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Abstract

Reversible phosphorylation of proteins on tyrosine residues is an
essential signalingmechanism bywhich diverse cellular processes are
closely regulated. The tight temporal and spatial control of the
tyrosine phosphorylation status of proteins by protein tyrosine
kinases (PTKs) and protein tyrosine phosphatases (PTPs) is
critical to cellular homeostasis as well as to adaptations to the
external environment. Via regulation of cellular signaling
cascades involving other protein kinases and phosphatases,
receptors, adaptor proteins, and transcription factors, PTKs and
PTPs closely control diverse cellular processes such as proliferation,
differentiation, migration, inflammation, and maintenance of

cellular barrier function. Given these key regulatory roles, it is
not surprising that dysfunction of PTKs and PTPs is important in
the pathogenesis of human disease, including many pulmonary
diseases. The roles of various PTKs and PTPs in acute lung injury
and repair, pulmonary fibrosis, pulmonary vascular disease, and
inflammatory airway disease are discussed in this review. It is
important to note that although there is overlap amongmany of these
proteins in various disease states, the mechanisms by which they
influence the pathogenesis of these conditions differ, suggesting
wide-ranging roles for these enzymes and their potential as
therapeutic targets.
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Phosphorylation is the most common type
of post-translational protein modification,
and its impact on control of diverse cellular
processes is ubiquitous. Protein kinases
represent a family of enzymes that transfer a
phosphate group from ATP to specific
amino acids, most commonly on serine (S),
threonine (T), or tyrosine (Y) residues (1).
In contrast, protein phosphatases remove
a phosphate group from these residues.
An estimated 30% of all proteins can be
phosphorylated on at least one residue,
and 2–3% of the eukaryotic genome
encodes a kinase or phosphatase (1). Of
the 518 human protein kinases, 90 encode
an enzyme that is relatively specific for
tyrosine residues and thus are classified as
protein tyrosine kinases (PTKs). Compared
with kinases, there are comparatively fewer

protein phosphatases (only z200), and of
these, 108 are selective for tyrosine residues
and thus are classified as protein tyrosine
phosphatases (PTPs) (2, 3). A smaller
number of kinases or phosphatases can
phosphorylate or dephosphorylate
both serine/threonine and tyrosine residues
and are therefore termed dual-specificity
kinases or phosphatases, respectively
(4, 5).

Tight control of cellular tyrosine
phosphorylation via PTKs and PTPs is
critical to cellular homeostasis and
impacts diverse cellular functions, ranging
from proliferation and differentiation
to migration, metabolism, immunity,
and cell death (1). Phosphorylation
and dephosphorylation of proteins
are intimately tied to the activity of

signaling molecules and are essential for the
regulation of protein–protein interactions
(6). PTKs and PTPs play fundamental
roles in diverse essential physiological
cellular processes, including maintenance
of cellular barriers, inflammation, and
regulation of cellular signaling pathways
(Figure 1). However, if these key molecules
become dysregulated, they have the
potential to contribute to the pathogenesis
of diverse disease processes. In general,
much more is known about the function
of PTKs than PTPs, although recent
studies have begun to elucidate the
roles of PTPs in physiological and
pathophysiological processes. This review
focuses on the roles of PTKs and PTPs in
the pathogenesis of various forms of human
lung disease.
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Figure 1. Basic protein tyrosine kinase and protein tyrosine phosphatase activity and consequences for pulmonary pathology. RTKs and PTKs, located
on the cell surface, bind ligands on their extracellular domain, which induces dimerization and phosphorylation of the intracellular catalytic domain. The
active enzyme either phosphorylates or dephosphorylates the substrate (in the case of kinases or phosphatases, respectively). Subsequent downstream
signaling can involve multiple signaling cascades and pathways, resulting in diverse physiologic consequences that are relevant to the pathogenesis
of various pulmonary disease states. ECM= extracellular matrix; Jak/Stat = Janus kinase/signal transducers and activators of transcription; MAPK =
mitogen-activated protein kinase; P = phosphate; PLCg = phospholipase Cg; RTK = receptor tyrosine kinase; RTP = receptor tyrosine phosphatase; Tyr =
tyrosine; SFK = Src family kinase; Shc = Src homology 2 domain-containing transforming protein 2; SMC = smooth muscle cell.
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Classification and
Mechanisms of Activation of
PTKs and PTPs

PTKs and PTPs are categorized into
receptor type and nonreceptor type (2, 3).
Receptor-type tyrosine kinases (RTKs) and
receptor-type tyrosine phosphatases (RTPs)
are located on cell membranes and typically
transduce signals to intracellular signaling
pathways via ligand binding to the
extracellular domain. Oligomerization
(often dimerization) and subsequent
autophosphorylation or dephosphorylation
of the intracellular catalytic (kinase or
phosphatase) or regulatory domains
generally ensues. This is followed by
recruitment and activation of downstream
signaling molecules and binding of
cytoplasmic adaptors and regulators,
ultimately resulting in modulation of
cellular responses depending on the cell
type and specific signal transduction
pathways that are activated (3, 7–9). In
response to ligand binding, activation of
most growth factor–type receptors is
transient, with rapid activation followed by
rapid inactivation, giving tight temporal
control over signaling pathways. Others,
such as the discoidin domain receptors,
are RTKs that bind to soluble collagen
and demonstrate a slow and sustained
phosphorylation. Importantly, these
receptors have been implicated in the
pathogenesis of human interstitial lung
diseases (ILDs) (10–12).

Alternatively, RTKs and RTPs can be
activated by G protein–coupled receptors
(GPCRs) in a ligand-independent manner.
GPCRs and RTKs often act together to
control physiological processes. For
example, GPCRs have been shown to
regulate processes in the lung such as
surfactant production (13), smooth muscle
contraction (14), inflammatory cytokine
production, and alterations in vascular
endothelial permeability (15). The actions
of GPCRs and RTKs may be synergistic
or antagonistic. When GPCRs stimulate
RTK activity, this mechanism is termed
transactivation (16). For example,
epidermal growth factor receptor (EGFR)
induction by GPCR agonists is comparable
in duration and effect to activation of
EGFR by low concentrations of its ligand,
epidermal growth factor (EGF) (3, 16). In
contrast to RTKs and RTPs, nonreceptor
PTKs and PTPs do not contain an

extracellular or transmembrane domain,
cannot bind ligands, and typically are
restricted to the regulation of signaling
pathways within the cytoplasm (3, 17).

Another key mechanism controlling
the activation and inactivation of PTKs
and PTPs is oxidation. Oxidative stress
is a feature of many physiological
processes, such as aging, as well as of
pathophysiological processes, including
diverse acute and chronic lung diseases (18).
Reactive oxygen species (ROS), the by-
products of cellular oxidative metabolism,
are generated during oxidative stress
and can be derived from a variety of
oxidant-generating systems such as the
mitochondrial electron transport chain and
oxidases such as the NADPH oxidases (19, 20).
Stimulation of cells with growth factors
including EGF, PDGF, and transforming
growth factor (TGF)-b results in ROS
production, and there is evidence that ROS
participate in signal transduction pathways
involved in cellular responses to growth
factor stimulation, such as growth, motility,
and apoptosis. Importantly, both PTKs and
PTPs are targets of ROS, and oxidative
modification to specific amino acids can
regulate their catalytic and adaptor
functions (21, 22). PTPs are particularly
susceptible to oxidant modification by ROS,
in part because of critical cysteine residues
in their highly conserved catalytic domains
that are readily oxidized (23). PTPs known
to be regulated by this mechanism include
PTP1B, PTP-a, CD45, and SHP-1 (Src
homology region 2 domain-containing
phosphatase 1) (22, 24–26). These oxidative
modifications can result in conformational
alterations to the protein that result in
changes in responsiveness to ligands,
inhibitors, and activators that persist until
the PTP is reduced or regenerated (22). The
downstream signaling consequences of
these oxidative modifications of PTPs are
often enhancement of the response of
counterpart PTKs (21, 22). Furthermore,
emerging evidence suggests that PTKs,
including Src, vascular endothelial growth
factor receptor (VEGFR), EGFR, fibroblast
growth factor receptor (FGFR), and c-abl,
are also subject to direct redox regulation,
suggesting that oxidative modifications are
pivotal in control of signal transduction
pathways directly relevant to fibrogenesis
(18, 22, 27).

Among the key signaling pathways that
are controlled by PTPs and PTKs are the
mitogen-activated protein kinase (MAPK),

PI3K, and Janus kinase (JAK)/signal
transducer and activator of transcription
(STAT) pathways. These pathways have
important implications for many human
disease states. An example illustrating the
importance of RTKs and RTPs in control of
cellular signaling pathways involves EGFR.
Binding of the ligand EGF to its receptor,
EGFR, induces activation of the receptor’s
intrinsic tyrosine kinase activity, leading
to autophosphorylation and activation
of downstream signaling molecules and
adaptor proteins, including phospholipase
Cg, PI3K, Shc (Src homology 2 domain-
containing transforming protein 2), GRB2
(growth factor receptor-bound protein 2),
MAPK, Src (abbreviation for sarcoma),
JAK, and FAK (focal adhesion kinase)
(8, 28–30). EGFR signaling is also
downregulated by PTPs, including LAR
(leukocyte common antigen-related
protein), PTP1B, and SHP-1, that
dephosphorylate the receptor and its
substrates, resulting in signal attenuation
(31). The importance of RTKs as oncogenes
in the pathogenesis of cancer, including
certain types of lung cancer, underscores
the importance of these signaling proteins
in human disease (8).

Many PTKs and PTPs have been
implicated in important pulmonary
diseases, including idiopathic pulmonary
fibrosis (IPF), acute respiratory distress
syndrome (ARDS), pulmonary vascular
disease, and inflammatory airway diseases.
Several of these proteins are involved in
multiple disease processes and contribute to
pathophysiological processes by distinct
mechanisms (see Figure 1). Furthermore,
inhibitors of tyrosine kinases in particular
have been evaluated extensively in vitro,
in animal models and in human clinical
trials, at times with great success, though
often with unintended and unexpected
consequences. Several of the specific
proteins implicated in pulmonary disease,
as well as the mechanisms by which they
contribute to these disease states, in
addition to the potential benefits and risks
of specific inhibitors, are discussed in depth
in the following sections.

IPF

IPF is the most common of the idiopathic
interstitial pneumonias and carries a
strikingly poor prognosis, with median
survival time from diagnosis of only
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2–3 years (32–35). IPF is characterized
by diffuse, progressive fibrosis leading
to destruction of lung tissue and
respiratory compromise (33, 34). IPF
is a heterogeneous disorder with a
complex pathophysiology. Although still
incompletely understood, the risk
factors; genetic predispositions; clinical,
radiological, and histopathological
phenotypes; and cellular and molecular
basis of fibrogenesis have been extensively
characterized (36). IPF is a disease
characterized by recurrent and/or
nonresolving injury to the distal lung
epithelium, resulting in production of
cytokines and growth factors that promote
myofibroblast differentiation and
deposition of excess extracellular matrix
(ECM) components (33, 37, 38). TGF-b is
an important cytokine that is intimately
involved in fibrosis of the lung and other
organs (39). In IPF, TGF-b contributes
to fibrogenesis in many ways, including
promotion of fibroblast proliferation,
activation of myofibroblasts, and
induction of expression of numerous
proinflammatory and fibrogenic cytokines
(40). Several PTKs that control key steps in
the TGF-b signaling pathway have been
implicated in the pathogenesis of
pulmonary fibrosis, as discussed below. The
effects of PTKs on TGF-b signaling can be
both positive and negative. For example,
TGF-b can be phosphorylated in the
cytoplasmic tail by Src, which promotes
downstream fibrogenic TGF-b signaling
cascades (41). In contrast, FGF2
downregulates TGF-b receptor type 1
expression and reduces cellular responses
to TGF-b ligand (42–44). Other TGF-
b–independent effects of tyrosine kinases
and phosphatases also drive profibrotic
responses. Although the role of PTKs is
well defined in IPF, the contribution of
PTPs is currently less well understood.
Recent studies highlight the roles of PTPs
in the process of fibrogenesis in the lung
and other organs, and these are discussed
below.

Role of PTKs in IPF

Platelet-derived growth factor
receptors
Platelet-derived growth factor receptor
(PDGFR)-a and PDGFR-b are RTKs
whose ligands are members of the PDGF
family of growth factors that include

PDGF-A, -B, -C, and -D. As a fibroblast
chemoattractant and stimulator of collagen
synthesis, PDGF signaling plays important
roles in response to tissue injury and in
both wound healing and scar formation
(3, 45, 46). Intratracheal administration of
PDGF-BB in mice is sufficient to induce
mesenchymal cell proliferation and
collagen deposition (47). Animal models
of pulmonary fibrosis also demonstrate
elevated concentrations of PDGF ligand
and receptor after treatment with
bleomycin or other experimental fibrogenic
stimuli (48–50). Conversely, inhibition
of the PDGFR attenuates fibrosis in a
rat model (51). In humans with IPF,
concentrations of PDGF are elevated in
the BAL fluid (46). Lung fibroblasts
isolated from patients with IPF exhibit
higher expression of PDGFRs than
those of nonfibrotic control individuals
(3, 52–54).

FGFRs
FGFRs represent a family of RTKs that
function in wound healing, promoting
fibroblast proliferation and ECM deposition
(3, 55). In animal models of bleomycin-
induced pulmonary fibrosis, FGF-2
inhibition attenuated the development of
pulmonary fibrosis in part by inhibiting
the effects of TGF-b (56). In vitro
FGF-2 stimulates ECM synthesis by lung
fibroblasts isolated from patients with
IPF (57). In patients, higher FGFR2-b
expression has been observed in lung
fibroblasts isolated from patients with
IPF (54), and concentrations of FGF-2 were
increased in BAL fluid from patients with
IPF compared with healthy control
individuals and correlated with poorer
physiological function (58). In contrast
to FGF-2, other FGFs, including FGF-7
and FGF-10, have been shown to have
protective (antifibrotic) effects in both
patients and animal models (3, 52, 53).

EGFRs
EGFRs havemultiple ligands, including EGF
(Erb/Neu), TGF-a, and ErbB (59). TGF-a,
via activation of EGFR, has been shown to
promote pulmonary fibrosis, and in rodent
models of bleomycin-induced fibrosis,
EGFR and TGF-a expression are increased
(3, 60, 61). Analogous findings are seen in
human IPF lung tissue (62). Inhibition of
EGFR and its Erb ligands protected against
fibrosis in murine models (51, 63).

Src
Src family kinases (SFKs) comprise a large
family of protooncogenic non-RTKs.
In the pathogenesis of experimental
pulmonary fibrosis, Src kinases are key in
mediating the activity of TGF-b signaling
by activating TGF-b receptor type 2
and other downstream targets via tyrosine
phosphorylation (41). In addition,
Src promotes fibroblast migration and
invasion (64). In vitro Src is activated by
TGF-b, and inhibition of Src reduces
myofibroblast differentiation of fibroblasts
(64). In vivo inhibition of Src protects
against bleomycin-induced fibrosis in
mice (64). Other tyrosine kinases, both
receptor and nonreceptor, including
VEGFR, other members of the SFKs (64),
JAK, c-kit, and c-abl (3, 45, 65), have also
been implicated in the pathogenesis of
pulmonary fibrosis, but a discussion of
these kinases is beyond the scope of this
review.

Role of PTPs in IPF

SHP-2
The PTP SHP-2 is a nonreceptor PTP
that has a wide range of physiological
functions and plays critical roles in the
regulation of developmental signaling
pathways, as evidenced by the fact that
SHP-2–knockout mice die early during
embryogenesis (6). SHP-2 has been shown
to exert antifibrotic effects in the lung. In
epithelial cell–specific SHP-2–knockout
mice, expression of pulmonary surfactant
proteins was reduced, and mice developed
spontaneous pulmonary fibrosis (66).
In addition, in myeloid-specific SHP-
2–knockout mice, bleomycin-induced
fibrosis was accelerated (67). Conversely,
mice with SHP-2 gain-of-function
mutations were protected in the bleomycin
model of pulmonary fibrosis. In vitro
overexpression of SHP-2 in human
and mouse lung fibroblasts reduced
responsiveness of cells to profibrotic
stimuli, as assessed by attenuated
myofibroblast differentiation, whereas
reduction of SHP-2 concentrations was
sufficient to induce myofibroblast
differentiation. Finally, human IPF lungs
showed downregulation of SHP-2 with
absence of this phosphatase within
fibroblastic foci (68). Taken together,
these observations suggest an important
antifibrotic function of SHP-2.
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PTP-a
PTP-a is a widely expressed receptor-
type PTP that has recently been implicated
in the pathogenesis of fibrosis in the lung,
periodontal tissue, and joints (69–72).
Global PTP-a–knockout mice are protected
from experimental models of pulmonary
fibrosis, and in vitro, fibroblasts lacking
PTP-a exhibited blunted profibrotic
responses to TGF-b stimulation (70).
PTP-a serves as a checkpoint for TGF-b
profibrotic signaling, and as a well-known
activator of Src, its effects on the TGF-b
pathway may be mediated by Src activity,
thus linking both tyrosine phosphorylation
and dephosphorylation in the pathogenesis
of IPF.

ARDS

ARDS, a frequent complication in
critically ill patients, is characterized
by noncardiogenic pulmonary edema,
hypoxemia, bilateral radiographic infiltrates,
decreased pulmonary compliance, and
respiratory failure (73–75). The definition
of ARDS has recently been updated to
reflect gradations in the severity of disease,
with mild, moderate, and severe disease
defined by the degree of hypoxemia (76).
The histopathological hallmarks of the
disease include interstitial and alveolar
edema, inflammatory and hemorrhagic
alveolar infiltrates, destruction of the
alveolar epithelium, and hyaline membrane
formation (77). Few therapeutic options
have been shown to be of benefit in patients
with ARDS, and currently, most therapy is
directed at avoiding injurious mechanical
ventilation using low-VT ventilation
strategies. The pathogenesis of ARDS
is complex and involves multiple
inflammatory mediators and disruption of
endothelial and epithelial barrier function
(73–75, 78). Barrier breakdown can occur
with disruption of endothelial intercellular
junctions (adherens junctions and tight
junctions) and changes in intercellular
contractile forces. Phosphorylation of
intercellular junctional proteins can affect
cell–ECM and cell–cell interactions (79),
and enhanced tyrosine phosphorylation of
junctional proteins (via inhibition of PTPs)
is associated with changes in vascular
permeability through formation and
dissociation of adherens junctions and
regulation of stress fiber formation, leading
to increased permeability of the endothelial

monolayer (79, 80). Several PTKs and PTPs
have been implicated in the pathogenesis of
endothelial injury and barrier dysfunction
via mechanisms that include neutrophil
chemoattraction, activation, and production
of ROS, leading to increased vascular
endothelial cell permeability (81).

Role of PTKs in ARDS

VEGFR
VEGF and its receptors are crucial for
vascular development, and VEGF is a potent
mediator of increased vascular permeability
via induction of fenestrations in endothelial
cells (82, 83). Most effects of VEGF on
endothelial cells, including those related
to cell proliferation, angiogenesis, and
vascular permeability, are mediated by
VEGFR-2, which is increased under
conditions of hypoxia (84). Ligand binding
to VEGFR-2 results in activation of
multiple downstream kinases, including
p38 MAPK, FAK, and SFKs (82, 83, 85).
Downstream effects include endothelial cell
migration and VEGF-induced endothelial
permeability (85, 86). In animal models of
acute lung injury (ALI), including LPS or
acid instillation and injurious mechanical
ventilation, VEGF and VEGFR-2
concentrations are increased (87–89). In
patients with ARDS, plasma VEGF
concentrations are significantly elevated
compared with those in normal control
individuals (86). However, intrapulmonary
concentrations of VEGF are lower in
patients with ARDS and normalize during
recovery, suggesting a more complex role
for VEGF in the genesis of and recovery
from ALI (86).

EGFR
In addition to its roles in pulmonary fibrosis,
the EGFR family of RTKs is implicated
in the pathogenesis of ARDS through
regulation of airway and alveolar epithelial
barrier function (81). EFGR signaling can
be either protective or injurious, depending
on the experimental model and activation
status of the receptor (59). In the setting of
acute injury (as in models of mechanical
stretch or scratch wounds), EGFR ligand is
shed and EGFR is activated, resulting in
proliferation, spreading, and motility of
epithelial cells (90–93). Cell spreading
in response to activation can enhance
epithelial repair (94). However, EGFR can
also promote lung injury by disrupting

cell–cell adhesions, resulting in epithelial
barrier dysfunction mediated by
rearrangement of apical junctional
complexes or expression of matrix
metalloproteinases (59, 95–98). In animal
models, inhibition of HER2 (human
epidermal growth factor receptor 2), a
member of the EGFR family, attenuated
lung injury (99).

Src and SFKs
SFKs play key roles in regulating
inflammatory responses, including in
the milieu of ALI and ARDS (100). In
ventilator-, oxidant-, and LPS-induced
animal models of lung injury, Src and other
SFK activity is increased (101, 102), and,
conversely, Src inhibitors reduce lung
injury, neutrophil influx, endothelial
permeability, and chemokine/cytokine
concentrations (103, 104). The molecular
mechanisms that underlie SFK actions
in ALI include regulation of vascular
permeability as well as recruitment and
activation of inflammatory cells (100). SFKs
mediate phosphorylation of myosin light
chains via myosin light-chain kinase
activity, thereby regulating structural
changes that can affect endothelial
permeability (100). Src may also
regulate endothelial barrier function by
phosphorylation of the junctional proteins
VE-cadherin and b-catenin; dissociation
of these proteins from their cytoskeletal
anchors can disrupt the endothelial
barrier (100). The use of Src inhibitors
in vivo reduces lung permeability (101).
In addition to their role in barrier
function, SFKs also act to enhance
immune cell responses by influencing
neutrophil adhesion and degranulation
(105, 106).

Role of PTPs in ARDS

SHP-2
SHP-2 is important in the maintenance
of the endothelial barrier, particularly via
its interactions with adherens junction
proteins (79, 80). SHP-2 associates with
VE-cadherin via b-catenin and regulates
adherens junction integrity by maintaining
dephosphorylation of b-catenin (107).
In vitro inhibition of SHP-2 results in
increased tyrosine phosphorylation of
VE-cadherin and b-catenin and subsequent
disruption of endothelial monolayers. The
in vivo consequence of this inhibition is
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the development of pulmonary edema in
rat models (79). In cell culture, stimulation
with LPS or thrombin reduces SHP-2
concentrations and correlates with
decreased FAK phosphorylation (a
substrate of SHP-2) as well as reduced
SHP-2–FAK protein interactions, which are
key to maintaining endothelial barrier
functions (80). Finally, overexpression
of SHP-2 increases resistance of the
endothelial monolayer and blocks
stimulation-induced permeability in vitro
(80), suggesting that activation of SHP-2
preserves barrier function and is protective
against edema formation. SHP-2 may
therefore hold promise as a future
therapeutic option to restore vascular
barrier function in ALI and ARDS (80).

PTP1B
PTP1B is a nonreceptor PTP that plays
several critical roles in cellular homeostasis
and metabolism. Among these functions
is the dephosphorylation of several RTKs,
including EGFR and PDGFR, and
transmembrane cadherin proteins (N-,
E-, and VE-cadherins) (79). Through its
actions (dephosphorylation) on these
cadherin proteins, PTP1B strengthens
intercellular adherens junctions by reducing
tyrosine phosphorylation of associated
b-catenin (108). In vitro inhibition of
PTP1B has been shown to increase
pulmonary endothelial cell permeability.
In rodent models, increased pulmonary
edema was observed after inhibition of
PTP1B (79).

Vascular endothelial protein tyrosine
phosphatase
Vascular endothelial protein tyrosine
phosphatase (VE-PTP) is a transmembrane
PTP essential for the development and
maintenance of the integrity of adherens
junctions. VE-PTP dephosphorylates
VE-cadherin, resulting in reduction in
VE-cadherin endocytosis (109). This
augments adherens junction integrity and
preserves endothelial barrier function (110).
VE-PTP expression is regulated by
hypoxia-inducible factors (HIFs),
specifically HIF-2a, which induces
expression of VE-PTP (111). HIFs,
including HIF-2a, are essential mediators
of adaptive responses to hypoxia and tissue
ischemia and regulate the barrier function
of endothelial monolayers, in part through
induction of expression of VE-PTP (110).

Pulmonary Arterial
Hypertension

Pulmonary arterial hypertension (PAH) is a
progressive disease of the small pulmonary
arteries characterized by vascular
remodeling, medial hypertrophy, intimal
thickening, and the formation of plexiform
lesions, the histological hallmark lesion of
PAH. Multiple cellular processes contribute
to this vascular remodeling, including
proliferation of endothelial and smooth
muscle cells, accumulation of inflammatory
cells, and deposition of ECM components.
Multiple cytokines, including TGF-b and
bone morphogenetic proteins, have been
implicated in the disease process, and
mutations in bone morphogenetic protein
receptor type II are noted in familial and
idiopathic cases of PAH (112). Several PTKs
have been implicated in the pathogenesis of
PAH.

Role of PTKs in Pulmonary
Hypertension

PDGFR
Binding of the PDGFR by its PDGF ligands
results in autophosphorylation of the
receptor and the formation of docking sites
for signaling molecules, including those of
theMAPK and SFK pathways and activation
of STAT transcription factors (113, 114).
PDGFR promotes smooth muscle cell
proliferation and pulmonary vascular
remodeling (115). In animal models,
including large-animal models, inhibition
of PDGF reduces right ventricular
hypertrophy and remodeling of the
pulmonary arteries (116). PDGFR
overexpression is seen in animal models
of PAH and in humans with the disease
(114, 117).

VEGFR
VEGFR is fundamental to angiogenesis
and to the physiology of the vascular
endothelium. Thus, its role in the
pathogenesis of PAH is highly plausible.
Interestingly, somewhat conflicting data
exist regarding the potentially protective
and injurious roles of VEGF signaling (114).
VEGF expression is decreased in some
experimental models of PAH, and its
overexpression is protective against the
development of PAH (118, 119). Other
rodent studies show vascular remodeling
after treatment with a VEGF inhibitor

(120). However, in humans, plexiform
lesions have higher expression of VEGFR
(121). Thus, there may be a dual role
for VEGF and its receptor in the
pathogenesis of PH, characterized by
protection in the early phases with later
pathogenic increases in expression resulting
in vascular remodeling in the lungs (122).
The dichotomy that emerges from the
opposing pro- and antiangiogenic roles
of various VEGF isoforms may make
therapeutic targeting of this receptor
problematic.

c-kit
c-kit is a membrane-bound tyrosine
kinase that acts as the receptor for stem
cell factor and is expressed in bone
marrow–derived cells. It is responsible,
in part, for mobilization of bone
marrow–derived progenitor cells to the
lungs in settings of hypoxia and injury
(114, 123). In humans, c-kit–positive
cells are found in remodeled pulmonary
arteries and plexiform lesions of patients
with PAH. In addition, circulating c-kit
concentrations are elevated in patients with
PAH (124). Inhibition of c-kit by tyrosine
kinase inhibitors (TKIs), including
imatinib, reduces c-kit–positive cells and
associated pulmonary vascular remodeling
and right ventricular hypertrophy in
murine models of pulmonary hypertension
(114, 125).

Other kinases, including FGFR and
SFKs, are increased in endothelial cells or
smooth muscle cells of patients with PAH
(114). EGFR also likely plays a role in PAH
pathogenesis via induction of smooth
muscle cell proliferation (126). It is
noteworthy that PAH can be induced by
TKIs, which is discussed further in the
section entitled THE PROMISE OF SPECIFIC
INHIBITORS OF TYROSINE KINASES OR

PHOSPHATASES IN THE TREATMENT OF

PULMONARY DISEASE.

Role of PTPs in Pulmonary
Hypertension

Compared with tyrosine kinases, far less is
known about the role of PTPs in the
development of PAH. Few studies have
examined the associations between PTPs
and PAH. Interestingly, it has been shown
that in hypoxia-driven models of PAH,
expression of numerous PTPs, including
T-cell PTP, PTP1B, SHP-2, and others, is
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reduced, and there is an overall reduction
in PTP activity. These PTPs may play
important roles as negative regulators of
the phosphorylation and activity of PTKs,
such as PDGFR, which are important
drivers of PAH (115). More studies that
delve into the role of PTPs are likely to
be forthcoming and will be necessary to
fully understand the pathogenesis of this
complex disease.

Inflammatory Airway
Diseases

Chronic obstructive pulmonary disease
(COPD) and asthma are inflammatory
airway diseases that are characterized by
increased mucus production, airway
inflammation, and airway obstruction
(127–129). Although the pathogenesis,
demographics, and etiologies of these
conditions vary, they share common
features pathologically and clinically. Both
are diseases of chronic inflammation of the
airways, although the types of infiltrating
leukocytes are different in patients with
asthma, in whom they are more likely to
demonstrate eosinophils, mast cells, and
CD4 lymphocytes, whereas in patients
with COPD, neutrophils, macrophages, and
CD8 lymphocytes predominate. Cough
and breathlessness are shared clinical
features, and physiologically, both diseases
manifest as reduced FEV1/FVC on
pulmonary function testing. Much of the
therapeutic arsenal is shared between
these diseases. Furthermore, subgroups
of patients with either disease are resistant
to standard treatments and are refractory
to steroids. PTK and PTP signaling have
been implicated in the pathogenesis of
airway disease, particularly in patients with
severe or steroid-resistant phenotypes
(130–132).

Role of Tyrosine Kinases in
Inflammatory Airway Disease

EGFR
EGFR contributes to the pathogenesis
of asthma and COPD in several ways.
Upregulated expression of EGFR in the
airway epithelium has been documented in
patients with severe chronic asthma (90,
133–135). Increased expression of EGFR
can result in the transformation of
mesenchymal cells to myofibroblasts

with subsequent ECM deposition that
contributes to pathological airway
remodeling. EGFR signaling is also
involved in the recruitment of
inflammatory cells such as eosinophils
(136) and contributes to goblet cell
metaplasia and overproduction of mucus
(137). EGFR is increased in the airway
epithelial cells of smokers as compared
with nonsmokers (138, 139). EGFR
activation may also contribute to the
risk for lung cancer in smokers with
COPD. Several TKIs have been used
therapeutically in animal models of asthma,
and the results suggest beneficial effects
on airway remodeling and mucus
production (135).

PDGFR
PDGFR signaling is increased after
experimental asthma induced by allergen
exposure, with resultant smooth muscle
proliferation and airway remodeling (140).
More severe asthma phenotypes have been
associated with higher expression of
PDGFR (141, 142).

SFKs
Several SFK members are implicated in
the pathogenesis of inflammatory airway
disease. For example, Syk kinase plays a role
in signaling in immune cells, including
regulation of T- and B-lymphocyte
development and activation, as well as in
eosinophil survival (135, 143). Syk also
induces mast cell degranulation and
histamine release (144). Mice with Syk
deletions or treated with Syk inhibitors
are protected from ovalbumin-induced
asthma (145–147). Src itself has also
been implicated in COPD pathogenesis
(135, 148). Src activity is increased
in vitro by cigarette smoke, and in vivo
Src inhibitors are protective against
the inflammatory cell infiltrates and
airspace enlargement induced by smoke
exposure (149).

JAK
JAK, which activates STAT cytoplasmic
factors that control immune gene
expression, is also involved in
hypersecretory airway disease (150).
JAK/STAT signaling pathways regulate
neutrophilic inflammation in severe
asthma (151) and are also involved in Th2
(T-helper cell type 2) responses through
cytokine signaling (135, 152).

Role of PTPs in Inflammatory
Airway Disease

PTEN
The phosphatase and tensin homolog (PTEN)
is reduced in patients with asthma after
allergen challenge, and, conversely, PTEN
overexpression prevented the development of
asthma (153, 154). In patients with COPD,
single-nucleotide polymorphisms in PTEN
are highly associated with the disease (155).
PTEN expression is reduced in the lungs of
patients with COPD and correlates with
worse pulmonary physiology (FEV1). The
mechanism by which PTEN reduction
contributes to COPD development is
hypothesized to be related to increased PI3K
signaling leading to enhanced inflammation
(156).

SHP-1
SHP-1 is a tyrosine phosphatase that
controls innate and adaptive immune
responses (157). Reductions in SHP-1
activity worsened airway inflammation and
obstruction in murine models of asthma
(158) and COPD, and SHP-1–deficient
mice exhibit enhanced mucus production
(159), suggesting a protective role of this
phosphatase in airway pathophysiology.
At baseline, SHP-1–deficient mice display
airway and lung parenchymal cellular
infiltrates, including eosinophils and
macrophages, increased BAL cell counts, and
mucus metaplasia due to increased expression
of mucin gene MUC5AC, as compared with
wild-type mice. These responses are likely due
to upregulation of Th2 cytokines (160, 161).
It is also noteworthy that tyrosine kinases
and phosphatases have been strongly
implicated and targeted in the pathogenesis
and treatment of lung cancer, but this complex
topic is beyond the scope of this review.

The Promise of Specific
Inhibitors of Tyrosine Kinases
or Phosphatases in the
Treatment of Pulmonary
Disease

The development of targeted TKIs, the
first of which was imatinib in 2001, has
fundamentally changed the treatment options
for diverse diseases ranging from cancer to
inflammatory and autoimmune diseases (162,
163). Within the realm of in vivo animal
models of pulmonary disease, TKIs have been
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shown to mitigate disease development and
severity. Unfortunately, few have translated
well into human studies (see Table 1),
although there are notable exceptions.

One such success in the use of TKIs
for pulmonary disease intervention is the
approval of the multiple-TKI nintedanib
(OFEV; Boehringer Ingelheim) in
2014 for the treatment of IPF. Together
with pirfenidone (Esbriet; Genentech),
nintedanib is one of two drugs to receive
U.S. Food and Drug Administration
approval for this condition, with the
primary benefit being reduced decline
of FVC (164, 165). Nintedanib is a small-
molecule inhibitor of several tyrosine
kinases, including PDGFR, FGFR,
VEGFR, and several others, that acts by
competitively binding the ATP site of
the receptor kinase, thereby blocking
downstream intracellular signaling.
Mechanisms by which nintedanib
functions as an antifibrotic agent
include antagonism of fibroblast
proliferation and migration and
myofibroblast differentiation (166).

Other TKIs have been studied in the
treatment of human lung disease. The
Src kinase inhibitor saracatinib has been
shown experimentally to mitigate the
lymphangioleiomyomatosis (LAM)
phenotype in vitro and in vivo (167).
Saracatinib is currently in phase II trials in

patients with LAM (www.clinicaltrials.gov
NCT02737202). Similarly, imatinib is under
investigation in a phase I trial for LAM
(www.clinicaltrials.gov NCT03131999).
Although imatinib appeared promising as a
therapeutic for IPF, with in vivo and in vitro
studies showing reduced myofibroblast
differentiation and ECM deposition (65) as
well as attenuated fibrosis in bleomycin-
induced animal models of pulmonary fibrosis
(168, 169), trials of imatinib in humans have
been disappointing, with no effect on survival
or decline in lung function (170).

Most TKIs inhibit multiple kinases
simultaneously (171). This is in part
because the majority of TKIs target the
ATP-binding site of tyrosine kinases, a
region that is highly conserved among
these enzymes (172, 173). Nintedanib,
for example, inhibits at least seven
receptor and nonreceptor tyrosine kinases
(PDGFR, FGFR, VEGFR, Flt-3, Src, Lck,
and Lyn) with half-maximal inhibitory
concentration values ranging from 13 to
610 nmol$/L2 (VEFGR-3 and FGFR-4,
respectively) (174). To date, selectivity
among these agents is primarily based
on minor differences in kinase domain
structures and conformational states
(172, 173). Enhanced selectivity with fewer
off-target effects could be achieved by
the development of substrate-competitive
inhibitors that will selectively block the kinase(s)

implicated in aberrant signaling, rather than
focusing on ATP-competitive inhibitors that
are inherently nonspecific (175).

With issues of target selectivity in
mind, it is important to note the potential
risk of pulmonary complications arising
from the use of TKIs. Despite the
experimental benefits of TKIs in diseases
such as pulmonary hypertension and
pulmonary fibrosis, these drugs have
paradoxically been reported to induce
both ILD and pulmonary hypertension.
TKI-induced ILD has been documented
with use of 16 (57%) of the approved agents,
including gefitinib, erlotinib, and sorafenib
(176) (see Table 2). Frequency of disease,
severity, and time from drug administration
to disease onset vary among susceptible
patients (176, 177). Thus, when choosing
treatment with TKIs, caution must be
used and careful monitoring observed,
particularly in cases of patients with
preexisting ILD.

An additional treatment paradox exists
in the case of pulmonary hypertension.
Multiple TKIs have shown benefit in
mitigating experimental pulmonary
hypertension (114). Imatinib has been
tested as a potential therapeutic agent
in patients with PAH because of its
inhibition of PDGF and c-kit signaling,
although the results did not demonstrate
improvement in key clinical outcomes
(178, 179). However, there are also
multiple reported cases of pulmonary
hypertension induced by TKIs, including
dasatinib, ponatinib, bosutinib, and
lapatinib (178). Interestingly, no
cases of imatinib-induced pulmonary
hypertension have been reported
(178). The mechanisms by which
TKIs induce pulmonary hypertension
are incompletely understood but may
be related specifically to Src inhibition in the

Table 1. Recent and Ongoing Trials of Tyrosine Kinase Inhibitors in Lung Disease

Drug Disease Trials*
Primary Pathway(s)

Targeted

Nintedanib IPF Tomorrow INPULSIS 1, 2 VEGF, FGF, PDGF
Nintedanib LAM Nintedanib for LAM

(phase II)
PDGF, FGF, VEGF

Imatinib PAH IMPRES PDGF, c-KIT
Imatinib LAM LAMP-1 VEGF
Imatinib IPF Gleevec IPF Study PDGF
Imatinib Asthma KIA c-KIT
Dasatinib IPF Targeting proinflammatory

cells in IPF
Src

Sorafenib PAH Dosing in patients with
PAH (phase I)

VEGF, Raf-1 kinase

Sorafenib Hepatopulmonary
syndrome

SHPS (phase II) VEGF

Saracatinib LAM SLAM-1 Src

Definition of abbreviations: FGF = fibroblast growth factor; IMPRES = Imatinib (QTI571) in Pulmonary
Arterial Hypertension study; IPF = idiopathic pulmonary fibrosis; KIA = Effects of c-Kit Inhibition
by Imatinib in Patients with Severe Refractory Asthma study; LAM= lymphangioleiomyomatosis;
LAMP-1 = LAM Pilot Study with Imatinib Mesylate 1; PAH = pulmonary arterial hypertension;
PDGF = platelet-derived growth factor; SHPS= Sorafenib for Hepatopulmonary Syndrome; SLAM-1=
Tolerability of Saracatinib in Subjects with Lymphangioleiomyomatosis; VEGF= vascular endothelial
growth factor.
*Cancer trials excluded (see www.clinicaltrials.gov).

Table 2. Interstitial Lung Disease Injury
Patterns Associated with Common
Tyrosine Kinase Inhibitors

Drug Injury Pattern
Gefitinib DAD, HP, IP, alveolar hemorrhage
Erlotinib BO, HP
Sorafenib BO, COP, IP
Imatinib IP

Definition of abbreviations: BO = bronchiolitis
obliterans; COP = cryptogenic organizing
pneumonia; DAD = diffuse alveolar damage;
HP = hypersensitivity pneumonitis; IP = interstitial
pneumonia.
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case of dasatinib, which results in
Src inhibition–mediated vasoconstriction
that is frequently improved or reversed after
discontinuation of the drug (178, 180). Other
Src-independent mechanisms include
generation of ROS that induce pulmonary
endothelial cell dysfunction and apoptosis
(178). Overall, pulmonary hypertension is a
rare but serious complication of TKI use.
Fortunately, many cases appear to be
reversible, and mortality caused by TKI-
induced pulmonary hypertension is rare
(178). Dasatinib has also been shown to
cause pleural effusions in a dose-dependent
manner related to endothelial cell injury and
increased permeability (178, 181).

Given the potential pitfalls and adverse
effects of these agents, improved targeting
of TKI pathways is needed to prevent
unwanted adverse effects of these promising
agents. Phosphatase inhibitors have been
used less commonly in the treatment
of human diseases, and to date, we know
of no phosphatase inhibitors that have
been trialed in human lung disease,
though, as noted above, there are several

potential targets of great interest (182,
183). Vanadate, a potent phosphatase
inhibitor, has been used as an insulin
mimetic in human diabetes (184). There
are many challenges and barriers to the
generation of specific phosphatase inhibitors
targeting the highly conserved catalytic
domain, as noted above (185). Like TKIs, an
alternative strategy to achieve selectivity
would be to target specific substrate
binding or regulatory domains of PTP.
For receptor-type PTPs, it might also be
possible to target the extracellular
domain with antibodies or peptides. Given
the promise of drugs targeting PTK
and PTP with respect to the pathobiology
of many respiratory diseases, we hope to
see innovative therapeutic approaches
that target these molecules and
pathways in experimental models with
translation to human disease in the
coming years.

Conclusions
The diverse roles of PTKs and PTPs
in pulmonary disease underscore the

importance of the process of tyrosine
phosphorylation in human physiology.
Multiple members of these families of
enzymes are key in the pathogenesis
of human disease states, and they
function in varied ways to maintain
cellular homeostasis, including
maintaining integrity of cellular
barriers and regulating diverse
signaling cascades involved in
physiological and pathological
processes such as inflammation, repair,
and fibrosis. TKIs have considerable
promise in the treatment of human
disease, including many lung diseases.
Tyrosine phosphatase inhibitors,
though less available as treatment
modalities, also hold great promise as
therapeutic agents. Future studies
that focus on the roles of PTPs and
PTKs in human lung disease and
their potential for treatment are
warranted. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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