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Abstract

Early recognition of neoantigen-expressing cells is complex,
involving multiple immune cell types. In this study, in vivo, we
examined how antigen-presenting cell subtypes coordinate and
induce an immunological response against neoantigen-expressing
cells, particularly in the absence of a pathogen-associated molecular
pattern, which is normally required to license antigen-presenting
cells to present foreign or self-antigens as immunogens. Using
two reductionist models of neoantigen-expressing cells and two
cancer models, we demonstrated that natural IgM is essential for
the recognition and initiation of adaptive immunity against
neoantigen-expressing cells. Natural IgM antibodies form a
cellular immune complex with the neoantigen-expressing cells.

This immune complex licenses surveying monocytes to present
neoantigens as immunogens to CD41 T cells. CD41 T helper cells,
in turn, use CD40L to license cross-presenting CD401 Batf31

dendritic cells to elicit a cytotoxic T cell response against
neoantigen-expressing cells. Any break along this immunological
chain reaction results in the escape of neoantigen-expressing cells.
This study demonstrates the surprising, essential role of natural
IgM as the initiator of a sequential signaling cascade involving
multiple immune cell subtypes. This sequence is required to
coordinate an adaptive immune response against neoantigen-
expressing cells.

Keywords: Ly6C1 monocytes; XCR11 Batf31 dendritic cells;
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The immune system recognizes and attacks
cancerous cells that express neoantigens,
or cell surface markers associated with
cellular pathology and aberrant growth
(1, 2). Many forms of cancer are thus
recognized and destroyed by the intact
immune system. This process is also known
to involve adaptive immune pathways
that result in the differentiation of naive
T cells into effector T cells. Such T cell
differentiation nearly universally implicates
pathogen-associated molecular patterns
(PAMPs) or non-PAMP adjuvants (such as
Alum)—but in the case of tumor cells, early

neoantigen recognition and elimination
occurs in the absence of PAMPs. Further
understanding how the immune system
recognizes neoantigen and orchestrates a
T cell–mediated adaptive immune response
against neoantigen-expressing cells in the
absence of PAMPs could tell us how
cancers are suppressed by the healthy
immune system, and provide new key
targets for diagnosis and intervention.

Studies focusing on extrinsic tumor
suppressor mechanisms have paid much
attention to the roles played by danger-
associated molecular patterns, dendritic cells

(DCs), natural killer (NK) cells, and T cells
during the recognition and clearance of
neoantigen-expressing cells (1, 2). However,
less attention has been paid to the contribution
and role of natural IgM in neoantigen
recognition. We demonstrate that natural IgM
recognizes cell surface neoantigens and license
antigen-presenting cells (APCs) to initiate an
adaptive immune response.

Natural IgM antibodies are found early in
ontogeny and throughout life (3–7), even in
the absence of deliberate antigenic stimulation
and in germ-free animals (8, 9). It has
been characterized to display specificities
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with weak affinity for a number of
common microbial determinants, and
provide an early and broad humoral defense
against a wide variety of pathogens (10–18).
Most notably, natural IgM specificities also
recognize many self-antigens that have been
shown to aid in the clearance of apoptotic
cells (18, 19). Moreover, natural IgM is a
key player in immune complex formation,
and several studies ex vivo have observed
natural IgM binding on tumors in
immunohistochemistry sections and tumor
lysates in Western blots (20–23). Whether
natural IgM recognition of neoantigen-
expressing cells occurs in vivo is unclear. We
hypothesize here that a cellular immune
complex formation initiated by natural IgM
(i.e., antigen–antibody complex) is likely
to play a critical part during the early
recognition and elimination phase of
precancerous cells (24–26).

Using two reductionist models of
neoantigen-expressing cells (expressing
normal levels of major histocompatibility
complex class I [MHCI]) and two cancer
models (urethane-induced spontaneously
occurring cancer and the B16F10 melanoma
cell line) (27, 28), we provide evidence that
natural IgM antibodies is required for the
elimination of neoantigen-expressing cells
in mice lacking a diverse natural IgM
repertoire. This mouse displays a relatively
normal lymph node (LN) architecture
(unlike B-cell deficient mice, mMT mice)
where all APC subtypes and naive T cell
subsets are present. Furthermore, we
demonstrate that the elimination of
neoantigen-expressing cells requires a
sequential signaling interaction among five
different immune cell types, which was
conceptually supported with the
experimental use of over 15 cellular immune
and mechanistically deficient mice.

In mice, there are predominantly three
LN-trafficking APCs: Ly6C1 monocytes
and two overarching DC subtypes, which are
named after the transcription factors that
regulate their development, Batf31 DCs and
Irf41 DCs (29–33). Although Ly6C1

monocytes can present exogenous antigens to
transgenic CD4 and CD8 T cells in vitro and
elicit any branch in the adaptive immune
system (34), less is known about their major
contributions in adaptive immunity in vivo
and in the absence of pathogens. On the
other hand, DC subtypes have been
extensively studied and shown to have diverse
functional roles. Batf31 and Irf41 DCs differ
in their expression levels of transcription

factors, phagocytic receptors, cytokine
production, and pattern-recognition
receptors, such as Toll-like receptors (TLRs)
and C-type lectins. They also differ in T cell
imprinting, antigen acquisition, processing,
and presentation (35–39). These differences
among DC subtypes imply that they play
distinct functional roles in the clearance of
neoantigen-expressing cells. Specifically,
Batf31 DCs mainly present exogenous
antigen to CD81 T cells, whereas Irf41

DCs predominantly present exogenous
antigen to CD41 T cells (37, 40, 41).
Moreover, the antigens that these APC
subtypes acquire can be significantly
different. We and others have demonstrated
the selective ability of Batf31 DCs and Ly6C1

monocytes, but not Irf41 DCs, to take up
dying cells (efferocytosis) (42), migrate to
the draining LNs, and present exogenous
cell-associated antigen peptides on MHCI
(i.e., cross-presentation). These can then be
recognized by cognate CD81 T cells (37,
43–46), of which Batf31 DCs display a
preferential role in cross-presentation and
cross-priming of neoantigen-expressing cells.

Based on our knowledge of APC antigen
presentation, a key question that arose in this
study was, in the absence of an identifiable
PAMP, what initiates an immune response
against neoantigen-expressing cells? This
question arose because we and others have
demonstrated that only a PAMP-activated,
antigen-bearing APC can differentiate a naive
T cell into an effector T cell (47–49). Here, we
propose a role for an initial immune
complex formation due to natural IgM
antibody binding, followed by CD41

T helper cell CD40L-CD40 ligation. CD41

T cells license antigen-bearing Batf31 DC
subtypes to present neoantigens in an
immunogenic fashion to cognate CD8
T cells, which then selectively target
neoantigen-expressing cells.

Methods

Mice
C57BL/6 Ly5.1 (CD45.1) or Ly5.2 (CD45.2)
wild-type (WT) mice (6–8 week old) were
purchased from Charles River or Jackson
Research Laboratory. 129SvEv, Batf32/2,
CCR22/2, CD11ccre, Ifr4fl/fl, CCR72/2,
PMEL, TLR32/2, TLR72/2, CD11b2/2,
IL122/2, IL272/2, CD42/2, IAb2/2,
CD40L2/2, CD402/2, IFN-g reporter, mMT,
Act-mOVA, and IghelMD4 mice were
purchased from Jackson Laboratory. AID2/2,

FcRg2/2, and STING2/2 mice were kindly
provided by Drs. Tasuko Honjo, Erwin
Gelfand, and John Cambier. OT-I and OT-II
transgenic mice purchased from Jackson
Laboratory were crossed with C57BL/6 Ly5.1.
Double knockouts, IL122/2IL272/2 and
TLR32/2TLR72/2, were created in house. All
mice were genotyped upon arrival and before
their use. Mice were housed in a specific
pathogen-free environment at National
Jewish Health, an Association for Assessment
and Accreditation of Laboratory Animal Care
(AAALAC)-accredited institution, and used
in accordance with protocols approved by
the Institutional Animal Care and Use
Committee, and which conform to NIH
guidelines.

Male and 129 Neoantigen Rejection
Model

Male neoantigen rejection model. C57BL/6
T cells from male CD45.1 OT-I mice were
used to examine acceptance or rejection of
male cells in female C57BL/6 mice (50). 129
Neoantigen Rejection Model: C57BL/6
CD45.1 OT-I mice were crossed with
129SvEv mice to create an F1 129/BL6 OT-I
mouse. F1 129/BL6 OT-I cells express non-
MHCII mismatches due to allelic variations
outside of the H-Y locus (51, 52). Female
129/BL6 OT-I cells were used to introduce
neoantigens into female C57BL/6 mice.
Model set up: two million CD45.1 (male
or 129/BL6 female) OT-I cells were
transferred intravenously into congenic
recipients. The next day, mice were
anesthetized and given intranasal (IN)
(0.22-mm filtered to remove aggregates)
2 mg ovalbumin (OVA), resulting in the
expansion of adoptively transferred
neoantigen-expressing T cells. Mice were
then rechallenged with 100 mg OVA at
Day 18 to recall adoptively transferred cells.
At 2 days after rechallenge, the lung-draining
LNs were examined for the presence
(recall) or absence (rejection) of adoptively
transferred neoantigen-expressing cells.

Cancer Models

Urethane model. Spontaneous lung tumors
were induced with intraperitoneal injections
of 1 mg/g urethane (ethyl carbamate; Sigma-
Aldrich) weekly for 6 weeks. Mice were
killed 20 weeks after the last intraperitoneal
injection of urethane. An experienced reader
was blinded to the sample for tumor counts
under a dissecting microscope, where the
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entire lung was carefully dissected. Tumor
numbers of each lung were averaged and
statistically analyzed.

Melanoma model. Pulmonary
metastatic melanoma was induced by
intravenously injecting 2.03 105 B16F10
melanoma cell line (CRL-6475; ATCC).
Mice were killed at Day 16. The lungs were
first perfused with cold PBS and then
inflated through the trachea with 1%
agarose. Tumor counts were performed on
the dorsal and ventral side of the lungs.

Antibodies used, flow analysis, Western
blot, ex vivo immune complex (IC)
experiment, tetramer1 staining, and bone
marrow chimeras are described in the
METHODS in the data supplement.

Statistical Analysis
Statistical analysis was conducted using
InStat and Prism software (GraphPad). All
results are expressed as the mean (6SEM).
Statistical tests were performed using
two-tailed Student’s t test. A value of
P less than 0.05 was considered statistically
significant.

Results

Nonredundant Role of APC Subtypes
in the Clearance of Neoantigen-
Expressing Cells
Batf31 DCs are required for the elimination
of neoantigen-expressing cells and
antitumor immunity (31, 47, 50). Because
we previously demonstrated that Batf31

DCs require direct activation to present
neoantigens as an immunogen (47), we
first asked, in the absence of PAMPs,
what is the main endogenous cellular
mechanism that licenses Batf31 DCs to
present neoantigens in an immunogenic
fashion to CD81 T cells? Based on
previous findings (37), Batf31 DCs do not
readily present cell-associated antigen to
CD41 T cells, and it has been shown
that CD41 T cells are required for the
elimination of neoantigen-expressing cells
(27, 50). Therefore, if Batf31 DCs are not
directly activating CD41 T cells, then we
hypothesized that other immune cell types
upstream of the Batf31 DCs are playing a
significant role in ultimately licensing the
Batf31 DCs to elicit a cytotoxic T cell
response against neoantigen-expressing
cells (Figure 1A). Our hypothesis states
that, first, natural IgM antibodies are
required for the initial recognition of

neoantigens. The binding of natural IgM
on a neoantigen-expressing cell results in
the formation of a cell-bound immune
complex, which is then, second, acquired
by an LN-trafficking monocyte (34).
Third, due to the acquisition of an
immune complex, antigen-presenting
monocytes become activated and licensed
to present neoantigens as immunogens,
resulting in the priming of cognate CD41

T cells. Fourth, the activated CD41 T cells
use CD40L to license Batf31 DCs via
CD40 to cross-prime a CD8 cytotoxic
T cell (CTL) response against the
neoantigen-expressing cells (Figure 1A).
Figure 1 sets out to examine this
overarching hypothesis.

Neoantigens are mutated, newly
formed antigens not present in the normal
genome. To address the immune cells and
mechanisms involved in the neoantigen
recognition and elimination, we developed
a consistent, reproducible, reductionist
model. Although not a cancer model per se,
this neoantigen-expressing cell model does
not require PAMPs for its recognition and
elimination, as new non–MHC-associated
proteins are introduced into female mice.
It is well established that adoptively
transferred male cells are completely
rejected (i.e., eliminated) in syngeneic
female mice (53–57). This is due to the
development of a CTL response against
the Y chromosome–associated antigens,
which are absent in female mice (27, 50).
To illustrate our model (Figure 1B), we
first isolated CD45.1 male cells (from OT-I
mice, OVA-specific T cells) and adoptively
transferred them into syngeneic CD45.2
WT male and female mice. One day after
adoptive transfer of CD45.1 male cells,
recipient CD45.2 mice were immunized
via the intranasal route with 2 mg of
soluble OVA to induce proliferative
expansion of adoptively transferred OT-I
male cells in the host mouse. To assess the
rejection or acceptance of the adoptively
transferred male cells, at Day 18, mice
were challenged with 100 mg of OVA
(i.e., a recall response). Two days after
challenge (i.e., Day 20), the draining LNs
were examined for the presence or absence
of adoptively transferred CD45.1 male
cells (Figure 1B). As expected, there was
no recall of the adoptively transferred
CD45.1 male cells (i.e., the cells were
rejected) in syngeneic WT female mice
compared with syngeneic WT male mice
(50). This rejection was not due to the

presence of other neoantigens besides the
H-Y antigens, as adoptively transferred
CD45.1 female OT-I T cells were not
rejected in syngeneic WT female mice
(Figure 1B). Moreover, it is important
to note that, in this model, the TCR
specificity is irrelevant, and any male
transgenic T cell could be used, as
illustrated in Reference 50. This is because
the recipient WT female mice are
recognizing and eliminating adoptively
transferred male cells expressing perceived
neoantigens (i.e., H-Y antigens).

Next, we examined whether a break
along the hypothesized immune cell
interactions resulted in an inability to
eliminate neoantigen-expressing cells. To
ascertain the reliability of the experimental
group, each experiment was accompanied
by three control groups: two negative
control groups comprised of WT and
knockout/cell-deficient male mice, where
acceptance (i.e., recall) of male cells was
expected regardless of the presence or
absence of an APC subtype or lymphocyte
population, and a positive control group,
comprised of WT female mice, where the
complete rejection of transferred syngeneic
male cells was anticipated (Figure 1C).
Focusing on the experimental group, male
cells were not rejected in female mice that
lacked either: 1) a diverse CD81 T cell
repertoire (i.e., in PMEL mice, wherein
greater than 90% of the CD81 T cells are
specific for an enzyme involved in pigment
synthesis); 2) Batf31 DC (Batf32/2 mice);
3) CD41 T cells (CD42/2 mice); 4)
surveying, tissue-trafficking monocytes
(CCR22/2 mice); or 5) B cells (mMT
mice). Deletion of CD41 T cells with anti-
CD4 antibody showed similar results as
CD42/2 mice (see Figure E1 and scatter
plot frequency in Figure E2 in the data
supplement). Importantly, when male cells
were transferred into individual genetic
male mutant hosts, the transferred male
cells were able to mount a recall response
(Figure 1C, second column). This result
further demonstrated that each mutation
interrogated did not individually impede
the recall response. We also examined
other types of leukocytes or cellular
mediators known to induce antigen-
specific CTL response, and found that
none of the examined mutants appeared to
have a major role in the rejection of
adoptively transferred male cells in female
mice (i.e., depletion of NK cells using anti-
NK1.1, FcR common g chain FcRg2/2,
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IL-122/2/IL-272/2, and TLR32/2/TLR72/2

mice; Figure E1). Overall, these data
support the concept that each APC
subtype examined herein plays a critical
and unique role in this immunological
process.

A Diverse Polyclonal IgM Repertoire
Is Required for the Rejection of
Neoantigen-Expressing Cells
In the absence of B cells (i.e., mMT mice),
we observed a recall of adoptively
transferred male cells in mMT female mice

compared with WT female mice
(Figure 1C). As B cells can also function as
APCs, it was important to discriminate
between their requirements as APCs
versus producers of serum antibodies.
To test if natural IgM antibodies were
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Figure 1. Key players involved in the coordinated, immunological cascade against neoantigen-expressing cells: B cells, T cells, lymph node (LN)
monocytes, and dendritic cells (DCs). (A) Schematic diagram of our stated and examined hypothesis. The rejection and elimination of neoantigen-
expressing cells requires a chain-link leukocyte reaction. (B) Top: the experimental scheme used to determine, if minor antigen–mismatched cells
(neoantigen-expressing cells) are accepted or rejected in female mice. Bottom: flow plots show the recall of adoptively transferred CD45.1 male cells into
wild-type (WT) male or female mice (left) compared with CD45.1 female cells into WT female mice (right). (C) Flow data illustrate three controls: two
negative controls (acceptance, male cells into male WT and knockout [KO]/transgenic mice, referred to as experimental [Exp] mice) and one positive
control (rejection, male cells into WT female mice). Experimental mice are PMEL (CD81 T cell transgenic, hypo-CD81 T cell repertoire), Batf32/2 (lack
Batf31 DCs), CD42/2 (lack CD41 T cells), CCR22/2 (lack LN monocytes), and mMT (lack peripheral B cells) female mice. Data are representative of two to
three individual experiments with n = 3–5 mice per group. Table displays the combined experiments with the number of mice that rejected male cells
(numerator) over the number of total mice examined (denominator). Acceptance is shown in blue, rejection in red. Ag = antigen; CTL = cytotoxic T
lymphocytes; IN = intranasal; IV = intravenous; MHCII =major histocompatibility complex class II; Va2 = Va2.
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required for rejection, we again used the
H-Y antigen model with IghelMD4 female
mice as recipients, where greater than 90%
of IgM-secreting B cells are specific for
hen egg lysozyme (58). Thus, in these
mice, the specificity of serum IgM is
severely restricted to hen egg lysozyme.
When female IghelMD4 mice were used as
recipients, no rejection of male cells was
observed (Figure 2A). Furthermore, this
was in striking contrast to activation-
induced cytidine deaminase deficient
(AID2/2) female recipients, the B cells
of which are unable to undergo Ig
class switch recombination, and have
only serum IgM and lack all other Ig
isotypes (59). Here, male cells were
completely rejected after adoptive transfer
(Figure 2A). Hence, even though all APC
subtypes are present in IghelMD4 mice
(Figure 2B and Figure E3), male cells
escape recognition and elimination. These
data demonstrate that a diverse polyclonal
IgM, but not IgG, repertoire is required for

the rejection of neoantigen-expressing
cells. In addition, we further suggest that:
1) natural IgM includes specificities able to
recognize neoantigen-expressing cells; and
2) IgM is required to initiate the immune
response against neoantigen-expressing
cells, as all other cell types, APC subtypes
and CD4 and CD8 lymphocytes, are present
in IghelMD4 mice.

To further support the concept that
natural IgM antibodies are required for
neoantigen recognition and elimination, we
used a different experimental approach
in vivo. This model takes advantage of the
fact that OVA antigen alone, although
foreign in mice, does not, by itself, elicit an
immune response. If OVA-expressing
female cells are transferred into syngeneic
female mice in the absence of a PAMP
or non-PAMP adjuvant, such as Alum,
no immune response is elicited against
the linked OVA antigen (37, 47). We
hypothesized that, if male OVA-expressing
cells, compared with female OVA-expressing

cells, were transferred to WT female
recipients, then the adoptively transferred
male cells would form an immune
complex, which would be acquired by
relevant APCs, leading to the presentation
of the linked-antigen, OVA, expressed
by the male cell to be presented as an
immunogen to endogenous OVA-specific
T cells.

To test this hypothesis, we employed
an in vivo CTL killing assay against the
linked, nonimmunogenic antigen
(i.e., OVA) expressed by the adoptively
transferred cells (27, 60). In this
experiment (outlined in Figure 3A), OVA-
expressing female or male cells from Act-
membrane-bound OVA (mOVA) mice
were adoptively transferred into female or
male mice. After 6 days, CFSE-labeled
female target cells, OVA1 (CD45.2) and
OVA2 (CD45.1) cells, were transferred at
a 1:1 ratio into the same hosts. One day
after the transfer of CFSE-labeled target
cells, an in vivo CTL response against the
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linked OVA antigen was assessed by
measuring the killing of the OVA1 target
cells compared with the OVA2 target cells
(Figure 3A). As anticipated, WT female

mice that received OVA-expressing female
cells displayed no killing of OVA1 target
cells. Similarly, WT male mice that
received OVA-expressing male cells

displayed no killing of OVA1 target cells
(Figure 3A). However, WT female mice
that received OVA-expressing male cells
subsequently displayed significant cytotoxic
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activity directed toward OVA1 target cells.
This induced CTL activity was supported
by the increased reporter expression of
IFN-g from endogenous OVA-specific
CD81 T cells (Figure E4). Furthermore,
similar observations were made using GFP-
expressing cells (Figure E5). Thus, these
data strongly suggest that, in contrast
to OVA-expressing female cells, OVA-
expressing male cells are acquired in
an immunogenic fashion in female
mice, which subsequently leads to the
presentation of the associated foreign
antigen, OVA, as an immunogen instead of
a tolerogen.

Using this model, we again addressed
the contribution of serum IgM in the
rejection of male cells in female hosts by
preincubating the OVA-expressing male
cells with either WT female or male serum
for 45 minutes on ice (Figure 3B). We
hypothesized that immunoglobulins in the
WT female serum, unlike the WT male
serum, would recognize and bind
neoantigens expressed on the surface of
male cells to form an immune complex.
Formation of this cell-associated immune
complex would result in the immunogenic
uptake of the adoptively transferred OVA-
expressing male cells in male mice (see
illustrated diagram in Figure E6). To
examine the endogenous immune
response against the linked antigen, 6 days
after adoptive transfer, the same in vivo
CTL assay was performed as in Figure
3A. The results from the CTL assay
demonstrated that the adoptive
transfer of OVA-expressing male cells
preincubated with female serum,
compared with male serum or no serum,
resulted in an immune response against
the linked antigen (Figure 3B). These data
further strongly suggest that components
present in WT female serum, and not in
WT male serum, specifically bind to male
cells promoting their immunogenicity.

To confirm that antibodies were
indeed responsible for this immunogenic
observation, the male cells were
preincubated with Rag2/2 female serum
(Rag2/2 mice lack mature T and B cells,
and thus any serum immunoglobulins).
Indeed, OVA-expressing male cells
preincubated with Rag2/2 female serum
displayed no immune response against the
linked antigen (Figure 3B), suggesting that
the lack of immunoglobulins in the Rag2/2

serum resulted in adoptively transferred
OVA-expressing male cells to be cleared in

a nonimmunogenic fashion. Finally, as
direct evidence of natural IgM antibody
binding to neoantigen-expressing cells, a
Western blot analysis of Rag2/2 male
cells incubated with either WT male or
female serum was assessed. Western
blot data showed that there was a
significantly higher concentration of
IgM bound to the male cells when
incubated with WT female serum
compared with WT male serum
(Figure 3C). In summary, these data,
together with results shown in Figure 2A
using IghelMD4 Tg and AID2/2 mice as
hosts, provide strong support that natural
IgM antibodies present in WT female
serum form a cellular immune complex
with male cells, resulting in neoantigen
immunogenicity.

Ly6Chi Monocytes Need to Express
MHCII to Elicit Rejection of
Neoantigen-Expressing Cells
Although, we showed that surveying
monocytes and Batf31 DCs are both
important for the elimination of male cells
in female mice (Figure 1), we next explored
more closely their dominant role in this
process of rejection. LN monocytes have
been shown to be highly efferocytic, and
readily present exogenous antigen to CD41

T cells (34, 42, 61–63). Therefore, we
hypothesized that monocytes are APCs that
substantially contribute to neoantigen
presentation via MHCII to CD41 T cells.
Therefore, we created bone marrow (BM)
chimeric female mice where 100% of tissue
and LN monocytes lack MHCII expression,
all other leukocytes were approximately
20% MHCII deficient. These mice were
referred to as 80:20 BM cells, CCR22/2:
IAb2/2 chimeric mice (64). As controls, the
chimeric mice contained one negative and
two positive controls. The negative control
was recipient male mice that received 100%
WT male BM cells. The positive controls
were recipient female mice that received
100% WT female and 80:20, CCR22/2:WT
female BM cells, of which 100% of tissue
and LN monocytes express MHCII. As
expected, adoptively transferred male cells
in male chimeric mice demonstrated
a recall and acceptance response (Figure
4A). In contrast, adoptively transferred
male cells in chimeric female mice
reconstituted with either 100% WT female
or 80:20 CCR22/2:WT female BM cells
resulted in its complete rejection (Figure
4A). However, female chimeric mice that

contained 100% MHCII-deficient
monocytes did not reject adoptively
transferred male cells. Hence, these data
suggest that, even when all other APCs
express MHCII, such as B cells and DC
subtypes, expression of MHCII on LN
monocytes is required for and contributes
to the development of neoantigen-specific
CD41 T cells.

CD40L–CD40 Cross-Talk between
CD41 T Cells and Batf31 DCs Is
Required for the Rejection of
Neoantigen-Expressing Cells
Next, we hypothesized that CD41 T cells
license Batf31 DCs via CD40 to elicit
antigen-specific CTL response. Therefore,
we examined the need for CD40L and
CD40 interaction and expression on CD41

T cells and Batf31 DCs. We created two
sets of BM chimeric mice where 100%
of CD41 T cells lacked CD40L and 100%
of Batf31 DCs lacked CD40 (80:20 BM
cells, CD42/2:CD40L2/2 and Batf32/2:
CD402/2); all other leukocytes were
only 20% deficient for either CD40L
or CD40 (Figures 4B and 4C). As
hypothesized, chimeric female mice that
contained either 100% CD40L-deficient
CD41 T cells or CD40-deficient Batf31

DCs displayed no rejection against
the adoptively transferred neoantigen-
expressing cells (Figures 4B–4D). These
data suggest that, even when other
APC subtypes express CD40, such as
monocytes, Irf41 DCs, and B cells,
Ag-specific CD41 T cells require the
expression of CD40L to activate and
license Batf31 DCs via CD40 to induce
Ag-specific CTL response.

Using a Non–H-Y Antigen Model, a
Diverse Polyclonal IgM Repertoire
and Batf31 DCs are Required for
the Rejection and Elimination of
Neoantigen-Expressing Cells
Finally, using a different neoantigen-
expressing cell model, independent of H-Y
antigen recognition, we examined whether
natural IgM antibodies and Batf31 DCs
were required. We crossed 129SvEv mouse
with C57BL/6 OT-I mouse and created
an F1 129/BL6 OT-I mouse. Although
129SvEv and C57BL/6 mice are MHC
matched, they are heavily mismatched
outside of the MHC locus, due to multiple
allelic variations (65). Hence, if 129SvEv
cells are transferred into C57BL/6 mice,
129SvEv cells will be completely rejected,
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due to the perceived neoantigens (51, 52).
Similar to the H-Y model, transferred
female 129/BL6 cells into WT female mice
resulted in complete rejection of the
129/BL6 cells (Figure 5). However, when
female 129/BL6 cells were transferred
into IghelMD4 and Batf32/2 female
mice, elimination of the 129/BL6
neoantigen-expressing female cells did
not occur (Figure 5). In summary, the
data demonstrate that both natural IgM
antibodies and Batf31 DCs are required for
recognition and elimination of neoantigen-
expressing cells.

A Diverse Polyclonal IgM Repertoire
Is Required for the Clearance and
Elimination of Urethane-induced Lung
Tumors and Metastatic Melanoma
Cells
Finally, we set out to examine whether
a diverse polyclonal IgM repertoire
was also required for antitumor immunity.
First, we used the urethane model, which
results in a spontaneously occurring,
chemically induced lung adenocarcinoma.
As anticipated, at 20 weeks after urethane
treatment, WT C57BL/6 mice developed
roughly one to three tumors per mouse

(Figure 6A) (66, 67). Mice known to be
susceptible to cancer were also examined:
Batf32/2 and CCR22/2 mice, which lack
either Batf31 DCs or Ly6C1 monocytes,
respectively. Both strains displayed
approximately a three- to fivefold increase
in tumor development compared with
WT mice (Figure 6A). However, the
greatest tumor development was observed
in the IghelMD4 mice (lacking a diverse
polyclonal IgM repertoire) containing
roughly 15 tumors per mouse (Figure 6A).
The development of multiple tumors in the
IghelMD4 mice was not due to the lack of
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splenic or LN APC subtypes known to be
involved in tumor clearance (i.e., Batf31

DCs and LN monocytes; Figure 2B).
Furthermore, in a second tumor model,
injection of B16F10 melanoma cells, which
rapidly results in metastatic melanoma in
the lungs of mice after 16 days, showed a
similar effect as in the urethane model

(Figure 6B). The greatest number of
metastatic melanoma nodules was observed
in IghelMD4 mice compared with mice
lacking either Batf31 DC or Ly6C1

monocytes, and WT controls (Figure 6B).
Overall, these data suggest that, even when
all APC subtypes are present, a diverse
IgM repertoire is required for antitumor

immunity through the initial recognition of
neoantigen-expressing tumors and activation
of APCs.

Discussion

The immune system has evolved to
recognize invading pathogens, but
understanding how it recognizes and
mounts a coordinated immune response
against naturally occurring alterations of
self-antigens during mutagenesis is ongoing
(68, 69). Most cells undergo transcriptional
and translational mutations approximately
1,000–10,000 times per day (69), and even
more if a mutation successfully causes the
cells to escape intrinsic repair mechanisms,
in which case an intact immune system can
suppress this escape, known as extrinsic
tumor suppressor mechanisms. Therefore,
after an abnormal cell escapes intrinsic
tumor suppressor mechanisms, it is
imperative to have this second line of
defense that rapidly recognizes these
abnormal cells.

Our findings suggest that natural IgM
is a key player in neoantigen recognition
and part of the “second-line” immune
surveillance. Specifically, we demonstrated
that natural IgM antibodies recognize
neoantigens expressed on the surface
of the adoptively transferred neoantigen-
expressing cells, leading to the formation
of an immune complex, which initiates
the immune response against neoantigen-
expressing cells. In our reductionist models,
using either mice deficient for an immune
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cell type or chimeric mice lacking a
required molecule that mediates adaptive
immunity (i.e., CD40L on CD41 T cells,
MHCII on Ly6C1 monocytes, or CD40
on Batf31 DCs), we demonstrated that
there was virtually no redundancy in the
role individual APC subtypes play in
coordinating the rejection of neoantigen-
expressing cells. Thus, we provide a holistic
view of the dependency of each APC
subtype and how they contribute to an
immune response against neoantigen-
expressing cells.

Initially, we showed that male cells
escape recognition and elimination in
syngeneic female mice when these mice
lack either immune cell subtypes: B cells,
CD4 T cells, CD8 T cells, or APC
subtypes. Moreover, we focused on mice
that were either hypo- or hyper-IgM, and
demonstrated that mice lacking a diverse
IgM repertoire demonstrated the escape
of neoantigen-expressing cells. We
also performed ex vivo experiments
demonstrating directly the binding of IgM
on male cells with female serum. Finally, we
extended our findings to two cancer models
and tested the hypothesis outlined in
Figure 1A. In the absence of any one critical
part within the immune cascade we
identified—a diverse IgM repertoire, LN

monocytes, or Batf31 DCs—precancerous
cells escaped and proliferated, resulting in
the development of tumors with greater
numbers over WT mice containing an
intact immune system. The worst
tumor growth was observed in mice
lacking a diverse natural IgM repertoire
(Figure 6).

Since the most striking data observed in
tumor development was with the IghelMD4
mice, this leads us to hypothesize, and
examine in the future, the following concept
during the elimination phase of extrinsic
tumor suppressor mechanisms. Similar to
what is observed with invading pathogens,
there are two lines of defense during the
early elimination phase of abnormal cells,
which have recently escaped intrinsic tumor
suppressor mechanisms. The first line of
defense would be the tagging of neoantigen-
expressing cells with natural IgM antibodies
for clearance by innate immune cells already
present within the tissue, including
interstitial macrophages and surveying
monocytes. If this clearance fails, then IgM
helps initiate a second line of defense based
on an adaptive immune response. Here,
LN-trafficking monocytes and Batf31 DCs
play a major role. Consistent with this
hypothesis, when mice lack natural IgM,
both the innate and the adaptive immune

response is eliminated. This is likely why
we observe the most extensive tumor
development in natural IgM repertoire
deficient mice compared with mice in
which only the adaptive arm is
compromised, such as in the Batf31

DC–deficient mice.
Although our findings provide a

scaffold to work from, there are most likely a
number of mechanisms in the early stages
of recognition not examined here. For
example, once natural IgM binds to
neoantigen and forms an immune complex,
the activation of the classical complement
cascade might be expected. Hence, the role
of cell types known to secrete the first
components of the complement cascade
(e.g., interstitial macrophages) (70–74)
are also likely involved in this process,
along with receptors known to mediate
this recognition. Clearly, future studies
highlighting the initial recognition of
neoantigens are needed to enhance our
understanding of the endogenous processes
and additional mechanisms involved in the
early immune detection and elimination
stage of neoantigen-expressing cells. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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