
CORRESPONDENCE

BAL Fluid Metaproteome in Acute Respiratory Failure

To the Editor:

Studies have shown that lung microbiota are altered from the
healthy state during respiratory disease. Gaining insights into the
interactions between the host and the microbiome is of paramount
importance to increase our understanding of both health and
disease. A limitation of gene marker analysis to infer phylogenetic
information about microbial communities (1, 2) is that sequenced
DNA could originate from inactive cells. Recent techniques such as
presorting live microbes (3), stable-isotope probing (4), and RNA
sequencing (5) have emerged as tools for providing insights into
active community members. Metaproteomics detects proteins
expressed by bacterial communities as potential markers of
microbial activity (6). Given the limitations of DNA sequencing
and culture-dependent methods for identifying respiratory
pathogens, we sought to develop a mass spectrometry (MS)-based
proteomics and bioinformatics pipeline for determining the
composition of active lung microbial communities.

We previously reported findings from quantitative studies of
BAL fluid (BALF) from patients with lung injury after hematopoietic
stem cell transplantation (idiopathic pneumonia syndrome, n = 12;
infectious lung injury, n = 18) (7) or acute respiratory distress
syndrome (n = 36) (8). The majority of the patients had widespread
lung damage and were on antibiotics. These studies used isobaric
tagging to quantify host human proteins. For the proof-of-concept
study described here, we reanalyzed this dataset using spectral
counting to provide an estimate of microbial peptide abundance.
The spectral datasets for hematopoietic stem cell transplantation (8)
and acute respiratory distress syndrome (9) were combined for our
analysis. The RAW files containing combined spectrum-level data
were searched against a custom protein sequence database (described
below). We processed 173 MS RAW files containing 926,102
tandem mass spectra (MS/MS) using sequential analytical workflows
within the Galaxy-P platform (Figure 1). The raw data for the
analyses of this dataset have been deposited in the ProteomeXchange
Consortium with the dataset identifier PXD008273.

Workflow 1
We created a protein sequence database containing 2,837,537 human
and microbial peptides expected in BALF by merging five publically
available databases: 1) the Human UniProt database, 2) contaminant
proteins from the common Repository of Adventitious Proteins, 3)
the Oral Human Microbiome Project Reference Genome Sequence

Data database, 4) the Human Oral Microbiome database, and 5) the
Human Microbiome Project gastrointestinal tract database. This
workflow created peaklists from the MS/MS data for matching to
the customized protein sequence database. Controlling for a false
discovery rate of<5%, 235,602 peptide MS/MS spectra matched to
peptide sequences in this database.

Workflow 2
Peptide-spectrum matches (PSMs) from workflow 1 that did not
match Human UniProt, decoy, or contaminant species were used
to identify microbial sequences. These PSMs were analyzed with
Megan6 to extract phylogenetic and functional information (9).
We identified 776 microbial PSMs (426 distinct bacterial peptide
sequences) that were further examined with Megan6 (Table E1 in
the data supplement).

We identified 63 genera (Figure E1), 41 of whichwere reported in
at least one prior metagenome study in sputum or BALF (Table 1).
Twenty of the 27 genera that were identified with at least two
peptides were also reported in prior metagenomics studies (Table 1).
These included several known pulmonary pathogenic genera,
including Burkholderia, Klebsiella, Listeria, and Staphylococcus.
Clinical records for these patients identified normal respiratory flora
and six other microorganisms, four of which were detected by our
metaproteomic approach. Nine genera, including Pyramidobacter,
Actinomyces, and Streptococcus, were detected from at least 20
clinical samples (Table 1). These microbial peptides mapped to
several Gene Ontology annotations, including regulation of
transcription, protein translation, trafficking, protein folding, nucleic
acid metabolism, amino acid metabolism, carbohydrate metabolism,
glycolysis, gluconeogenesis, fatty acid oxidation, redox response,
cellular response to stress, and cell adhesion (Figure E2).

There is growing evidence of a complex interplay between
respiratory microbes and host in both health and disease. Thus far,
most of the studies evaluating microbial diversity in the lung have
used marker gene analysis of 16S rRNA–encoding genes (1, 10–12),
which does not reveal the host–microbe interactions. Our pipeline
demonstrates the feasibility of identifying microbial peptides,
bacterial taxa, and associated biological functions activated by the
microbial community in the distal lung.

Importantly, a functional analysis may suggest that the
microbiota we identified were metabolically active (Table E1, Figure
E3). Many of the proteins we detected are known to be involved in
energy production, protein transcription, or protein assembly. For
instance, the most abundant protein recovered, triose-phosphate
isomerase, is a key enzyme in the glycolytic pathway. We also
discovered members of the heat shock protein 70 family, whose
constituents chaperone protein folding. Protein regulators of
transcription, including transcription factor Helix-turn-helix
(HTH) DNA binding motif and members of the Repressor, Orf,
Kinase (ROK) family, were also recovered.

Although our pipeline serves as an important proof of concept,
we acknowledge several key areas in need of improvement. To
increase detection of microbial proteins within a host sample,
enrichment of BALF microbiota and/or sample fractionation
coupled with the use of increasingly sensitive mass spectrometers
could be pursued. To improve our coverage of lower-abundance
proteins, we depleted medium- and high-abundance proteins (13)—a
strategy that could remove other proteins bound to the high-abundance
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proteins. Another limitation of the field is the absence of databases
of respiratory microbial peptides for spectral matching. A high-
quality metagenomic sequencing database is critical, as peptide
sequence identification relies on the fidelity of predicted protein
sequences. An approach using simultaneous whole-metagenome
sequencing from the same sample could substantially increase the
detection of bacterial peptides for metaproteomic studies. Such
advances could propel metaproteomics to a point where it rivals
the depth of microbial characterization offered by 16S rRNA
sequencing, with the added benefit of providing a functional
snapshot of the system. Although the use of a pooled spectral
dataset does not allow absolute quantification of bacterial peptides
from individual patients, our bioinformatics pipeline provides a
framework for obtaining such information in the future.

These current limitations notwithstanding, the workflow
for identification of BALF microbiota provides a promising
framework for integrating gene marker and metaproteomic
studies. The development of such bioinformatics pipelines
is a critical step toward gaining insight into the distal lung
microenvironment and the microbial functional state, as well
as the interplay between microbial communities and the host.
Improved knowledge about the host–pathogen dynamic may
provide the key to unlock more individualized care. The proof-of-
concept work described here is a step toward achieving these
exciting possibilities. n

Author disclosures are available with the text of this letter at
www.atsjournals.org.
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Figure 1. Metaproteomics workflow in Galaxy-P to identify bacterial peptides in BAL fluid. In the first workflow (steps A–C), a database was generated (A)
and peak processing RAW files were converted to mzml and MGF files and searched with ProteinPilot version 5.0.0, 1654 revision: 1656. (B). The outputs
from these steps were used for a database search (C) to generate a list of both human and bacterial peptide-spectrum matches (PSMs) (Table E1). In the
second workflow (steps D–F), bacterial PSMs were parsed out by eliminating human-origin peptides from the list (D). The microbial peptides were
subjected to BLAST-P analysis (E) against the NCBInr database to generate an output for subsequent MEGAN6 analysis. MEGAN software uses a
bitscore threshold to assign matches. Any match that has a bitscore below the threshold is not used to assign taxonomy. If all matches for a taxonomy or
function are below the threshold, it is marked as unassigned. Peptides that do not have a match because of an absence of sequences in the InterPro2GO
mapping file are termed “No Hits” (F).
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Table 1. Microbial Organisms Identified at the Genus Level with Spectral Identification Statistics, Detection across Clinical Samples
in this Study, and Prior Lung Microbiome Studies

Genus

Number of
Peptide-Spectrum
Matches (Peptides)

Total Number
of Datasets*

Total Number
of Patients in

Whom the Peptide
Was Detected

Prior Gene Marker
Studies Reporting These

Microbiota in the Respiratory Tract

Streptococcus 9 (3)† 7 42 (1, 10–12, 14–16)
Parabacteroides 9 (2) 5 30 (10, 11)
Actinomyces 8 (8) 8 44 (1, 10, 11)
Prevotella 8 (6) 6 35 (1, 10, 11, 12, 14, 16)
Haemophilus 6 (4)† 1 6 (1, 11, 15)
Cardiobacterium 6 (2) 4 19 (11)
Streptomyces 5 (2) 3 17
Lactobacillus 4 (4) 4 23 (10, 11)
Enterococcus 3 (3)† 3 18 (11)
Anaerofustis 3 (3) 3 18
Hungatella 3 (3) 3 17
Paenibacillus 3 (3) 3 16 (10)
Pseudomonas 3 (3) 3 11 (11, 16)
Delftia 3 (2) 2 12 (11)
Pseudoflavonifractor 3 (2) 2 12
Neisseria 3 (2) 2 11 (1, 10, 11, 14, 16)
Eubacterium 3 (2) 1 6 (11)
Anaerotruncus 3 (1) 1 6
Pyramidobacter 21 (2) 11 65
Clostridium 2 (2) 2 12 (10, 11)
Bifidobacterium 2 (2) 2 12 (11, 15)
Ruminococcus 2 (2) 2 12
Yersinia 2 (2) 1 6 (11)
Succinatimonas 2 (2) 1 6
Burkholderia 2 (1) 3 18 (11)
Klebsiella 2 (1) 2 12
Providencia 2 (1) 2 12
Rothia 2 (1) 1 6 (10–12)
Edwardsiella 2 (1) 1 6
Fusobacterium 19 (4) 2 12 (1, 10–12, 16)
Bacteroides 14 (11) 5 29 (10)
Oribacterium 12 (4) 4 20 (1, 10, 11)
Capnocytophaga 10 (6) 5 29 (10, 11)
Staphylococcus 1 (1)† 1 6 (11, 15, 16)
Scardovia 1 (1) 2 10 (11)
Catonella 1 (1) 1 6 (10, 11)
Treponema 1 (1) 1 6 (10, 11)
Megasphaera 1 (1) 1 6 (10–12, 16)
Anaerococcus 1 (1) 1 6 (11, 15)
Porphyromonas 1 (1) 1 6 (10, 11, 15)
Eikenella 1 (1) 1 6 (11)
Ochrobactrum 1 (1) 1 6 (11)
Alistipes 1 (1) 1 6 (10)
Escherichia 1 (1) 1 6 (10)
Turicibacter 1 (1) 1 6 (10)
Catenibacterium 1 (1) 1 6
Listeria 1 (1) 1 6
Paenisporosarcina 1 (1) 1 6
Turicella 1 (1) 1 6
Tyzzerella 1 (1) 1 6
Peptostreptococcus 1 (1) 1 5 (10, 11)
Selenomonas 1 (1) 1 5 (10, 11, 16)
Mycoplasma 1 (1) 1 5 (11)
Shuttleworthia 1 (1) 1 5 (11)
Blautia 1 (1) 1 5
Collinsella 1 (1) 1 5
Dorea 1 (1) 1 5
Kytococcus 1 (1) 1 5
Oxalobacter 1 (1) 1 5
Sanguibacter 1 (1) 1 5
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CORRESPONDENCE

650 American Journal of Respiratory Cell and Molecular Biology Volume 59 Number 5 | November 2018



Acknowledgment: The authors thank the Minnesota Supercomputing
Institute and the Center for Mass Spectrometry and Proteomics at the
University of Minnesota for assistance in this work.

Pratik D. Jagtap, Ph.D.*
University of Minnesota
Minneapolis, Minnesota

Kevin J. Viken, M.B.S.*
University of Minnesota Medical School
Minneapolis, Minnesota

James Johnson
Thomas McGowan, B.S.
University of Minnesota Supercomputing Institute
Minneapolis, Minnesota

Kathryn M. Pendleton, M.D.
University of Minnesota Medical School
Minneapolis, Minnesota

Timothy J. Griffin, Ph.D.
University of Minnesota
Minneapolis, Minnesota

Ryan C. Hunter, Ph.D.
University of Minnesota Medical School
Minneapolis, Minnesota

Joel D. Rudney, Ph.D.
University of Minnesota School of Dentistry
Minneapolis, Minnesota

Maneesh Bhargava, M.D., Ph.D.‡

University of Minnesota Medical School
Minneapolis, Minnesota

ORCID IDs: 0000-0003-0984-0973 (P.D.J.); 0000-0003-3822-2269 (K.J.V.);
0000-0003-3248-5738 (K.M.P.); 0000-0001-6801-2559 (T.J.G.);
0000-0003-3841-1676 (R.C.H.); 0000-0002-1294-6181 (M.B.).

*These authors contributed equally to this work.
‡Corresponding author (e-mail: bharg005@umn.edu).

References

1. Morris A, Beck JM, Schloss PD, Campbell TB, Crothers K, Curtis JL,
et al.; Lung HIV Microbiome Project. Comparison of the respiratory
microbiome in healthy nonsmokers and smokers. Am J Respir Crit
Care Med 2013;187:1067–1075.

2. Pendleton KM, Erb-Downward JR, Bao Y, Branton WR, Falkowski NR,
Newton DW, et al. Rapid pathogen identification in bacterial pneumonia

using real-time metagenomics. Am J Respir Crit Care Med 2017;196:
1610–1612.

3. Rebets Y, Lupoli T, Qiao Y, Schirner K, Villet R, Hooper D, et al.
Moenomycin resistance mutations in Staphylococcus aureus reduce
peptidoglycan chain length and cause aberrant cell division. ACS
Chem Biol 2014;9:459–467.

4. Neufeld JD, Dumont MG, Vohra J, Murrell JC. Methodological
considerations for the use of stable isotope probing in microbial
ecology. Microb Ecol 2007;53:435–442.

5. Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC.
Simultaneous assessment of soil microbial community structure and
function through analysis of the meta-transcriptome. PLoS One 2008;
3:e2527.

6. Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC
II, et al. Community proteomics of a natural microbial biofilm. Science
2005;308:1915–1920.

7. Bhargava M, Viken KJ, Dey S, Steinbach MS, Wu B, Jagtap PD,
et al. Proteome profiling in lung injury after hematopoietic stem
cell transplantation. Biol Blood Marrow Transplant 2016;22:1383–
1390.

8. Bhargava M, Viken K, Wang Q, Jagtap P, Bitterman P, Ingbar D,
et al. Bronchoalveolar lavage fluid protein expression in acute
respiratory distress syndrome provides insights into pathways
activated in subjects with different outcomes. Sci Rep 2017;7:
7464.
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Genus

Number of
Peptide-Spectrum
Matches (Peptides)

Total Number
of Datasets*

Total Number
of Patients in

Whom the Peptide
Was Detected

Prior Gene Marker
Studies Reporting These

Microbiota in the Respiratory Tract

Atopobium 1 (1) 1 4 (10, 11)
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Parascardovia 1 (1) 1 4 (11)

*Eight-plex runs with one or more peptide spectral matches.
†Genera identified in clinical culture data.
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Increased Antielastase Activity in Idiopathic Pulmonary
Arterial Hypertension and Chronic Thromboembolic
Pulmonary Hypertension

To the Editor:

Pulmonary arterial hypertension (PAH) is characterized by abnormal
remodeling and occlusion of precapillary arterioles in the lung with a
subsequent increase in pulmonary vascular resistance. This can lead to
right ventricular hypertrophy and ultimately right heart failure. Elastase
is implicated in the pathobiology of PAH, with evidence including
ultrastructural studies showing increased elastase activity in pulmonary
arteries from children with congenital heart disease–associated PAH
(1), increased elastase release from peripheral blood neutrophils
isolated from patients with pulmonary hypertension compared with
healthy control subjects (2), and elevated plasma concentrations of
elastase in patients with idiopathic PAH (IPAH) (3).

The major elastase inhibitor in the circulation is alpha-1
antitrypsin (AAT). Produced by the liver, AAT is one of the
most abundant serine protease inhibitors in the blood, circulating
in micromolar concentrations, and accounts for over 90% of
neutrophil elastase inhibition in plasma (4–6). AAT protects
the lungs against proteolytic damage from elastase, and its
deficiency can cause unopposed proteolytic parenchymal
damage and emphysema (6).

Increased pulmonary artery elastolytic activity in rat models of
PAH can be reversed with elastase inhibitors (7). This suggests that
the elastase/AAT axis may be dysregulated in PAH. Although elastase
has been measured in plasma from patients with IPAH (3), the levels
of endogenous circulating elastase inhibitor AAT remain elusive. One
study reported reduced levels of AAT in pooled sera from 20 patients
with IPAH based on two-dimensional (2D) gel electrophoresis
coupled with mass spectrometry (8). However, 2D gel electrophoresis
separates proteins by isoelectric point and size. Plasma AAT is known
to exhibit microheterogeneity (9) and is present in multiple isoforms
with different isoelectric points due to differential glycosylation (9).
Hence, when pooled sera are examined by 2D gel electrophoresis,
AAT is represented by multiple spots and the intensity change in one
spot is unlikely to reflect the changes in the total amount of AAT.

We measured AAT concentrations in plasma from 29 patients
with IPAH, 29 healthy control subjects, and 21 patients with chronic
thromboembolic pulmonary hypertension (CTEPH) as a disease
comparator (for details regarding the materials and methods used,
see the data supplement). The baseline characteristics for the
groups are summarized in Table 1. Age and sex did not vary when
all three groups were considered (P = 0.081 and P = 0.392).
However, there were individual group differences, with patients
with IPAH being younger (median 6 interquartile range: 476
24 yr) than patients with CTEPH and healthy control subjects, and
predominantly female (76%). In contrast to what was reported
previously (8), AAT concentrations in plasma assessed by ELISA
did not vary significantly between patients with IPAH (mean 6
SEM: 1.916 0.04 g/L) and healthy control subjects (1.796 0.05 g/L;
P = 0.052; Figure 1A). There was also no difference between
healthy control subjects and patients with CTEPH (1.816 0.09 g/L;
P = 0.775; Figure 1A). We found slightly higher elastase-inhibitory
activities in plasma from patients with IPAH and patients with
CTEPH (Figure 1B). The ELISA did not show a similar increase in
AAT levels, possibly because elastase inhibitors other than AAT
were present, or the heterogeneity of the AAT glycosylation
resulted in some isoforms being more reactive with the antibodies
used in the ELISA measurement.

We next examined plasma AAT using SDS-PAGE and
immunoblotting. AAT is a member of the serine protease inhibitor
(SERPIN) family. Its native form has a long reactive center loop
(RCL) acting as the bait; hence, SERPINs are suicidal protease
inhibitors (10). Upon encountering a target protease, the RCL is
recognized and bound by the protease, allowing the formation of a
Michaelis complex (Figure 1C). A covalent bond is then formed
between the RCL and the protease active-site residue, followed by
cleavage of the RCL and insertion of the RCL into b-sheet A, which
brings the covalently linked protease to the opposing end of the
SERPIN molecule (10). During this process, cleaved AAT can be
generated either by protease cleavage before the final complex
formation (Figure 1C, arrow 1) or by breakdown of the final
complex (Figure 1C, arrow 2) (10), both of which occur as a result
of protease activity. The resulting cleaved AAT contains two
peptide fragments (Figure 1C, cleaved AAT, green and blue), which
can be separated by SDS-PAGE. We used an antihuman AAT
antibody that can detect both native AAT and the larger fragment
of the cleaved AAT, which appeared as a distinct lower band owing
to its lower molecular weight. As shown in Figure 1D, AAT in
plasma from both patients with IPAH and healthy control subjects
is predominantly in the native form (upper band), which can be
converted into the cleaved form (lower band) upon incubation with
elastase, in a manner identical to that used for recombinant
AAT. When equal volumes of plasma from healthy control
subjects, patients with IPAH, and patients with CTEPH were run
simultaneously on SDS-PAGE and with longer exposure, more
cleaved AAT was detected in plasma from both patients with IPAH
and patients with CTEPH (Figure 1E and F), suggesting more
protease activity in the plasma from these patients. Interestingly,
the two major cleaved bands C1 and C2 (Figure 1E) are smaller
than the major elastase cleavage product C3, suggesting there are
proteases in plasma other than elastase that could cleave AAT. It is
well known that activated neutrophils release two other serine
proteases, proteinase 3 and cathepsin G, both of which can be
inhibited by AAT and produce cleaved AAT.
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