with the assumption that class imbalance
problems also affected other classification systems, such as
decision trees, neural networks, and SVMs.

Chawla et al. [17] studied the SMOTEBoost algorithm. In
data mining, most of the datasets have the class imbalance
problem, and data mining tools learn from imbalanced
datasets.1e classifier, which learns from aminority class with
very few instances, tends to be biased towards a high accuracy
in the prediction of the majority class. SMOTE is used in the
design of classifiers to train unbalanced datasets. 1ey pre-
sented a new approach to learn from imbalanced datasets by
combining the SMOTE algorithm and the boosting pro-
cedure. Unlike standard boosting in which the same weight is
given to all misclassified examples, SMOTEBoost generates

synthetic examples from minority classes. SMOTEBoost in-
directly changes the weight by updating and compensating for
the skewed distribution. In the experiments with SMOTE-
Boost applied to several datasets with a high or moderate class
imbalance, the classification performance for the minority
class and the overall F-measure was improved.

Drummond and Holte [18] used two commonly used
sampling methods for applying machine learning to im-
balanced classes and misclassification costs. 1ey adopted
a performance analysis technique called cost curves to ex-
plore the interaction of oversampling and undersampling
with the decision tree classifier C4.5. 1ey showed that
applying C4.5 to undersampling could establish a reasonable
standard for comparing algorithms. However, it is recom-
mended that the cheapest cost classifier becomes a part of the
standard since it can be better than undersampling for
relatively modest costs. Oversampling has little influence on
the sensitivity and the misclassification costs have no sig-
nificant effect on performance.

Zhou and Liu [19] demonstrated the effect of sampling
and threshold-moving in training cost-sensitive neural
networks. Both oversampling and undersampling were
considered. 1ese techniques modified the distribution of
training data so that the costs of the instances were explicitly
conveyed by the appearances of the instances. 1reshold-
moving moves the output threshold towards inexpensive
classes to improve classification performance. 1e hard-
ensemble and soft-ensemble are used for the experiments.
In hard-ensembles and soft-ensembles, all classifiers vote on
each class and return the class that receives the most votes.
1e difference between the two ensembles is that hard-
ensemble uses binary votes and soft-ensemble uses real-
value votes. Twenty-one UCI datasets and actual datasets
were used in their experiments. 1e experimental results
showed that as the number of classes increases, the degree
of class imbalance worsens and the efficiency of classifica-
tion deteriorates. 1reshold-moving and the soft-ensemble
showed relatively good performance in training cost-
sensitive neural networks.

Liu et al. [9] used undersampling to solve the class im-
balance problem. Undersampling is a very effective method to
mitigate class imbalance using only a subset of the majority
class. 1e disadvantage of the method is that instances of
majority classes are ignored. 1ey presented two algorithms
to overcome the drawback. First, the EasyEnsemble algorithm
samples several subsets from the majority class, trains
a learner using each subset, and then combines the outputs of
the learners. EasyEnsemble internally uses the AdaBoost
ensemble. 1e BalanceCascade algorithm trains learners in
sequence. At each step, instances of the majority class that are
correctly classified by the current trained learners are re-
moved from further consideration. 1e experimental results
showed that both methods produce better solutions than the
conventional class imbalance.

Burez and Van den Poel [20] attempted to solve the class
imbalance problem to predict customer churn. Customer
churn is caused by a customer who changes service provider.
Customer churn is a highly rare event in the service industry,
but it is a notably interesting and informative research area.

Table 1: Related work with KDD CUP 1999.

Authors Year Method

Leung and Leckie [7] 2005 Density-based and
grid-based clustering

Meng [8] 2011 SVM, neural networks,
and decision tree

Davis and Clark [10] 2011 Data preprocessing
Staudemeyer and
Omlin [11] 2013 LSTM-RNN

Kim et al. [12] 2016 LSTM and ensemble
Kim et al. [13] 2017 DNN
Le et al. [14] 2017 DNN
Seo [5] 2017 SVM, k-NN, and decision tree

Computational Intelligence and Neuroscience 3

However, the class imbalance problem in the context of data
mining has not paid it considerable attention until recently.
1ey studied how class imbalance can be better handled in
churn prediction. 1ey have conducted studies to improve
the performance of random sampling and undersampling
with appropriate evaluation matrices, such as AUC and lift.
1ey compared gradient boosting, weighted random forest
modeling, and some standard modeling techniques. 1ey
studied the performance of both random and advanced
undersampling. 1ey compared the specific modeling
techniques of gradient boosting and weighted random
forests with some standard techniques. In their experiment,
the use of undersampling improved the prediction accuracy
and the AUC values.

Seiffert et al. [21] had stated that class imbalance was
a common problem in various applications. Several techniques
had been used to mitigate class imbalance problems. 1ey
used a hybrid sampling/boosting algorithm called RUSBoost
to train skewed training dataset. 1e algorithm was simpler
and faster as an alternative of SMOTEBoost. 1ey evaluated
the performance of RUSBoost, SMOTEBoost, random
undersampling, SMOTE, and AdaBoost. 1ey chose fifteen
datasets in various applications and then conducted experi-
ments with four learners (C4.5D, C4.5N, naive Bayes (NB),
and repeated incremental pruning) to produce error reduction
(RIPPER) over four evaluation matrices. Both RUSBoost and
SMOTEBoost were better than other methods, and RUSBoost
performed equal to or better than SMOTEBoost.

Horng et al. [22] proposed an SVM-based intrusion
detection system. 1e system combines a hierarchical clus-
tering algorithm, a simple feature selection procedure, and
an SVM technique. 1e clustering algorithm provided the
SVM with fewer, abstracted, and higher qualified training
instances. It was able to shorten the training time and improve
the performance of a resultant SVM. 1e obtained SVM
model could classify the network traffic data more accurately
through the simple feature selection procedure. 1e KDD
Cup 1999 dataset was used to evaluate the proposed system.
Compared with other intrusion detection systems that are
based on the same dataset, this system showed better per-
formance in the detection of DoS and Probe attacks, and the
best performance in overall accuracy. In Table 2, the studies
related to class imbalance are summarized.

3. Background

3.1. KDD Dataset. 1e KDD CUP 1999 dataset [6] used in
our experiments is a modification of data generated by the
DARPA (Defense Advanced Research Projects Agency)
intrusion detection evaluation program in 1988. 1e
DARPA dataset is intercepted data that contain a wide range
of attacks generated in a military network environment. 1e
dataset has greatly contributed to the investigation and
evaluation of intrusion detection. 1e dataset has been
prepared and managed by MIT’s Lincoln laboratory. In
1999, the modified DARPA dataset was used in the KDD
CUP 1999 intrusion detection competition. MIT’s Lincoln
laboratory has a similar experimental environment to the
typical U. S. Air Force LAN (local area network). Raw TCP

dump data were generated over nine weeks. As in a real Air
Force environment, the LAN was activated and various
attacks were executed. However, there was a disadvantage in
that there was no noise in the real data. However, the KDD
CUP 1999 dataset served as a testbed to overcome the
vulnerabilities of signature-based IDSs in detecting new
attack types and attracted the attention of many researchers.
1e KDD CUP 1999 dataset is most widely used for the
evaluation of such a system. 1ere are many previous ap-
proaches using the dataset and it will be possible to compare
the approaches with a new method.

Table 3 represents the files in the KDD CUP 1999 dataset
and the details for those.1e files “kddcup.data_10_percent.gz”
and “corrected.gz” are used as training data and test data,
respectively. 1e training data are compressed binary TCP
dump data collected over approximately seven weeks with
approximately 5 million connection records. 1e testing data
are collected over approximately two weeks. 1ey are com-
posed of approximately 2 million connection records. Con-
nection records are a collection of TCP packets flowing from
the source IP to the destination IP, and these are classified into
a normal or attack class. In the case of connection records
belonging to an attack class, these are represented by exactly
one specific attack type. 1e size of each connection record is
approximately 100 bytes. Attack types are categorized into
four classes, such as DoS, R2L, U2R, and Probe, as shown in
Table 4.

3.2. SMOTE: Synthetic Minority Oversampling Technique.
SMOTE [3] is a method of generating new instances using
existing ones from rare or minority class. First, we identify
the k-nearest neighbors in a class with a small number of
instances and calculate the differences between a sample and
these k neighbors. We multiply the differences by an arbi-
trary value between 0 and 1 and get a resultant value. Next,
an instance that is generated using the resultant value is
added to the training data. As a result, SMOTE works by
adding any points that slightly move existing instances
around its neighbors. In the aspect of increasing the number
of instances in rare classes, SMOTE is similar to random
oversampling. However, it does not regenerate the same
instance. It creates a new instance by appropriately

Table 2: Related work with class imbalance.

Authors Year Method
Japkowicz [15] 2000 Multilayer perceptron (MLP)
Japkowicz and
Stephen [16] 2002 Decision tree and SVM

Chawla et al. [17] 2003 SMOTE and SMOTEBoost
Drummond and
Holte [18] 2003 Decision tree

Zhou and Liu [19] 2006 Cost-sensitive neural networks
Liu et al. [9] 2009 EasyEnsemble
Burez and Van
den Poel [20] 2009 Gradient boosting and random forest

Seiffert et al. [21] 2010 RUSBoost, SMOTEBoost,
SMOTE, and AdaBoost

Honrng et al. [22] 2011 SVM and hierarchical clustering

4 Computational Intelligence and Neuroscience

combining existing instances, thus making it possible to
avoid the disadvantage of overfitting to a certain degree.

4. Modeling

4.1. Problem Definition. We attempt to maximize classifi-
cation performance of the KDD CUP 1999 intrusion de-
tection dataset that has class imbalance. 1e dataset has
severe class imbalance. 1erefore, data preprocessing for
adjusting the class ratio is required to alleviate the imbal-
ance. 1e class imbalance can be adjusted using under-
sampling, oversampling, and SMOTE techniques. We use
the SMOTE technique. All tuples of SMOTE ratios should be
tested to optimize the ratios of each class. However, there are
time and cost constraints to conduct experiments on all
cases. 1erefore, we try to find the tuple of SMOTE ratios
that shows the best performance by experimenting with few
tuples of SMOTE ratios. Formula (1) represents the method
to calculate class imbalance ratio of each class. Figure 1
shows the structure of the dataset which is used in the
proposed method. Table 5 shows class imbalance ratios of
Train A, Train B which is the first half of Train A, Validation
which is the second half of Train A, and Test. Train A is the
original train data. Train B and Validation in Table 5 are
basically the same. Train B in Table 5 shows the instances
after applying the SMOTE ratios in Table 6. We define the
three classes of U2R, R2L, and Probe as rare classes because
the classes have relatively fewer instances than other classes.

Label cardinality of D is the average number of labels of
the examples in D:

LC(D) �
1

|D|

|D|

i�1
Yi

,

imbalance ratioi �
Yi

LC(D) − Yi

.

(1)

4.2. Proposed Method. We attempt to optimize the SMOTE
ratios of rare classes to mitigate the class imbalance. It is
difficult to test all tuples of SMOTE ratios in a short period of
time.1erefore, we attempt to identify an efficientmethodwith
a small number of experiments and reduce computation time.

We create an SVR model with a small number of ex-
periments and try to get the best tuple of the SMOTE ratios
by inputting enough tuples of SMOTE ratios into the model.
We also verify the results through experiments.1e numbers
of 100 and 1,000,000, which are used in the experiments, are
decided by considering computation time and 100 instances
are generated randomly from a uniform distribution.We use
random sampling method instead of grid one. If we can use
more than 100 instances, grid sampling is not bad, but the
method is not appropriate to sample very few instances
uniformly. We set the ranges for the rare classes through
preliminary experiments, as shown in Table 7.

We randomly generate 100 tuples of SMOTE ratios
within the maximum ranges of Table 7. We conduct ex-
periments by inputting the 100 tuples into an SVM clas-
sifier. As results, five recall values are given to each of the
100 tuples. An SVR model is created using the 100 tuples
and the root mean square of the recall values. We randomly
generate 1,000,000 tuples of SMOTE ratios and input them
into the SVR model to derive the optimal solution. We
conduct experiments to verify the quality of the best tuple.

Formula (2) represents procedure of the proposed
method.1emethod shows good performance with very few
tests and significantly reduces the amount of computations
which are required to find the best SMOTE ratios. Figure 2
represents its pseudocode.

Procedures of the proposed methods as follows:

(1) Set the ranges for the rare classes through pre-
liminary experiments, as shown in Table 7. 1e
ranges were searched by inputting successive 2t

where t is a nonnegative integer.
(2) Generate randomly few tuples of SMOTE ratios from

a uniform distribution (independent variable).
(3) After drawing recall metrics by giving the tuples into

an SVM classifier, calculate RMS with the metrics
(dependent variable).

(4) Create an SVR model [4] with the tuples and RMS.
(5) Find the best tuple among a lot of tuples, which are

generated randomly from a uniform distribution,
through the SVR model.

Table 3: Train and test dataset with labels of KDD CUP 1999
dataset.

Dataset Details
Kddcup.data.gz Training dataset (743MB)
Kddcup.data_10_percent.gz
(23 attack types)

10% subset of training
dataset (75MB)

Corrected.gz (23 attack types) Test dataset (45MB)

Table 4: Five main categories of KDD CUP 1999 dataset.

Attacks Descriptions
Normal Normal traffic
DoS Denial of service, e.g., syn flood

R2L Unauthorized access from a remote machine,
e.g., guessing password

U2R Unauthorized access to local superuser (root)
privileges, e.g., various “buffer overflow” attacks

Probing Surveillance and other probing, e.g., port scanning

KDD
dataset

Test

Train A

Train B

Validation50%

50%

Figure 1:1e structure of the dataset used in the proposedmethod.

Computational Intelligence and Neuroscience 5

// N: normal, U: change to U2R, R: R2L,

D: DoS, P: change to Probe, m: the number of classes,

// Umax, Rmax, Pmax:maximum range of each class,

// Tmodel: tuples of SMOTE ratios required for

model creation,

// Teval: tuples of SMOTE ratios required to evaluate

the model,

// tbest: the best tuple among Teval,

U⟵ 1, Umax , R⟵ 1, Rmax , P⟵ 1, Pmax ,

Tmodel⟵ U, R, P{ },

RMS �

��������������������������

m
i�0 SVM Classifier Tmodel((

2
i

m

,

Model⟵ SVR Classifier Tmodel,RMS(,

tbest⟵ argmax Model Teval((.

(2)

Figure 3 shows a hierarchy of the methods in LibSVM.
Table 8 represents the time complexity of SVM. Table 9
shows the time complexity of the proposed methods.

5. Experiments

We randomly generate 100 tuples of SMOTE ratios and
use the tuples to create an SVR model. We find the best
tuple by giving 1,000,000 randomly generated tuples of
SMOTE ratios into the SVR model. 1e experiment results
with the best tuple were improved by approximately 20
percent compared with the previous approach [5]. 1e SVR
model was generated using only 100 tuples of SMOTE ratios.
As with the SVR model, the computation time was dra-
matically reduced and the tuple of SMOTE ratios with the
highest efficiency was found.

Formula (3) gives the root mean square (RMS) using the
recall values, which are the results of experiments with the
100 tuples of the SMOTE ratios of the U2R, R2L, and Probe
classes. 1e 100 tuples are randomly generated within the
range of Table 7. Variable N is the normal, U is the U2R, R is
the R2L, D is the DoS, and P is the Probe class. Table 10
shows parameters of SVR and SVM. Table 11 shows pa-
rameters of RNN-LSTM. Table 12 shows the measures
drawn by creating an SVR model using the 100 tuples of
SMOTE ratios and the RMS. 1e correlation coefficient was
more than 0.7, which indicates a strong positive linear re-
lationship. 1e RMSE was 0.006, which means that the
difference between the expected value and the actual one is
very small. Since the root relative squared error is a measure
that compares the standard deviation of the actual values
with the differences between the predicted and actual values,
it is not a significant factor in evaluating the performance of
the model. Table 13 shows the recall metrics of experiments
by the best tuple. 1e best tuple represents 1,000 times for
the U2R, 451 times for the R2L, and 1 time for the Probe, as
shown in Table 6. Table 6 shows the difference of SMOTE
ratios between the proposed method and the previous one.
1e proposed method searches an optimal solution among
a lot of SMOTE ratios, but the previous one uses only fixed
SMOTE ratios.

RMS �

�������������������������������

N2
recall + U2

recall + R2
recall + D2

recall + P2
recall

The number of classes

. (3)

Figure 4 compares recall metrics of the proposed method
with that of the previous approach [5]. RNN-LSTM is
slightly superior to other methods. In the SVM tests, the
performances of the U2R, R2L, and Probe classes were
improved by approximately 22.6%, 58.9%, and 2.3%, re-
spectively. Figure 5 represents SMOTE ratios of the U2R,

Table 5: Class imbalance ratios of Train A, Train B, Validation, and Test dataset.

Classes #Train A Ratio (%) #Train B Ratio (%) #Validation Ratio (%) #Test Ratio (%)
Normal 97,278 24.52% 48,639 10.13% 48,639 24.52% 60,593 26.15%
U2R 52 0.01% 26,026 5.17% 26 0.01% 39 0.01%
R2L 1,126 0.23% 254,476 92.70% 563 0.23% 5,993 2.09%
DoS 391,458 381.68% 195,729 58.73% 195,729 381.68% 223,298 323.61%
Probe 4,107 0.84% 4,108 0.78% 2,053 0.84% 2,377 0.82%

Table 6: Comparison between the proposed SMOTE ratio and the
previous one.

Classes 1e proposed (%) 1e previous [5] (%)
Normal — —
U2R 100,000 12,000
R2L 49,500 900
DoS — —
Probe 100 150

Table 7: Range of SMOTE ratio for the rare classes.

U2R R2L Probe
SMOTE ratio 100–100,000% 100–50,000% 100–20,000%

6 Computational Intelligence and Neuroscience

// SMOTE is not applied to Normal and DoS classes
// D: preprocessed KDD CUP 1999 dataset
// Dtrain: the first 50% of D, Dtest: the last 50% of D
// Dtrain_b: the first 50% of Dtrain, Dvalidation: the last 50% of Dtrain
// Srand_1: 100 of randomly generated SMOTE ratios
// SRMS: root mean squared values of recall metrics drawn from a test using Dtrain_b

with Srand_1 applied and Dvalidation
// SVRmodel: a model created by Srand_1 and SRMS
// Srand_2: 1,000,000 of randomly generated SMOTE ratios
// O: optimal SMOTE ratio

(Dtrain, Dtest) split D into 50:50
(Dtrain_b, Dvalidation) split Dtrain into 50:50
SRMS root mean square using Dtrain_b with Srand_1 applied and Dvalidation
SVRmodel an SVR model created using Srand_1 and SRMS
O argmax(SVRmodel(Srand_2))
Do experiments using Dtrain with O applied and Dtest

Figure 2: Pseudocode of the proposed method.

LibSVM

svm_predict

svm_train

parse_command_line
read_problem
svm_check_parameter
svm_train
svm_save_model

svm_load_model
svm_check_probability_model
svm_predict_probability
svm_predict

Figure 3: Hierarchy of the methods in LibSVM [23].

Table 8: Time complexity of the methods in LibSVM [23].

Num. Methods Complexity (Big-O) Worst case
1

svm_train

Parse_command_line O(n)

O(n2·m)
2 Read_problem O(mn)
3 SVM _check_parameter O(mn + n2)
4 SVM_train O(n2m)
5 SVM_save_model O(mn)
6

svm_predict

SVM_load_model O(mn)

O(n3)7 SVM_check_probability_model O(1)
8 SVM_predict_probability O(n2)
9 SVM_predict O(n3)

Table 9: Time complexity of the proposed methods.

Num. of the procedures of the proposed methods Complexity (Big-O) Worst case
1 // g is the number of experiments O(g) O(g)

2
// h is the number of 100 tuples which are randomly

generated.
O(h)

O(h)

3 O(h) + svm_train + O(h) O(n2·h)

4 // 1e time complexity of svr_train is identical to svm_train.
O(h) + svr_train O(n2·h)

5

// k is the number of 1,000,000 tuples which are randomly
generated.

// If an algorithm does not depend on n, which is a symbol of
amounts of data, then the algorithm has constant complexity
or symbolized by O(1) [23]. 1erefore, the time complexity of

svr_test is identical to O(1).
k∗ svr_test

O(k)

Computational Intelligence and Neuroscience 7

R2L, and Probe used to create the SVR model. Table 14 [22]
compares the proposed methods with other work by the
detection rate. Figure 6 shows a graph for the RMS of the
results obtained by inputting 1,000,000 tuples of SMOTE
ratios into the SVR model. 1e reason for defining the RMS
of Formula (3) as the objective value is to make the recall
values of rare classes well reflected by experimental results.
An RMS of the best tuple is about 0.979. Table 15 shows
recall values of previous work [5].

Tables 16 and 17 show confusion matrix of SVM and
RNN-LSTM, respectively. We conducted experiments
with SVM and decision tree on the three dataset combi-
nations of (Train B, Validation), (Train B, Test), and (Train
A, Test) datasets. 1e results showed that SVM was better
than the decision tree. Table 16 represents recall values of the

previous methods and SVM was superior to other work.
Parameters and datasets of the proposed SVM test is
identical to those of the previous one.

6. Conclusions

In this study, we have attempted to mitigate the problem of
class imbalance in the KDD CUP 1999 intrusion detection
dataset. As results, we obtained the best SMOTE ratios of
rare classes, reduced the number of experiments by creating
an SVR model, and had a significant performance im-
provement over the previous approach [5].1e best SMOTE
ratios of rare classes drawn by the SVR model were 1,000
times for U2R, 451 times for R2L, and 1 time for Probe. 1e
recall values for rare classes were 0.615 for the U2R in RNN-

Table 10: SVR and SVM parameters.

SVR parameters Values SVM parameters Values
Batch size 100 Batch size 100
C 1 c 1
Filter type Normalize training data Filter type Normalize training data
Kernel PolyKernel Epsilon 1.00E–12

RegSMOImproved optimizer
Epsilon 1.0E–12 Calibrator Logistic

Epsilon Param. 0.001 Kernel PolyKernel
Tolerance 0.001 Tolerance Param. 0.001

Table 11: RNN-LSTM parameters.

Parameters Values
Input layers 41
Iteration (hidden layers) 82
Classes 5
Batch size Full
Epochs 5000
Learning rate 0.001
Optimizer RMSProp

Table 12: Results of the SVR model (10-fold cross-validation).

Measures Values
Correlation coefficient 0.760
Mean absolute error 0.005
Root mean squared error 0.006
Relative absolute error 60.9%
Root relative squared error 64.6%

Standard deviation of SMOTE ratios
U2R 292.071
R2L 158.932
Probe 58.276

Table 13: Recall metrics of SVM, decision tree, and RNN-LSTM tests.

Train B + Validation Train B + Test Train A + Test
Classes SVM DT LSTM SVM DT LSTM SVM DT LSTM
Normal 0.961 0.999 0.967 0.977 0.993 0.947 0.977 0.994 0.982
U2R 0.808 0.769 0.769 0.641 0.462 0.641 0.564 0.256 0.615
R2L 0.982 0.961 0.975 0.275 0.235 0.260 0.302 0.261 0.274
DoS 0.999 1.000 0.999 0.855 0.999 0.998 0.871 0.996 0.999
Probe 0.924 0.992 0.974 0.928 0.988 0.977 0.941 0.997 0.996

8 Computational Intelligence and Neuroscience

400

200

200 400
U2R

RMS
0.9760

0.9708

0.9657

0.9605

0.9553

0.9501

0.9450

0.9398

0.9346
600 800 1000

R2
L

(a)

150

100

200
R2L

400

Pr
ob

e

50

RMS
0.9760

0.9708

0.9657

0.9605

0.9553

0.9501

0.9450

0.9398

0.9346

(b)

50 100
Probe

150

U
2R

1000

800

600

400

200

RMS
0.9760

0.9708

0.9657

0.9605

0.9553

0.9501

0.9450

0.9398

0.9346

(c)

Figure 5: SMOTE ratios of the U2R, R2L, and Probe used to create the SVR model (RMS values). (a) U2R vs. R2L. (b) R2L vs. Probe.
(c) Probe vs. U2R.

0.982

0.615

0.274

0.999 0.996
0.977

0.564

0.302

0.871
0.941

0.994

0.256 0.261

0.996 0.997
0.990

0.460

0.190

0.870
0.920

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Normal U2R R2L DoS Probe

LSTM

SVM (poly)

Decision tree

Previous (SVM)

RM
S

Figure 4: Comparison bar chart of the RNN-LSTM, SVM, decision tree, and previous SVM tests [1]. 1e dotted red lines represent the best
recall values among rare classes.

Computational Intelligence and Neuroscience 9

LSTM, 0.302 for the R2L in SVM, and 0.997 for the Probe in
decision tree, respectively.

We proposed a new method to find the best SMOTE
ratios that have high efficiency with a small number of
experiments. 1e proposed method dramatically reduced

the number of adjustments for classes. 1erefore, the
computation time required for the experiments could be
shortened.

In future, it will be meaningful to investigate the change
of test results according to the number of tuples of SMOTE
ratios. We can identify better SMOTE ratios using the
models created by other machine-learning techniques. Also,
we will apply evolutionary computations or other meta-
heuristic algorithms to identify the best tuple.

Data Availability

1e KDD CUP 1999 data used to support the findings of
this study are available at http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html.

0.00

0.97780

0.97800

0.97820

0.97840

0.97860

0.97867 0.97865 0.97865

RM
S

100000.00 200000.00 300000.00 400000.00 500000.00
SMOTE ratios

600000.00 700000.00 800000.00 900000.00 1000000

Figure 6: Bar chart representing RMS for 1,000,000 tuples of SMOTE ratios which are randomly generated.1e red dots represent SMOTE
ratios with high RMS value.

Table 15: Recall metrics of previous work [5].

Classes SVM k-NN Decision tree
Normal 0.990 1.000 1.000
U2R 0.460 0.440 0.280
R2L 0.190 0.140 0.130
DoS 0.870 1.000 1.000
Probe 0.920 0.830 1.000

Table 16: Confusion matrix of SVM.

Predicted class
Normal U2R R2L DoS Probe

Actual class

Normal 59,196 299 249 683 166
U2R 3 22 14 0 0
R2L 4,074 106 1,810 2 1
DoS 28,759 0 4 194,517 18
Probe 127 0 11 3 2,236

Table 17: Confusion matrix of RNN-LSTM.

Predicted class
Normal U2R R2L DoS Probe

Actual class

Normal 59,528 92 657 86 230
U2R 4 24 10 0 1
R2L 4,316 23 1640 12 2
DoS 20 0 2 223,169 107
Probe 4 0 0 6 2,367

Table 14: Comparisons with other works by detection rate.

Normal U2R R2L DoS Probe Acc. FP

1ese methods SVM 97.7 56.4 30.2 87.1 94.1 88.2 2.4
LSTM 98.2 61.5 27.4 99.9 99.6 98.1 0.4

SVM and clustering [22] 99.3 19.7 28.8 99.5 97.5 95.7 0.7
ESC-IDS [24] 98.2 14.1 31.5 99.5 84.1 95.3 1.9
KDD’99 winner [25] 99.5 13.2 8.4 97.1 83.3 91.8 0.6
KDD’99 runner-up [26] 99.4 11.8 7.3 97.5 84.5 91.5 0.6
Multiclassifier [27] N/A 29.8 9.6 97.3 88.7 N/A N/A
Association rule [28] 99.5 3.8 7.9 96.8 74.9 N/A N/A

10 Computational Intelligence and Neuroscience

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Conflicts of Interest

1e authors declare that they have no conflicts of interest.

Acknowledgments

1is research was supported by Wonkwang University
in 2017.

References

[1] Intrusion Detection System, 2018, https://en.wikipedia.org/
wiki/Intrusion_detection_system.

[2] R. C. Staudemeyer, “Applying long short-term memory
recurrent neural networks to intrusion detection,”
South African Computer Journal, vol. 56, no. 1, pp. 136–154,
2015.

[3] N. V. Chawla, K.W. Bowyer, L. O. Hall, andW. P. Kegelmeyer,
“SMOTE: synthetic minority over-sampling technique,” Jour-
nal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[4] A. J. Smola and B. Schölkopf, “A tutorial on support vector
regression,” Statistics and computing, vol. 14, no. 3, pp. 199–
222, 2004.

[5] J. H. Seo, “A study on the performance evaluation of un-
balanced intrusion detection dataset classification based on
machine learning,” Journal of the Korean Institute of In-
telligence Systems, vol. 27, no. 5, pp. 466–474, 2017.

[6] S. J. Stolfo, “KDD cup 1999 dataset, UCI KDD Repository,”
1999, http://kdd.ics.uci.edu.

[7] K. Leung and C. Leckie, “Unsupervised anomaly detection
in network intrusion detection using clusters,” in Pro-
ceedings of Twenty-Eighth Australasian Computer Science
Conference, vol. 38, pp. 333–342, Newcastle, Australia,
January 2005.

[8] Y. X. Meng, “1e practice on using machine learning for
network anomaly intrusion detection,” in Proceedings of
International Conference on Machine Learning and Cy-
bernetics, vol. 2, pp. 576–581, IEEE, Guilin, China, July
2011.

[9] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and
B. Scholkopf, “Support vector machines,” IEEE Intelligent
Systems and their Applications, vol. 13, no. 4, pp. 18–28, 1998.

[10] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly
based network intrusion detection: a review,” Computers &
Security, vol. 30, no. 6-7, pp. 353–375, 2011.

[11] R. C. Staudemeyer and C. W. Omlin, “Evaluating perfor-
mance of long short-term memory recurrent neural networks
on intrusion detection data,” in Proceedings of the South
African Institute for Computer Scientists and Information
Technologists Conference on—SAICSIT’13, pp. 218–224, ACM
Press, London, October 2013.

[12] G. Kim, H. Yi, J. Lee, Y. Paek, and S. Yoon, “LSTM-based
system-call language modeling and robust ensemble method
for designing host-based intrusion detection systems,” 2016,
http://arxiv.org/abs/1611.01726.

[13] J. Kim, N. Shin, S. Y. Jo, and S. H. Kim, “Method of intrusion
detection using deep neural network,” in Proceedings of IEEE
International Conference on Big Data and Smart Computing,
pp. 313–316, IEEE, Jeju-do, South Korea, February 2017.

[14] T. T. H. Le, J. Kim, and H. Kim, “An effective intrusion
detection classifier using long short-term memory with gra-
dient descent optimization,” in Proceedings of International

Conference on Platform Technology and Service (PlatCon),
pp. 1–6, Busan, South Korea, September 2017.

[15] N. Japkowicz, “1e class imbalance problem: significance and
strategies,” in Proceedings of the 2000 International Conference
on Artificial Intelligence, pp. 111–117, 2000.

[16] N. Japkowicz and S. Stephen, “1e class imbalance problem:
a systematic study,” Intelligent Data Analysis, vol. 6,
pp. 429–449, 2002.

[17] N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer, “SMOTE-
Boost: Improving prediction of the minority class in boosting,
Knowledge Discovery in Databases: PKDD,” in Proceedings of
European Conference on Principles of Data Mining and
Knowledge Discovery, pp. 107–119, 2003.

[18] C. Drummond and R. C. Holte, “C4.5, class imbalance, and
cost sensitivity: why under-sampling beats over-sampling,” in
Proceedings of Workshop on Learning from Imbalanced
Datasets II, pp. 1–8, Washington DC, 2003.

[19] Z. H. Zhou and X. Y. Liu, “Training cost-sensitive neural
networks with methods addressing the class imbalance
problem,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 18, no. 1, pp. 63–77, 2006.

[20] J. Burez and D. Van den Poel, “Handling class imbalance in
customer churn prediction,” Expert Systems with Applications,
vol. 36, no. 3, pp. 4626–4636, 2009.

[21] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and
A. Napolitano, “RUSBoost: a hybrid approach to alleviating
class imbalance,” IEEE Transactions on Systems, Man, and
Cybernetics—Part A: Systems and Humans, vol. 40, no. 1,
pp. 185–197, 2010.

[22] S. J. Horng, M. Y. Su, Y. H. Chen et al., “A novel intrusion
detection system based on hierarchical clustering and support
vector machines,” Expert systems with Applications, vol. 38,
no. 1, pp. 306–313, 2011.

[23] A. Abdiansah and R. Wardoyo, “Time complexity analysis of
support vector machines (SVM) in LibSVM,” International
Journal Computer Application, vol. 128, no. 3, pp. 28–34, 2015.

[24] A. N. Toosi and M. Kahani, “A new approach to intrusion
detection based on an evolutionary soft computing model
using neuro-fuzzy classifiers,” Computer Communications,
vol. 30, no. 10, pp. 2201–2212, 2007.

[25] B. Pfahringer, “Winning the KDD99 classification cup: bag-
ged boosting,” ACM SIGKDD Explorations Newsletter, vol. 1,
no. 2, pp. 65-66, 2000.

[26] I. Levin, “KDD-99 classifier learning contest: LLSoft’s results
overview,” ACM SIGKDD Explorations, vol. 1, no. 2,
pp. 67–75, 2000.

[27] M. R. Sabhnani and G. Serpen, “Application of machine
learning algorithms to KDD intrusion detection dataset with
in misuse detection context,” in Proceedings of the In-
ternational Conference on Machine Learning: Models, Tech-
nologies, and Applications, pp. 209–215, Las Vegas, NV, USA,
June 2003.

[28] W. Xuren, H. Famei, and X. Rongsheng, “Modeling intrusion
detection system by discovering association rule in rough set
theory framework,” in Proceedings of International Conference
on Computational Intelligence for Modelling, Control and
Automation, 2006 and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce, p. 24,
Vienna, Austria, November-December 2006.

Computational Intelligence and Neuroscience 11

http://kdd.ics.uci.edu
http://arxiv.org/abs/1611.01726

