
The environmental costs and benefits of high-yield farming

Andrew Balmford1,*, Tatsuya Amano1,2, Harriet Bartlett1, Dave Chadwick3, Adrian Collins4, 
David Edwards5, Rob Field6, Philip Garnsworthy7, Rhys Green1, Pete Smith8, Helen 
Waters1, Andrew Whitmore9, Donald M. Broom10, Julian Chara11, Tom Finch1,6, Emma 
Garnett1, Alfred Gathorne-Hardy12,13,14, Juan Hernandez-Medrano15, Mario Herrero16, 
Fangyuan Hua1, Agnieszka Latawiec17,18, Tom Misselbrook4, Ben Phalan1,19, Benno I. 
Simmons1, Taro Takahashi4,20, James Vause21, Erasmus zu Ermgassen1, and Rowan 
Eisner1

1Conservation Science Group, Department of Zoology, Downing St, Cambridge CB2 3EJ, UK 
2Centre for the Study of Existential Risk, University of Cambridge, 16 Mill Lane, Cambridge CB2 
1SG, UK 3Environment Centre Wales, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK 
4Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK 5Department of Animal and 
Plant Sciences, University of Sheffield, Western Bank, Sheffield, South Yorks S10 2TN, UK 
6RSPB Centre for Conservation Science, The Royal Society for the Protection of Birds, The 
Lodge, Sandy, Bedfordshire SG19 2DL, UK 7School of Biosciences, Sutton Bonington Campus, 
University of Nottingham, Loughborough LE12 5RD, UK 8Institute of Biological and Environmental 
Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, UK 9Rothamsted 
Research, Harpenden, Hertfordshire AL5 2JQ, UK 10Department of Veterinary Medicine, 
University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK 11CIPAV, Centre for 
Research on Sustainable Agricultural Production Systems, Carrera 25 No 6-62, Cali 760042, 
Colombia 12School of Geosciences, Crew Building, Kings Buildings, University of Edinburgh, 
Edinburgh EH9 3JN, UK 13Global Academy of Agriculture and Food Security, University of 
Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, UK 14Oxford India Centre for 
Sustainable Development, Somerville College, Oxford OX2 6HD, UK 15Faculty of Veterinary 
Medicine and Zootechny, National Autonomous University of Mexico, Av. Universidad 3000, Col. 
UNAM, CU, Coyoacan, Mexico City 04510, Mexico 16Commonwealth Scientific and Industrial 
Research Organisation, 306 Carmody Road, St Lucia, Qld 4067, Australia 17Pontifical Catholic 
University of Rio de Janeiro (PUC-Rio), Department of Geography and Environment, R. Marquês 
de São Vicente, 225 - Gávea, Rio de Janeiro - RJ, 22451-000, Brazil 18Institute of Agricultural 
Engineering and Informatics, Faculty of Production and Power Engineering, University of 
Agriculture in Kraków, Balicka 116B, 30-149 Kraków, Poland 19Universidade Federal da Bahia, 
Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, Bahia Brazil 20University of Bristol, 

*Correspondence and requests for materials should be addressed to AB (apb12@cam.ac.uk), a.balmford@zoo.cam.ac.uk. 

Code availability. The R codes used for the analyses are available from the corresponding author upon request.

Data availability. The data that support the findings of this study are available from the corresponding author upon request.

Author Contributions AB, TA, HB, DC, DE, RF, PG, RG, PS, HW, AW and RE designed the study and performed the research, 
DMB, AC, JC, TF, EG, AG-H, JHM, MH, FH, AL, TM, BP, BIS, TT, JV and EzE contributed and analysed data and results, and all 
authors contributed substantially to the analysis and interpretation of results and writing of the manuscript.

Author Information The authors declare no competing financial interests.

Europe PMC Funders Group
Author Manuscript
Nat Sustain. Author manuscript; available in PMC 2019 March 14.

Published in final edited form as:
Nat Sustain. 2018 September 14; 1(9): 477–485.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



British Veterinary School, Office Dolberry Building, Langford House, Langford, Bristol BS40 5DU, 
UK 21UN Environment World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge 
CB3 0DL, UK

Abstract

How we manage farming and food systems to meet rising demand is pivotal to the future of 

biodiversity. Extensive field data suggest impacts on wild populations would be greatly reduced 

through boosting yields on existing farmland so as to spare remaining natural habitats. High-yield 

farming raises other concerns because expressed per unit area it can generate high levels of 

externalities such as greenhouse gas (GHG) emissions and nutrient losses. However, such metrics 

underestimate the overall impacts of lower-yield systems, so here we develop a framework that 

instead compares externality and land costs per unit production. Applying this to diverse datasets 

describing the externalities of four major farm sectors reveals that, rather than involving trade-offs, 

the externality and land costs of alternative production systems can co-vary positively: per unit 

production, land-efficient systems often produce lower externalities. For GHG emissions these 

associations become more strongly positive once forgone sequestration is included. Our 

conclusions are limited: remarkably few studies report externalities alongside yields; many 

important externalities and farming systems are inadequately measured; and realising the 

environmental benefits of high-yield systems typically requires additional measures to limit 

farmland expansion. Yet our results nevertheless suggest that trade-offs among key cost metrics 

are not as ubiquitous as sometimes perceived.

The biodiversity case for high-yield farming

Agriculture already covers around 40% of Earth’s ice- and desert-free land and is 

responsible for around two-thirds of freshwater withdrawals1. Its immense scale means it is 

already the largest source of threat to other species2, so how we cope with very marked 

increases in demand for farm products3,4 will have profound consequences for the future of 

global biodiversity2,5. On the demand side, cutting food waste and excessive consumption 

of animal products are essential1,5–8. In terms of supply, farming at high yields (production 

per unit area) has considerable potential to restrict humanity’s impacts on biodiversity. 

Detailed field data from five continents and almost 1800 species from birds to daisies9–14 

reveals so many depend on native vegetation that for most the impacts of agriculture on their 

populations would be best limited by farming at high yields (production per unit area) 

alongside sparing large tracts of intact habitat. Provided it can be coupled with setting aside 

(or restoring) natural habitats15, lowering the land cost of agriculture thus appears central to 

addressing the extinction crisis2.

However, a key counterargument against this land-sparing approach is that there are many 

other environmental costs of agriculture besides the biodiversity displaced by the land it 

requires, such as greenhouse gas (GHG) and ammonia emissions, soil erosion, 

eutrophication, dispersal of harmful pesticides, and freshwater depletion5,7,16–18. 

Measured per unit area of farmland the production of such externalities is sometimes greater 
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in high- than lower-yield farming systems17,18, potentially weakening the case for land 

sparing. But while expressing externalities per unit area can help identify local-scale 

impacts19, it systematically underestimates the overall impact of lower-yield systems that 

occupy more land for the same level of production20. To be robust, assessments of 

externalities also need to include the off-site effects of management practices, such as crop 

production for supplementary feeding of livestock, or off-farm grazing for manure inputs to 

organic systems20–22.

A novel framework for comparing system-wide costs

In this paper we argue that comparisons of the overall impacts of contrasting agricultural 

systems should focus on the sum of externality generated per unit of production10 

(paralleling measures of emissions intensity in climate-change analyses). This approach has 

for the most part only been adopted for a relatively narrow set of agricultural products8,23 

and farming systems (eg organic vs conventional, glasshouse vs open-field20,24). Here we 

develop a more general framework, and apply it to a diversity of data on some major farm 

sectors, farming systems and environmental externalities. Existing data are limited but 

nevertheless enable us to explore the utility of this new approach, test for broad patterns, and 

make an informed commentary on their significance for understanding the trade-offs and co-

benefits of high- vs lower-yield systems.

Our framework involves plotting the environmental costs of producing a given quantity of a 

commodity against one another, across alternative production systems (as in Fig. 1). We 

focus on examining variation in some better-known externality costs in relation to land cost 

(i.e. 1/yield), because of the latter’s fundamental importance as a proxy for impacts on 

biodiversity. However, the approach could be used to explore associations among any other 

costs for which data are available. Comparisons must be made across production systems 

that could, in principle, be substituted for one another, so they must be measured or 

modelled identically and in the same place or, if not, potential confounding effects of 

different methods, climate and soils must be removed statistically. If the idea that high-yield 

systems impose disproportionate externalities is true, we would expect plots of externality 

per unit production against land cost to show negative associations (Fig. 1a, blue symbols). 

However observed patterns may be more complex, and could reveal promising systems 

associated with low land cost and low externalities, or unpromising systems with high land 

and externality costs (Fig. 1b, green and red symbols respectively).

Our team of sector and externality specialists collated data for applying this framework to 

five major externalities (GHG emissions, water use, nitrogen [N], phosphorus [P] and soil 

losses) in four major sectors (Asian paddy rice, European wheat, Latin American beef, 

European dairy; Methods). We used both literature searches and consultation with experts to 

find paired yield and externality measurements for contrasting production systems in each 

sector. To be included, data had to be near-complete for a given externality – for example 

most major elements of GHG emissions or N losses had to be included, and if systems 

involved inputs (such as feeds or fertilisers) generated off-site we required data on the 

externality and land costs of their production. To limit confounding effects we narrowed our 

geographic scope within each sector (Supplementary Table 1), so that differences across 
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systems could reasonably be attributed to farm practices rather than gross bioclimatic 

variation. Where co-products were generated we apportioned overall costs among products 

using economic allocation, but also investigated alternative allocation rules.

Findings for four sectors

Our first key result is that useable data are surprisingly scarce. Few studies measured paired 

externality and yield information, many reported externalities in substantially incomplete or 

irreconcilably divergent ways, and we could find no suitable data at all on some widely 

adopted practices. Nevertheless, we were able to obtain sufficient data to consider how 

externalities vary with land costs for nine out of 20 possible sector-externality combinations 

(Supplementary Table 1). The type of data available differed across these combinations 

(which we view as a useful test of the flexibility of our framework). For one combination the 

most extensive data we could find was from a long-term experiment at a single location. 

However because we were interested in generalities, where possible we used information 

from multiple studies – either field experiments or Life Cycle Assessments (LCAs) 

conducted across several sites – and used Generalised Linear Mixed Models (GLMMs) to 

correct for confounding method and site effects (Methods). Last, for two sectors we used 

process-based models parameterised for a fixed set of conditions representative of the 

region.

The data that we were able to obtain do not suggest that environmental costs are generally 

larger for farming systems with low land costs (i.e. high-yield systems; Fig. 2). If anything, 

positive associations – in which high-yield, land-efficient systems also have lower costs in 

other dimensions - appear more common. For Chinese paddy rice we found sufficient multi-

site experimental data to explore how two focal externalities vary with land cost across 

contrasting systems (Methods). GHG costs (Fig. 2a) showed negative associations with land 

cost across monoculture and rotational systems (assessed separately). Our GLMMs revealed 

that for both system types, greater application of organic N lowered land cost but increased 

emissions (probably because of feedstock effects on the methanogenic community25; 

Supplementary Table 2); in contrast there was little or no GHG penalty from boosting yield 

using inorganic N (arrows, Fig. 2a). A large volume of data on rice and water use showed 

weakly positive covariation in costs (Fig. 2b). GLMMs indicated that increasing application 

of inorganic N boosted yield26, and less irrigation lowered water use while incurring only a 

modest yield penalty27 (Supplementary Table 2). Sensitivity tests of the rice analyses had 

little impact on these patterns (Methods; Supplementary Fig. 2).

We found two useable datasets on European wheat, both from the UK (Methods). Our 

GLMMS of data from a three-site experiment varying the N fertilisation regime revealed a 

complex relationship between GHG and land costs (Fig. 2c; Supplementary Table 2), driven 

by divergent responses28 to adding ammonium nitrate (which lowers land costs but 

increases embodied GHG emissions) and adding urea (which lowers land costs without 

increasing GHG emissions per unit production, but at the cost of increased ammonia 

volatilisation). A single-site experiment varying inorganic N treatments showed a non-linear 

relationship between land cost and N losses (Fig. 2d), with increasing N application 
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lowering both costs until an apparent threshold, beyond which land cost decreased further 

but at the cost of greater N leaching (see also ref. 1).

In livestock systems, all data we could find showed positive covariation between land costs 

and externalities. For Latin American beef, we located coupled yield estimates only for 

GHG emissions, but here two different types of data (Methods) revealed a common pattern. 

Using GLMMs again to control for potentially confounding study and site effects, we found 

that across multiple LCAs, pasture systems with greater land demands also generated greater 

emissions (Fig. 2e), with both land and GHG costs reduced by pasture improvements (using 

N fertilization or legumes). This pattern across contrasting pasture systems was confirmed 

by running RUMINANT29 (Fig. 2f), a process-based model which also identified relatively 

low land and GHG costs for a series of silvopasture and feedlot-finishing systems (for which 

comparable LCA data were unavailable).

For European dairy, process-based modelling of three conventional and two organic systems, 

parameterised for the UK, enabled us to estimate four different externalities alongside yield 

(Methods). This showed that conventional systems – especially those using less grazing and 

more concentrates – had substantially lower land and also GHG costs (Fig. 2g), in part 

because concentrates reduce CH4 emissions from fibre digestion30. Systems with greater 

use of concentrates (which have less rumen-degradable protein than grass31) also showed 

lower losses of N, P and soil per unit production (Fig. 2h,i,j). These broad patterns persisted 

when we used protein production rather than economic value to allocate costs to co-products 

(Methods; Supplementary Fig. 2).

Incorporating land use

As a final analysis we examined the additional externalities resulting from the different land 

requirements of contrasting systems. To generate the same quantity of agricultural product, 

low-yield systems require more land, allowing less to be retained or restored as natural 

habitat. This is in turn likely to increase GHG emissions and soil loss, and alter hydrology - 

though we could only find enough data to explore the first of these effects. For each sector 

we supplemented our direct GHG figures for each system with estimates of GHG 

consequences of their land use following IPCC methods32 to calculate the sequestration 

potential of a hectare not used for farming and instead allowed to revert to climax vegetation 

(Methods). Results (Fig. 3) showed that these GHG opportunity costs of agriculture were 

typically greater than the emissions from farming activities themselves and, when added to 

them, in every sector generated strongly positive across-system associations between overall 

GHG cost and land cost. These patterns were maintained in sensitivity tests where we halved 

recovery rates or assumed half of the area potentially freed from farming was retained under 

agriculture (Methods; Supplementary Fig. 3). These findings thus confirm recent 

suggestions33,34 that high-yield farming has the potential, provided land not needed for 

production is largely used for carbon sequestration, to make a substantial contribution to 

mitigating climate change.

Balmford et al. Page 5

Nat Sustain. Author manuscript; available in PMC 2019 March 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Conclusions, caveats, and knowledge gaps

This study was conceived as an exploration of whether high-yield systems – central to the 

idea of sparing land for nature in the face of enormous human demand for farm products - 

typically impose greater negative externalities than alternative approaches. Our results 

support three conclusions. First, useful data are worryingly limited. We considered only four 

relatively well-studied sectors and a narrow set of externalities - not including important 

impacts such as soil health or the effects of pesticide exposure on human health20. Even 

then we found studies reporting yield-linked estimates of externalities scarce, with many 

widely adopted or promising practices within these sectors undocumented. We were not able 

to examine complex agricultural systems (such as mixed farming, or agroforestry) which 

might have relatively low externalities. Relevant data on many significant developing-world 

farm sectors (such as cassava or dryland cereal production in Africa) also appear very 

limited. Given that a multi-dimensional understanding of the environmental effects of 

alternative production systems is integral to delivering sustainable intensification, more field 

measurements linking yield with a broader suite of externalities across a much wider range 

of practices and sectors are urgently needed.

Second, the available data on the sector-externality combinations we considered do not 

suggest that negative associations between land cost and other environmental costs of 

farming are typical (cf Fig. 1a). Many low-yield systems impose high costs in other ways too 

and, although certain yield-improving practices have undesirable impacts (e.g. organic 

fertilisation of paddy rice increasing CH4 emissions; see also ref. 1), other practices appear 

capable of reducing several costs simultaneously (see also refs 1,8,24,35,36). High (but not 

excessive) application of inorganic N, for example, can lower land take of Chinese rice 

production without incurring GHG or water-use penalties. Similarly, in Brazilian beef 

production adopting better pasture management, semi-intensive silvopasture and feedlot-

finishing can all boost yields alongside lowering GHG emissions. It is worth noting that 

although most systems we examined are relatively high-yielding, other recent work suggests 

that positive associations (cf trade-offs) among environmental and land costs may if 

anything be more likely in lower-yielding systems1.

Third, pursuing promising high-yield systems is clearly not the same as encouraging 

business-as-usual industrial agriculture. Some high-yield practices we did not examine, such 

as the heavy use of pesticides in much tropical fruit cultivation37, are likely to increase 

externality costs per unit production. Of the high-yield practices we did investigate some, 

such as applying fossil-fuel-derived ammonium nitrate to UK wheat, impose 

disproportionately high environmental costs. Others that seem favourable in terms of our 

focal externalities incur other costs, such as high NH3 emissions from using urea on 

wheat28, and management regimes that reduce costs in one geographic setting may not do 

so in others1. Much work characterising existing systems and designing new ones is thus 

needed. We suggest our framework can serve as a device for identifying existing yield-

enhancing systems which also lower other environmental costs – and perhaps more 

importantly, for benchmarking the environmental performance of promising new 

technologies and practices.
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We close by stressing that for high-yield systems to generate any environmental benefits 

they must be coupled with efforts to reduce rebound effects. Several plausible mechanisms 

for limiting these by explicitly linking yield growth to improved environmental performance 

have been identified – including strict land-use zoning; strategic deployment of yield-

enhancing loans, expertise or infrastructure; conditional access to markets; and restructured 

rural subsidies15. Without such linkages, systems which perform well per unit production 

may nevertheless cause net environmental harm through higher profits or lower prices 

stimulating land conversion38–40, and damage human health by encouraging 

overconsumption of cheap, calorie-rich but nutrient-deficient foods41,42. If promising high-

yield strategies are to help solve rather than exacerbate society’s challenges, yield increases 

instead need to be combined with far-reaching demand-side interventions1,6,41 and directly 

linked with effective measures to constrain agricultural expansion15.

Methods

Focal sectors and externalities

We focused on 4 globally significant farm sectors (Asian paddy rice, European wheat, Latin 

American beef, European dairy, accounting for 90%, 33%, 23% and 53% of global output of 

these products43) and 5 major externalities (greenhouse gas [GHG] emissions, water use, 

nitrogen [N], phosphorus [P] and soil losses). We chose these sector-externality 

combinations because preliminary work suggested they were characterised quantitatively 

relatively often, using diverse approaches (single-site experiments, multi-site experiments, 

Life Cycle Assessments [LCAs] and process-based models), enabling us to explore the 

generality of our framework. We then searched the literature and consulted experts to obtain 

paired yield and externality estimates of alternative production systems in each sector, 

narrowing our geographic scope so that differences in system performance could be 

reasonably attributed to management practices (rather than gross variation in bioclimate or 

soils). Our analyses have rarely been attempted previously and have complex data 

requirements, so we could not adopt standard procedures developed for systematic reviews 

on topics where many studies have attempted to answer the same research question.

This process generated data on ≥5 contrasting production systems for 9 out of 20 possible 

sector-externality combinations (Supplementary Table 1): Chinese rice-GHG emissions 

(from multi-site experiments); Chinese rice-water use (multi-site experiments); UK wheat-

GHG emissions (a multi-site experiment); UK wheat-N emissions (a single-site experiment); 

Brazilian beef-GHG emissions (both LCA data and process-based models); and UK dairy-

GHG emissions, and N, P and soil losses (process-based models). Water use in the wheat 

and most of the beef systems examined was limited and so not explored further. We could 

not find sufficient paired yield-externality estimates for the 9 remaining sector-externality 

combinations.

The land and externality costs of each system were then expressed as total area used per unit 

production (i.e. 1/yield) and total amount of externality generated per unit production. All 

estimates included the area used and externalities generated in producing externally-derived 

inputs (such as feed or fertilisers). For analytical tractability, as in other recent studies1,24 

we treat impacts occurring at different times and places as being additive. Occasional gaps in 
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estimates for a system were filled using standard values from IPCC or other sources, or 

information from study authors or comparable systems (details below). Where experiments 

or LCAs were conducted at multiple sites, we built Generalised Linear Mixed Models 

(GLMMs) in the package lme444 in R version 3.3.145 to identify effects of specific 

management practices on land and externality cost estimates adjusted for potentially 

confounding biophysical and methodological effects. To illustrate the effects of statistically 

significant management variables (those whose 95% confidence intervals did not overlap 

zero; shown in bold in Supplementary Table 2) we estimated land and externality costs at the 

observed minimum and maximum values (for continuous management variables) or with the 

reference category and the category that showed the maximum effect size (for categorical 

variables), while keeping other variables constant; we then linked these points as arrows on 

our externality cost/land cost plots (Fig. 2 and Supplementary Figs. 1 and 2, with arrows 

displaced horizontally and/or vertically for increased visibility). Where systems generated 

significant co-products (wheat and rapeseed from rotational rice, beef from dairy) we 

allocated land and externality costs to the focal product in proportion to its relative 

contribution to the gross monetary value of production per unit area of farmland (from focal 

and co-product combined)46.

Rice and GHG emissions

Systematic searching of Scopus for experimental studies reporting both yields and emissions 

of Chinese paddy rice systems identified 17 recently published studies47–63 containing 140 

paired yield-emissions estimates for different systems (after within-year replicates of a 

system were averaged). To limit confounding effects we analysed separately the data from 

monoculture systems from southern provinces (2 rice crops per year; 5 studies, 60 estimates) 

and rotational systems from more northerly provinces (1 rice and 1 wheat or rape crop per 

year; 12 studies, 80 estimates). The studies documented the effects of variation in tillage 

(yes/no), application rates of inorganic and organic N, and (for rotational systems only) 

irrigation regime (continuous flooding vs episodic midseason drainage). There were 

insufficient data to examine effects of seedling density, crop variety, organic practices, 

biochar application, use of groundcover to lower emissions, N fertiliser type, or K or P 

fertilisation.

Land cost estimates were expressed in ha-years/tonne rice grain (i.e. the inverse of annual 

production per hectare farmed). GHG costs were expressed in tonnes CO2eq/tonne rice 

grain, and included CH4 and N2O emissions for growing and fallow seasons (with the latter 

where necessary based on mean values from refs 47–49,64), and embodied emissions from 

N fertiliser production (Yara emissions database; F. Brendrup, pers. comm.). We were 

unable to include emissions from producing manure or K or P fertiliser, or from farm 

machinery. For rotational systems we adjusted the land and GHG costs of rice production 

downwards by multiplying them by the proportional contribution of rice to the gross 

monetary value of production per unit area of farmland from rice and co-product combined 

(using mean post-2000 prices from ref. 43).

We next built GLMMs predicting variation in our estimates of land cost and GHG cost, for 

the monoculture and rotational datasets in turn. Management practices assessed as predictors 
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were tillage regime (binary), application rates of organic N and of inorganic N, and 

irrigation regime (binary; rotational systems only). Study site was included as a random 

effect. For all systems we adjusted for biophysical and methodological differences across 

sites using the first two components from a Principal Component Analysis of site scores for 

14 variables: annual precipitation, precipitation during the driest and wettest quarters, annual 

mean temperature, mean temperatures during the warmest and coldest quarters, maximum 

temperature during the warmest month, mean monthly solar radiation, latitude, longitude, 

soil organic carbon content, plot size, replicates per estimate, and start year (with all climate 

data taken from refs 65,66). PCs 1 and 2 together explained 82.3% and 76.2% of the 

variance in these variables for monoculture and rotational systems, respectively. Soil pH and 

(soil pH)2 were also assessed as additional predictors. For the monoculture models tolerance 

values were all >0.4 (indicating an absence of multicollinearity) except for the pH terms 

(both <0.1), which we therefore removed. For the rotational models all tolerance values 

indicated an absence of multicollinearity, but (soil pH)2 was removed because AICc values 

indicated model fit was no better than using soil pH alone. Final models (Supplementary 

Table 2) were then used to plot site-adjusted land and GHG costs (as points) and statistically 

significant management effects (as arrows) in Fig. 2a. We also tested the effect of allocating 

land and GHG costs in rotational systems based on the relative energy content of rice and 

co-products67 (cf relative contribution to gross monetary value; Supplementary Fig. 2).

We adopted similar though simpler approaches for the next two sector-externality 

combinations, which again used data from multi-site experiments.

Rice and water use

A systematic search on Scopus yielded 15 recent studies57,58,64,68–79 meeting our criteria 

containing 123 paired estimates describing the effects of variation in inorganic N application 

rate and irrigation regime on land and water costs of Chinese paddy rice. We analysed 

monoculture and rotational systems together but considered water use solely for periods of 

rice production. Land cost was expressed in ha-years/tonne rice grain, and water cost in m3/

tonne rice grain (excluding rainfall). We adjusted these estimates for site effects in GLMMs 

of variation in land and water costs using as predictors the application rate of inorganic N, 

and irrigation regime (a 6-level factor: continuous flooding, continuous flooding with 

drainage, alternate wetting and drying, controlled irrigation, mulches or plastic films, and 

long periods of dry soil), while accounting for the effect of study site as a random effect. 

Tolerance values were all >0.7. Final models (Supplementary Table 2) were then used to plot 

site-adjusted land and water costs (points) and significant management effects (arrows) in 

Fig. 2b. Almost all sources reported data on only one rice season per year, but one study68 

included separate estimates for early- and late-season rice, so we checked the robustness of 

our findings by re-running the analysis without the early-season data from this study 

(Supplementary Fig. 2).

Wheat and GHG emissions

The Agricultural Greenhouse Gas Inventory Research Platform80–83 provided 96 paired 

measures of variation in yield and N2O emissions in response to experimental changes in N 

fertiliser application rate and type. We expanded the emissions profile to include embodied 
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emissions from N fertiliser production (from the Yara emissions database; F. Brendrup, pers. 

comm.). We derived land costs in ha-years/tonne wheat (at 85% dry matter) and GHG costs 

in tonnes CO2eq/tonne wheat. Experiments were run in 3 regions, so to adjust for site effects 

we built GLMMs of variation in land and GHG costs fitting study region as a random effect 

and using the application rates of ammonium nitrate, urea and dicyandiamide (a nitrification 

inhibitor) as predictors. Tolerance values were all >0.7. Adjusted land and GHG cost 

estimates from the final models (Supplementary Table 2) are plotted in Fig. 2c, with arrows 

showing statistically significant management practices.

Wheat and N losses

We assessed this sector-externality combination using data from Rothamsted’s long-term 

Broadbalk wheat experiment, which investigates the effects of inorganic N application rates 

on yields of winter wheat. During the 1990s changes in field drainage enabled the 

measurement (alongside yield) of plot-specific leaching losses of nitrate84. Mean land and 

N costs – expressed in ha-years/tonne wheat (at 85% dry matter) and kg N leached/tonne 

wheat, respectively – were averaged across 8 seasons (thus smoothing-out rainfall effects), 

for each of 7 levels of N application (from 0-288 kg N [as ammonium nitrate]/ha-y; details 

in Fig. 2 legend). Results are plotted in Fig. 2d.

Beef and GHG emissions

Two types of data were available for this sector-externality combination, enabling us to 

compare findings across assessment techniques. First we examined all published LCAs of 

Brazilian beef production85–92. Supplementing this with a bioclimatically comparable 

dataset from tropical Mexico (R. Olea-Perez, pers. comm.) yielded 33 paired yield-

emissions estimates for contrasting production systems. These varied in whether they used 

improved pasture, supplementary feeding, or improved breeds (which if unreported we 

inferred from age at first calving, and mortality and conception rates). There were 

insufficient LCA data to examine the effects of feedlots, silvopasture, or rotational grazing. 

Land costs were calculated in ha-years/tonne Carcass Weight [CW], incorporating land used 

to grow feed, and assuming a dressing percentage of 50%93. GHG costs were derived in 

tonnes CO2eq/tonne CW, including enteric CH4 emissions, CH4 and N2O emissions from 

manure, N2O emissions from managed pasture, emissions from supplementary feed 

production (where necessary using values from ref. 86), and embodied GHG emissions from 

N, P and K fertiliser production. There were too few data to include CO2 emissions from 

lime application or farm machinery. Milk production was not a significant co-product. To 

control for site effects we built GLMMs of variation in land and GHG costs using site as a 

random effect and use of improved pasture, supplementary feeding and improved breeds 

(each a binary factor) as predictors. Tolerance values were all >0.8. Adjusted land and GHG 

cost estimates from the final models (Supplementary Table 2) are plotted in Fig. 2e, with 

arrows describing statistically significant management practices.

For comparison we derived an equivalent GHG cost vs land cost plot (Fig. 2f) using a 

process-based model of beef production. RUMINANT29 is an IPCC tier 3 digestion and 

metabolism model which uses stoichiometric equations to estimate production of meat, 

manure N and enteric methane for any given pasture quality, supplementary feed quantity 
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and type, cattle breed, and region. We used plausible combinations of these settings 

(Supplementary Table 3) and corresponding values of feed and forage protein, digestibility 

and carbohydrate content (judged representative of the Brazilian beef sector by MH) to 

derive yield and emissions estimates for 86 contrasting pasture systems. To extend beyond 

the scope of the LCA analyses we also modelled 50 silvopasture systems by boosting feed 

quality to simulate access to Leucaena, and 8 feedlot-finishing systems by incorporating an 

83-120 day feedlot phase when animals received high-quality mixed ration. For each system 

we included the whole herd, after determining the ratio of fattening:breeding animals using 

the DYNMOD demographic projection tool94, based on system-specific reproductive 

performance parameters and animal growth rates (reflecting pasture quality and 

management; Supplementary Table 3). Breeding animals experienced the same conditions as 

fattening animals (except that in pasture and silvopasture they received no supplementary 

feed). Stocking rates were set to sustainable carrying capacity for pasture and silvopasture, 

and 201 animals/ha for feedlots (DB pers. obs.). Yields were converted to land cost in ha-

years/tonne CW, including the area of feedlots and land required to grow feed (using feed 

composition and yield data from refs 43,85). RUMINANT emissions estimates were 

supplemented with estimates of manure CH4, CO2 and N2O emissions from feed production, 

and N2O emissions from pasture fertilisation (from refs 32,85). Carbon sequestration by 

vegetation could not be included, so we probably overestimate net GHG emissions from 

silvopasture95. All emissions were converted to CO2eq units (using conversion factors from 

refs 32,85 and feedlot manure distribution from ref. 96) and expressed in tonnes CO2eq/

tonne CW.

Dairy and four externalities

We also used process-based models to investigate how GHG emissions and N, P and soil 

losses varied with land cost across 5 dairy systems representative of UK practices 

(Supplementary Table 4; Figs. 2g-j). We modelled three conventional systems with animals 

accessing grazing for 270, 180 and 0 days/year, and two organic systems with grazing access 

for 270 and 200 days/year. Model farms were assigned rainfall and soil characteristics based 

on frequency distributions of these parameters for real farms of each type, with structural 

and management data (e.g. ratios of livestock categories and ages, N and P excretion rates) 

based on the models of refs 31,97,98. Manure management was based on representative 

variations of the “manure management continuum”99 (Supplementary Table 4). Physical 

performance data (annual milk yield, concentrate feed input, replacement rate and stocking 

rate) were obtained from the AHDB Dairy database (M. Topliff pers. comm.) for 

conventional systems and from DEFRA100 for organic systems.

Yields were converted to land cost in ha-years/tonne Energy-Corrected Milk (ECM), 

including land required to grow feed (from refs 101,102, with yield penalties for organic 

production from ref. 103). Because 57% of global beef production originates from the dairy 

sector104, we adjusted land costs downwards by multiplying them by the proportional 

contribution of milk to the gross monetary value of production per unit area of farmland 

from milk and beef combined (using prices from the AHDB Dairy database (M. Topliff pers. 

comm.)).
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GHG cost estimates for each system comprised CH4 emissions from enteric fermentation 

(based on ref. 31), CH4 and N2O emissions from manure management (following refs 32 

and 105), emissions from N fertiliser applications to pasture (from refs 106,107), and from 

feed production (from ref. 108). Emissions from farm machinery and buildings were not 

included. Emissions were then summed and expressed in tonnes CO2eq/tonne ECM. Nitrate 

losses of each system were derived from the National Environment Agricultural Pollution–

Nitrate (NEAP-N) model109,110, whilst P and soil losses were estimated using the 

Phosphorus and Sediment Yield CHaracterisation In Catchments (PSYCHIC) model111,98. 

These last three costs were expressed in kg/tonne ECM and (as with land costs) downscaled 

by allocating a portion of them to beef co-products, based on milk and beef prices. Finally, 

to check the effect of this allocation rule we re-ran each analysis instead allocating costs 

using the relative protein content of milk and beef (from ref. 104; Supplementary Fig. 2).

GHG opportunity costs of land farmed

Alongside the GHG emissions generated by agricultural activities themselves (analysed 

above), farming typically carries an additional GHG cost. Wherever the carbon content of 

farmed land is less than that of the natural habitat that could replace it if agriculture ceased, 

farming imposes an opportunity cost of sequestration forgone112, whose magnitude 

increases with the area under production (and hence with the land cost of the system). We 

quantified this GHG cost using the forgone sequestration method, whereby retaining the 

current land use is assumed to prevent the sequestration in soils and biomass that would 

occur if the land was allowed to revert to climax vegetation (see details in Supplementary 

Table 5).

For each forgone transition, values for annual biomass accrual (≤20 years) were taken from 

Table 4.9 of ref. 32, assuming that the climax vegetation for UK wheat and dairy was 

“temperate oceanic forest (Europe)”, for Chinese rice it was “tropical moist deciduous forest 

(Asia, continental)”, and for Brazilian beef it was “tropical moist deciduous forest (South 

America)”. The carbon content of all biomass was assumed to be 47% of dry matter (ref. 32 

Table 4.3).

Changes in soil carbon values were taken from the relevant mean percentage change in soil 

organic carbon values for each land conversion from a global meta-analysis113. For UK 

wheat and Chinese rice we used values for conversion of cropland to woodland; for UK 

dairy and Brazilian beef we used conversion of grassland to woodland for grazing land and 

conversion of cropland to woodland for land used to grow feed. Initial soil carbon values 

were taken from Table 2.3 of ref. 32. We assumed the soils for UK wheat were “cold 

temperate, moist, high activity soils”, for Chinese rice they were “tropical, wet, low activity 

soils”, for UK dairy they were “cold temperate, moist, high activity soils” for grazing land 

and for producing imported feed they were “subtropical humid, LAC soils” (South 

America), and for Brazilian beef for both grazing and feed production they were “tropical, 

moist, low activity soils”. In each case the relevant percentage change in soil organic carbon 

was multiplied by the initial soil carbon stock to calculate an absolute change, which, 

following IPCC guidelines32, we assumed took 20 years.
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Total annual forgone sequestration was then estimated by adding this annual change in soil 

organic carbon and the annual accrual of biomass carbon under reversion to climax 

vegetation. We assumed (as in ref. 34) that each 1ha reduction in land cost results in 1ha of 

recovering habitat. As above, our land cost estimates included land needed to produce 

externally-derived inputs, and (for rotational rice and dairy) were adjusted downwards based 

on the value of co-products. These GHG opportunity costs were then added to the direct 

GHG emissions estimates of each system, and the summed values plotted against land cost 

(Fig. 3).

As a sensitivity test of our key assumptions we re-ran these analyses assuming that carbon 

recovery rates are halved, or that (because of rebound or similar effects38–40) half of the 

area potentially freed from farming is retained under agriculture. These two changes to our 

assumptions have numerically identical effects, shown in Supplementary Fig. 3. Note that 

our recovery-based estimates of the GHG costs that farming imposes through land use are 

conservative, in that they are roughly 30-50% of those obtained from calculating GHG 

emissions from natural habitat clearance (annualised, for consistency with the recovery 

method, over 20 harvests; data not shown).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Framework for exploring how different environmental costs compare across alternative 
production systems.
a, Hypothetical plot of externality cost vs land cost of different, potentially interchangeable 

production systems (blue circles) in a given farming sector. In this example the data suggest 

a trade-off between externality and land costs across different systems. b, This example 

reveals a more complex pattern, with additional systems (in green and red circles) that are 

low or high in both costs.
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Fig. 2. Externality costs of alternative production systems against land cost for five externalities 
in four agricultural sectors.
All costs are expressed per tonne of production (so land cost, for instance, is in ha-years/

tonne– i.e. the inverse of yield). Different externalities are indicated by background shading 

(grey = GHG emissions, blue = water use, pink = N emissions, purple = P emissions, buff = 

soil loss), and different sectors (Asian paddy rice, European wheat, Latin American beef, 

European dairy) are shown by icons. Points on plots derived from multi-site experiments (a, 
b, c) and LCAs (e) show values for systems adjusted for site and study effects via GLMMs 
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of land cost and externality cost (for 95% confidence intervals, see Supplementary Fig. 1), 

while arrows show management practices with statistically-significant effects (whose 95% 

confidence intervals do not overlap zero in the GLMMs; Methods). In d (wheat and N 

emissions), progressively darker circles depict increasing nitrate application rate (0, 48, 96, 

144, 192, 240 and 288 kg N/ha-year). In f (beef and GHG emissions, estimated by 

RUMINANT), different colours show different system types. In g-j (dairy and four 

externalities), circles and squares show results for conventional and organic systems, 

respectively (detailed in Supplementary Table 4). Spearman's rank correlation coefficients 

(p-values) are a. rice-rice: -0.51 (0.002), rice-cereal: -0.36 (0.06), b. 0.19 (0.26), c. -0.34 

(0.14), d. -0.21 (0.66), e. 0.95 (0.001), f. 0.83 (< 0.001), g. 0.90 (0.08), h. 0.70 (0.23), i. 1.00 

(0.02) and j. 1.00 (0.02). Note that these correlation coefficients do not necessarily reflect 

non-linear relationships (e.g., d) accurately.
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Fig. 3. Overall GHG cost against land cost of alternative systems in each sector, including the 
GHG opportunity costs of land under farming.
Y-axis values are the sum of GHG emissions from farming activities (plotted in Figs. 2 a, c, 

e, g) and the forgone sequestration potential of land maintained under farming and thus 

unable to revert to natural vegetation (Methods). All costs are expressed per tonne of 

production. Notation as in Fig. 2. Spearman's rank correlation coefficients (p-values) are a. 
rice-rice: 0.40 (0.017), rice-cereal: 0.80 (< 0.001), b. 0.99 (< 0.001), c. 0.98 (< 0.001) and d. 
0.80 (0.13).
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