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Abstract

Philodendron s.l. (Araceae) has been recently focus of taxonomic and phylogenetic studies,

but karyotypic data are limited to chromosome numbers and a few published genome sizes.

In this work, karyotypes of 34 species of Philodendron s.l. (29 species of Philodendron and

five of Thaumatophyllum), ranging from 2n = 28 to 36 chromosomes, were analyzed by fluo-

rescence in situ hybridization (FISH) with rDNA and telomeric probes, aiming to understand

the evolution of the karyotype diversity of the group. Philodendron presented a high number

variation of 35S rDNA, ranging from two to 16 sites, which were mostly in the terminal region

of the short arms, with nine species presenting heteromorphisms. In the case of Thaumato-

phyllum species, we observed a considerably lower variation, which ranged from two to four

terminal sites. The distribution of the 5S rDNA clusters was more conserved, with two sites

for most species, being preferably located interstitially in the long chromosome arms. For

the telomeric probe, while exclusively terminal sites were observed for P. giganteum (2n =

30) chromosomes, P. callosum (2n = 28) presented an interstitial distribution associated

with satellite DNA. rDNA sites of the analyzed species of Philodendron s.l. species were ran-

domly distributed considering the phylogenetic context, probably due to rapid evolution and

great diversity of these genomes. The observed heteromorphisms suggest the accumula-

tion of repetitive DNA in the genomes of some species and the occurrence of chromosomal

rearrangements along the karyotype evolution of the group.

Introduction

Araceae (ca. 3600 species) is a widely distributed monocot family with high ecological diver-

sity, occurring mainly in tropical regions [1, 2]. Philodendron s.l. is the second largest group

within the family (ca. 500 species), presenting a wide Neotropical distribution, with the Ama-

zon region as its probable center of origin [2–4]. The genus was traditionally divided into
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three monophyletic subgenera: P. subg. Meconostigma (now recognized as the genus Thauma-
tophyllum, with 21 species), mostly with the diploid number 2n = 36; P. subg. Pteromischum
(82 species), with chromosome counts only for two species (both with 2n = 32); and P. subg.

Philodendron (ca. 400 species), as the most morphologically diverse group, with chromosome

number ranging from 2n = 26 to 40 chromosomes, although 2n = 32 and 34 have been

reported as the most common numbers [5–10]. It is suggested that x = 16 is the basic number

for Philodendron s.l. (including Thaumatophyllum) and that the karyotype evolution of the

group has been driven by both ascending and descending dysploidy events, since no poly-

ploidy was reported so far [8, 9].

The ribosomal RNA (rRNA) genes have been physically mapped in the chromosome of

species of several plant groups [11–13], being useful for understanding the general patterns of

karyotype evolution among related species and for cytotaxonomic approaches [14–16]. In Ara-

ceae, studies involving the physical location of 5S and 35S rDNA by FISH (Fluorescent In Situ
Hybridization) are available for just a few species, including 10 species of Typhonium [17] and

17 other species from different groups, such as P. hederaceum (Jacq.) Schott (as P. scandens
Koch & Sello), two species of Anthurium, three species of Spathiphyllum and two species of

Ulearum [18, 19]. Overall, all analyzed species presented only one pair of 5S rDNA sites,

located in the subterminal or interstitial regions, whereas for 35S rDNA there was a predomi-

nance of four terminal sites, with few exceptions.

Thus, based on the chromosome number and genome size variation previously mentioned

for Philodendron and Thaumatophyllum [8, 9, 20], we have addressed the following questions:

(I) Is the distribution of rDNA sites in Philodendron and the sister genus Thaumatophyllum
conserved? (II) Does the distribution pattern of rDNA sites agree with the available phyloge-

netic data? To answer these questions, molecular cytogenetic data were generated for the first

time for 29 Philodendron and five Thaumatophyllum species by FISH with rDNA and telo-

meric probes. In addition, these data were plotted in a recently published phylogenetic tree of

the group [21], aiming to better understand the patterns of karyotype evolution of both

genera.

Materials and methods

Plant material and chromosomal preparations

Thirty-four species were analyzed by FISH. Sixteen species were sampled from the living col-

lection kept at the Royal Botanic Gardens, Kew (Richmond, United Kingdom), and 18 were

collected in different regions of Brazil, as licensed by the Brazilian authorities (ICMBio license

numbers 14311–2 and 31038–4). The collected Brazilian plants are being cultivated in the liv-

ing collection of the Laboratory of Plant Genetics and Biotechnology, Department of Genetics,

UFPE (Recife, Brazil). The provenance of the plants and accession numbers are shown in

Table 1.

Root tips were pretreated in 2 mM 8-hydroxyquinoline at 8˚C for 24 h, fixed in Carnoy

solution (ethanol:acetic acid, 3:1, v/v) at room temperature for 24 h, and stored at -20˚C. Sub-

sequently, the fixed root tips were washed in distilled water and digested in an enzyme solution

containing 2% cellulase (w/v) (Onozuka R-10, Serva) and 20% pectinase (v/v) (Sigma-Aldrich)

overnight at 37˚C. Slides were prepared by squashing the meristematic tissue in 45% acetic

acid. In addition, slides were stained in a solution of 2 μg mL-1 DAPI (4’, 6-diamidino-2-phe-

nylindole) and glycerol (1:1, v/v) and then analyzed. Afterwards, the best slides were de-stained

and fixed in Carnoy solution for 30 min and transferred to absolute ethanol for 1 h, both at

room temperature. After air drying, the slides were stored at -20˚C. At least five root tips were

analyzed per species.
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Table 1. Species of Philodendron and Thaumatophyllum with their respective section and accession, chromosome complement size, chromosome range size, diploid

number and number of rDNA sites.

Genus Section Species Provenance and accession number 2n Number

of

rDNA

sites

35S 5S

Thaumatophyllum T. corcovadense (Kunth) Sakur., Calazans & Mayo Taquaritinga do Norte, Pernambuco, Brazil; Cultivated

at LGBV; SV314

36 4 2

T. lundii (Warm.) Sakur., Calazans & Mayo Morro do Chapéu, Bahia, Brazil; cultivated at LGBV;

SV089

36 2 2

T. mello-barretoanum (Burle-Marx ex G.M. Barroso)

Sakur., Calazans & Mayo

Recife, Pernambuco, Brazil; Cultivated at LGBV;

SV534

34 2 2

T. saxicola (Krause) Sakur., Calazans & Mayo Mucugê, Bahia, Brazil; Cultivated at LGBV; SV539 36 2 2

T. spruceanum Schott Reserva Florestal Adolpho Ducke, Amazonas, Brazil;

Cultivated at LGBV; SV063

32 4 2

Philodendron
subg.

Philodendron

Baursia P. callosum K.Krause Presidente Figueiredo, Amazonas, Brazil;

Cultivated at LGBV; SV022

28 - -

P. glaziovii Hook.f. Pedra Azul, Espı́rito Santo, Brazil;

Cultivated at RBG Kew/ 1983–2011

34 6 2

P. renauxii Reitz Itapema, Santa Catarina, Brazil;

Cultivated at RBG Kew/ 1983–1988

34 8 2

Macrobelium P. annulatum Croat Cerro Jefe, Panamá;

Cultivated at RBG Kew/ 1996–4421

32 2 2

P. barrosoanum G.S.Bunting Reserva Florestal Adolpho Ducke, Amazonas, Brazil;

Cultivated at LGBV; MC107

32 8 2

P. burle-marxii G.M.Barroso Amazonas region, Colombia;

Cultivated at RGB Kew/ 1975–98

34 10 2

P. eximium Schott Taquaritinga do Norte, Pernambuco, Brazil; Cultivated

at LGBV; SV293

32 6 2

P. inconcinnum Schott Cultivated at RBG Kew/ 1981–3728 32 2 2

P. krugii Engl. Trinidad and Tobago; Cultivated at RBG Kew/ 1980–

1645

34 2 2

P. quinquenervium Schott Uatumã, Amazonas, Brazil; Cultivated at LGBV; SV076 32 15 2

P. smithii Engl. Tabasco, Mexico; Cultivated at RBG Kew/ 1980–1583 32 8 2

P. uleanum Engl. Napo, Ecuador; Cultivated at RGB Kew/ 1982–1568 34 12 2

Philodendron P. billietiae Croat Cultivated at RBG Kew/ 2005–2363 32 16 2

P. fragrantissimum (Hook.) G.Don Igarassu, Pernambuco, Brazil; Cultivated at LGBV;

SV295

32 2 2

P. giganteum Schott Oriole trail, Montserrat; Cultivated at RBG Kew/ 2011–

1735

30 10 2

P. hederaceum (Jacq.) Schott Floresta da Tijuca, Rio de Janeiro, Brazil;

Cultivated at LGBV; SV248

32 2 2

P. maximum K.Krause Cultivated at RBG Kew/ 1973–381 34 12 2

P. megalophyllum Schott Uatumã, Amazonas, Brazil; Cultivated at LGBV; SV320 34 12 2

P. melinonii Brongn.ex Regel Reserva Florestal Adolpho Ducke, Amazonas, Brazil;

Cultivated at LGBV; MC085

30 4 2

P. schmidtiae Croat & C.E.Ceron Napo, Ecuador; Cultivated at RBG Kew/ 1982–1573 32 14 2

P. tenue K.Koch & Augustin Costa Rica; Cultivated at RGB Kew/ 1984–612 34 6 2

Polytomium P. distantilobum K.Krause Uatumã, Amazonas, Brazil; Cultivated at LGBV; SV318 32 2 2

P. lacerum (Jacq.) Schott Guiana; Cultivated at RBG Kew/ 1979–3173 32 10 2

Schizophyllum P. bipennifolium Schott INPA, Acre, Brazil; Cultivated at LGBV; SV307 32 8 3

P. nadruzianum Sakur. Floresta da Tijuca, Rio de Janeiro, Brazil;

Cultivated at LGBV; LSBC175

32 2 2

(Continued)
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Probes, fluorescent in situ hybridization and data analysis

The rDNA probes used for FISH were R2, a 6.5 kb fragment containing the 18S-5.8S-25S

rDNA unit from Arabidopsis thaliana (L.) Heynh., and D2, a 400 bp fragment containing two

5S rDNA units from Lotus japonicus (Regel) K.Larsen [22]. Labelling was performed by nick

translation with digoxigenin-11-dUTP (Roche Diagnostics) and biotin-11-dUTP (Roche Diag-

nostics) for 35S and 5S rDNA, respectively. The telomeric probe was amplified by PCR accord-

ing to Ijdo et al. [23], with the primers (TTTAGGG)5 and (CCCTAAA)5 and labeled with

Cy3-dUTP (Jena Bioscience) as described before.

The FISH procedures followed Vasconcelos et al. [24], except for the chromosome denatur-

ing, which occurred separately from the probe in 70% formamide in 2×SSC at 80–85˚C for 7

min, and then dehydrated for 5 min in an alcoholic series (ethanol 70% and 100%) at -20˚C.

The stringency wash was performed in 0.1×SSC at 42˚C. The hybridization mix consisted of

50% (v/v) formamide, 10% (w/v) dextran sulfate, 2×SSC and 2–5 ng/μL of probe. Digoxigenin

and biotin-labeled probes were detected using conjugated anti-digoxigenin rhodamine (Roche),

and Alexa Fluor conjugated streptavidin (Invitrogen), respectively, in 1% (w/v) BSA. Prepara-

tions were counterstained and mounted with 2 μg/mL DAPI in Vector’s Vectashield (1:1; v/v).

Images were captured using a Leica DMLB epifluorescence microscope coupled with a

Leica DFC 340FX camera, using the Leica CW 4000 software. Images were optimized for better

brightness and contrast with Adobe Photoshop CS3 (Adobe Systems Incorporated). The 35S

rDNA was pseudocolored in green, and the 5S rDNA was pseudocolored in red. At least eight

images were analyzed per species.

Also, for a better understanding of the karyotype evolution of the genus, idiograms of the chro-

mosomes carrying rDNA sites of each species were plotted in the phylogenetic tree previously

reported for the group [21]. Thus, chromosome lengths of three metaphases for each species with

similar condensation pattern were measured twice considering both chromatids, totalizing six

measurements per species, using the MicroMeasure v3.3 software [25]. The Adobe Flash CS3 pro-

gram (Adobe Systems Incorporated) was used for the elaboration of the idiograms.

Genomic DNA extraction, sequencing and satellite DNA analysis

Genomic DNA of P. callosum K.Krause was extracted from fresh leaves using the CTAB proto-

col described by Weising et al. [26]. The precipitation of contaminating polysaccharides was

performed according to Michaels et al. [27]. Genomic DNA was sequenced in Illumina MiSeq

Table 1. (Continued)

Genus Section Species Provenance and accession number 2n Number

of

rDNA

sites

35S 5S

P. pedatum (Hook.) Kunth Floresta da Tijuca, Rio de Janeiro, Brazil;

Cultivated at LGBV; MC081

32 4 2

P. quinquelobum K.Krause Urucu, Amazonas, Brazil; Cultivated at LGBV; MC080 32 4 2

Tritomophyllum P. angustilobum Croat & Grayum Heredia, Costa Rica; Cultivated at RBG Kew/ 1996–

4420

34 3 2

P. tripartitum (Jacq.) Schott Chiapas, México; Cultivated at RBG Kew/ 1980–1524 34 6 2

Abbreviations: LGBV: Laboratory of Genetics and Plant Biotechnology, Federal University of Pernambuco (Recife, Brazil); RBG Kew: Royal Botanic Gardens, Kew

(Richmond, United Kingdom).

https://doi.org/10.1371/journal.pone.0207318.t001
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(2 × 250 pb). Clusterization and characterization of the repetitive genome fraction were per-

formed on the Galaxy/RepeatExplorer platform using the Elixir-cerit server. The TAREAN

tool was used to identify satellite DNA sequences (https://repeatexplorer-elixir.cerit-sc.cz)

[28–30]. Cluster sharing similarity to the telomeric motif was manually checked and the con-

tigs were used to reconstruct the monomer.

Results

Chromosome number ranged from 2n = 28 to 36 considering the total of 34 analyzed species

(Table 1): 2n = 28 (P. callosum); 2n = 30 (P. giganteum and P. melinonii), 2n = 32 (T. sprucea-
num and 16 Philodendron species), 2n = 34 (T. mello-barretoanum and 10 Philodendron spe-

cies) and 2n = 36 (T. corcovadense, T. lundii and T. saxicola).

FISH using 35S rDNA probe showed a wide variation in both number and location of sites

along the chromosomes (see Table 1, Figs 1–4). For Philodendron species, P. billietiae (2n = 32,

Fig 1. Fluorescent in situ hybridization of 35S (green) and 5S rDNA (red) on mitotic chromosomes of Philodendron species, counterstained with

DAPI and pseudocolored in gray. (a) Philodendron billietiae; (b) P. quinquenervium; (c) P. maximum; (d) P. uleanum; (e) P. giganteum; (f) P.

distantilobum; (g) P. krugii; (h) P. nadruzianum; (i) P. fragrantissimum. Bar in i represents 5 μm.

https://doi.org/10.1371/journal.pone.0207318.g001
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Fig 1A) showed the highest number of sites (16 sites), followed by P. quinquenervium (2n = 32,

Fig 1B) with 15 sites; P. schmidtiae (2n = 32, Fig 3) with 14 sites; P. maximum (2n = 34, Fig

1C), P. megalophyllum (2n = 34, Fig 3) and P. uleanum (2n = 34, Fig 1D) with 12 sites; and P.

burle-marxii (2n = 34, Fig 4), P. giganteum (2n = 30, Fig 1E) and P. lacerum (2n = 32, Fig 3)

with 10 sites. In the other 19 species (with chromosome numbers ranging from 2n = 30 to 34),

the number of sites varied from two to eight (Table 1, Fig 3). The lowest number of 35S rDNA

sites was observed for seven species: P. annulatum (Fig 3), P. distantilobum (Fig 1F), P. hedera-
ceum (Fig 3), P. inconcinnum (Fig 4), P. krugii (Fig 1G), P. nadruzianum (Fig 1H), and P. fra-
grantissimum (Fig 1I), which presented only two sites. For the five Thaumatophyllum species,

two presented four 35S rDNA sites (T. corcovadense and T. spruceanum, Fig 3), and the other

three had two sites (T. lundii, Fig 2A; T. mello-barretoanum, Fig 2B, and T. saxicola, Fig 3).

In Philodendron, the 35S rDNA sites were predominantly located in the terminal region of

the short arm (21 out of the 29 species, Figs 1–4), although subterminal, interstitial or proximal

Fig 2. Distribution of repetitive sequences in species of Thaumatophyllum and Philodendron species, counterstained with DAPI and pseudocolored

in gray (35S rDNA in green, 5S rDNA in red, and telomeric probe in pink). (a) T. lundii; (b) T. mello-barretoanum; (c) P. angustilobum; (d) P.

bipennifolium; (e) P. glaziovii; (f) P. giganteum; (g) P. callosum. Bar in g represents 5 μm.

https://doi.org/10.1371/journal.pone.0207318.g002
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sites were also observed. In Thaumatophyllum, the 35S rDNA sites were located only in the ter-

minal region, predominantly in the long arm (four out of the five species, Figs 2 and 3). In

addition, we did not observe a clear pattern of distribution of numbers of rDNA sites in the

phylogenetic tree of Philodendron s.l. (Fig 3).

Heteromorphisms of number and distribution of 35S rDNA sites were identified in nine of

the analyzed species. Philodendron angustilobum, for example, presented an odd number of

35S rDNA (three sites), hampering the identification of the homologous chromosomes (Fig

2C). Meanwhile, other species, as P. eximium and P. smithii, showed a chromosome pair bear-

ing a 35S rDNA site in the terminal region of the short arm of one chromosome and in the

proximal region of the short arm of the other one (Figs 3 and 4); P. lacerum and P. megalophyl-
lum, presented sites located on opposite chromosome arms in supposed homologs (Fig 3); and

P. quinquenervium was the only species with two 35S rDNA sites in the same chromosome

(Fig 3).

In turn, for the 5S rDNA, most species showed two sites, except for P. bipennifolium (Fig

2D), which presented three sites. For Philodendron, we observed a high variation in the posi-

tion of the 5S rDNA sites, although being most frequently observed in the interstitial position

of the long arm (in 14 out of 29 analyzed species, Figs 1–4). For Thaumatophyllum, the 5S

rDNA sites were located in the interstitial region predominantly in the long arm (four out of 5

species, Figs 2 and 3).

Both species P. bipennifolium and P. glaziovii stood out due to 5S rDNA heteromorphisms.

The first had three 5S rDNA sites, being two located in the subterminal region of the long arm

and one in the proximal region of the short arm (Fig 2D). In turn, P. glaziovii, had two 5S

Fig 3. Chromosomal patterns for rDNA in 22 Philodendron and five Thaumatophyllum species plotted in a

modified phylogeny based on Vasconcelos et al. [11]. Underlined chromosomes represent single chromosomes with

heteromorphism, for which it was not possible to identify their respective homologs. Each non-underlined

chromosome represents a pair of homologs.

https://doi.org/10.1371/journal.pone.0207318.g003

Fig 4. Chromosomes mapped with 35S (green) and 5S (red) rDNA probes in six species of Philodendron subgenus

Philodendron not included on Vasconcelos et al. [11] phylogeny. Underlined chromosomes represent single

chromosomes with heteromorphism, for which it was not possible to identify their respective homologs. Non-

underlined chromosomes represent the pair of homologues.

https://doi.org/10.1371/journal.pone.0207318.g004
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rDNA clusters, as most of the analyzed species, but the chromosomes bearing those sites were

heteromorphic in size and morphology (Figs 2E and 3).

The telomeric DNA revealed no interstitial telomeric repeat (ITR) in P. giganteum
(2n = 30), which exhibited only terminal marks in both extremities of all chromosomes (Fig

2F). In turn, P. callosum (2n = 28) presented no visible terminal hybridization signals, although

exhibiting large pericentromeric marks in almost all chromosomes (Fig 2G). Analysis of the

repetitive fraction of this species revealed the presence of one satellite DNA related to the telo-

meric repeat. The manual inspection of the contigs that composed the cluster CL228 allowed

the identification of Arabidopsis-like telomeric motifs within the sequence, henceforth called

PcSat1 satellite DNA. In all three monomers, the telomeric repeat was represented in variable

amounts (unit 1 –U1, eight times; U2, 20 times; U3, nine times), making the monomer size

slightly variable (Fig 5).

Discussion

The present work is the first extensive cytogenetic study analyzing the localization of rDNA

sites in chromosomes of Philodendron and Thaumatophyllum species, except for P.

Fig 5. Features of the satellite DNA PcSat1 from Philodendron callosum. (a) Reconstructed monomer using

WebLogo [63]. A cluster of conserved and degenerated plant telomeric motifs is present at the repeat unit and

represents more than half of its full size (box). (b) Layout of cluster 228 obtained from Repeat Explorer output

(Vasconcelos et al. unpublished data) and (c) Dotplot graph showing the internal organization of the sequence.

https://doi.org/10.1371/journal.pone.0207318.g005
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hederaceum [18]. Chromosome numbers are all in accordance with previously published data

[9]. The results revealed an enormous karyotypic variability in relation to the distribution of

the 35S rDNA in Philodendron s.l., opposed to a high stability in number and position of the

5S rDNA sites. These results are in consonance with the distribution pattern of rDNA sites in

angiosperms and confirm the lower dispersion capacity of 5S rDNA proposed by Roa and

Guerra [11, 12]. The presence of only one chromosome pair bearing 5S rDNA as found here

seems to be conserved for the Araceae family (51 out of 54 analyzed species), even though only

12 out of 144 genera were analyzed up to date [17, 19].

Considering P. subg. Philodendron (with ca. 7,25% of its species analyzed), the amplification

and distribution of 35S rDNA sites seem to occur frequently and independently along the dif-

ferent subgroups. The number of 35S rDNA sites (ranging from two to 16) varied significantly

within and among the clades of the subg. Philodendron, with no clear phylogenetic pattern,

considering the relationships presented by Vasconcelos et al. [21]. Also, there was not any cor-

respondence of our data to the traditional subdivision of the subgenus in morphological

sections.

Thaumatophyllum had fewer species analyzed, but better represented, with ca. 23.8% of the

species of the genus. It showed a smaller variation in the number of rDNA sites (two to four

sites), indicating a higher homogeneity among karyotypes. A similar homogeneity was

observed in Typhonium (four 35S rDNA sites in eight out of 10 analyzed species), the aroid

genus better studied cytogenetically so far [17].

In the present study, two of the 29 Philodendron species analyzed showed an odd number

of rDNA sites, whereas for other 11 species, we observed heteromorphisms in site position or

in the morphology of the chromosome bearing the rDNA. Similar polymorphisms have been

previously described in Araceae and in other angiosperm families [19, 31, 32]. Considering

that the rDNA sites are considered fragile, recombination hotspots may occur due to the

highly repetitive nature of the locus, resulting in breaks followed by chromosomal rearrange-

ments [33–35]. This could explain the interstitial position found for the 35S rDNA in some of

our analyzed species, which is relatively uncommon in plant chromosomes [12]. Several

hypotheses have been proposed for such polymorphisms, including the model of amplifica-

tion, dispersion and deletion, the action of transposable elements, as well as non-homologous

recombination, mainly related to the preferential terminal positions of the 35S rDNA sites on

the chromosomes [34, 36–40]. The expansions and contractions of the repetitive DNA have

frequently been associated to changes in the chromosome morphology, also resulting in

changes in the position of rDNA sites [41], without necessarily changing the gene order [42].

Additionally, the diversity in the distribution of rDNA sites and the polymorphisms

observed in Philodendron could be related to natural hybridizations that may have occurred

throughout the evolutionary history of the group, although none of the analyzed species has a

recognized hybrid origin. In Citrus L. (Rutaceae) and related genera, heteromorphism of chro-

mosomal types is considered to be a reliable indicator of interspecific crosses, where variation

in the number and location of CMA positive bands and rDNA sites is related to the fact that

most species are apomictic hybrids [16, 31, 43–45]. Rapid changes in 35S rDNA loci in

response to interspecific or intergeneric hybridization, when comparing to the progenitors,

have also been reported in Potamogeton L. (Potamogetonaceae) [46], Rosa L. (Rosaceae) [47]

and Lolium L. × Festuca L. [48, 49] hybrids.

Aiming to test the hypothesis of the existence of descending dysploidy events in Philoden-
dron species generating lower chromosome numbers (2n = 28; 30) associated with centric or

end-to-end fusion [19, 50, 51], we applied telomeric DNA probes to verify the possible presence

of ITRs. Such internal telomeres were observed in dysploid series in Nothoscordum Kunth and

Ipheion Raf., both belonging to the family Amaryllidaceae [52], as well as in Typhonium [17,
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19]. However, the expected ITRs were not visible in P. giganteum (2n = 30), thus suggesting that

the remnants of ITRs were lost along the karyotype evolution of this species by losing the chro-

mosome extremities in translocation events, or by elimination or dispersion after insertion, as a

result of high recombination rates in these regions, as suggested for Phaseolus leptostachyus
Benth. [53]. Another plausible hypothesis would be that the ITRs are present in short arrays not

detectable by FISH, as reported for tomato and for the bat Carollia perspicillata L. [54, 55].

In addition, FISH with the telomeric probe in P. callosum revealed several pericentromeric

blocks related to a satellite DNA sequence. Telomeric repeats within satellite DNA arrays are

not uncommon, being also reported in Rumex induratus Boiss & Reuter (Polygonaceae), Jatro-
pha curcas L. (Euphorbiaceae), and in Solanum lycopersicum L. (tomato), S. tuberosum L.

(potato) and S. melongena L. (eggplant) (Solanaceae) [54, 56–58]. AT-rich degenerated telo-

meric repeats were identified in the repeat St49 of Solanum L. species, indicated as an ancient

sat-DNA derived from a telomeric-like sequence identified in the telomeres and centromeres

of tomato and potato chromosomes, respectively [54, 58].

On the other hand, the absence of signals at chromosome termini of P. callosum may be

due to the presence of small standard telomere arrays (TTTAGGG)n not detected by FISH.

However, the occurrence of a different telomere sequence in P. callosum chromosomes cannot

be dismissed, as already described for several plant species [59–61]. This last scenario would

imply in an interspecific variation within Philodendron, which was already reported for species

of Genlisea A.St.-Hil. (Lentibulariaceae), a genus of carnivorous plants with a high variation

level in the genome structures among species [59, 62].

Conclusions

Our data revealed a substantial variation in the number and location of the 35S rDNA sites in

Philodendron indicating a rapid karyotype evolution within P. subg. Philodendron. More

homogeneous karyotypes were observed in species of the sister genus Thaumatophyllum. Vari-

ation was more prominent because no clear trend regarding the 35S rDNA sites was evident,

neither considering the traditional infrageneric taxonomy nor considering the most recent

molecular phylogenetic data. Also, the identification of heteromorphisms in the number and

position of 35S rDNA sites suggests the occurrence of expansions and/or contractions of repet-

itive DNA in the genomes of some species, or chromosomal rearrangements, possibly associ-

ated with natural hybridization events. Furthermore, a better understanding of the importance

of the repetitive DNA during the karyotypic evolution of Philodendron s.l. will be allowed by

future analyses considering the evolution of chromosome numbers and genome sizes in a phy-

logenetic framework, besides a characterization of the composition of the repetitive DNA

among species of the group, which are currently in development.
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