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Abstract

Observing others’ actions desynchronizes electroencephalographic (EEG) rhythms and

modulates corticospinal excitability as assessed by transcranial magnetic stimulation

(TMS). However, it remains unclear if these measures reflect similar neurofunctional mech-

anisms at the individual level. In the present study, a within-subject experiment was

designed to assess these two neurophysiological indexes and to quantify their mutual corre-

lation. Participants observed reach-to-grasp actions directed towards a small (precision

grip) or a large object (power grip). We focused on two specific time points for both EEG and

TMS. The first time point (t1) coincided with the maximum hand aperture, i.e. the moment at

which a significant modulation of corticospinal excitability is expected. The second (t2), coin-

cided with the EEG resynchronization occurring at the end of the action, i.e. the moment at

which a hypothetic minimum for action observation effect is expected. Results showed a Mu

rhythm bilateral desynchronization at t1 with differential resynchronization at t2 in the two

hemispheres. Beta rhythm was more desynchronized in the left hemisphere at both time

points. These EEG differences, however, were not influenced by grip type. Conversely,

motor potentials evoked by TMS in an intrinsic hand muscle revealed an interaction effect of

grip and time. No significant correlations between Mu/Beta rhythms and motor evoked

potentials were found. These findings are discussed considering the spatial and temporal

resolution of the two investigated techniques and argue over two alternative explanations: i.

each technique provides different measures of the same process or ii. they describe com-

plementary features of the action observation network in humans.
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Introduction

Action understanding is a fundamental skill [1] for which sensorimotor brain activities may

provide critical support (for a review see [2]). During action observation the activation of sen-

sory and motor circuits necessary to execute the same action may provide an anticipatory

mechanism to constrain sensory processing [3].

Human neurophysiological research in this area has benefited from the use of two comple-

mentary techniques, transcranial magnetic stimulation (TMS) and electroencephalography

(EEG). The amplitude of motor evoked potentials (MEPs), elicited by single pulse TMS over

the primary motor cortex, provides a direct index of corticospinal recruitment. During action

observation MEPs are modulated in accordance to the expected changes during action execu-

tion [4] (for a review please see [5, 6, 7]). In parallel, EEG research has shown that event-

related synchronization (ERS) and desynchronization (ERD) of the sensorimotor alpha band,

named as Mu rhythm, is associated with action performance, imagery and observation [8, 9,

10] (for a review see [11]). Therefore, modulation of both the central Mu ERD [12, 13] and of

corticospinal excitability [14, 15] during action observation may reflect activity of a mirror-

like system present in humans [16, 17].

Although both measures have been well documented during action observation and execu-

tion, only one study attempted to establish a correlation between the two of them [15]. Lepage

and colleagues (2008) found no correlation between MEPs amplitude and Mu power recorded

during rest, observation, execution and imagery of a ball squeezing action. Instead, they found

a correlation between MEPs and Beta rhythm during rest and action execution conditions.

Lepage and colleagues analyzed the EEG rhythms as a steady oscillatory pattern during two

cycles of the squeezing action, within a 2 seconds window. Furthermore, TMS was delivered

randomly within a one second window [15]. These experimental features could have intro-

duced some uncertainty in the measurement of both indexes. In fact, the TMS study did not

exploit the accurate temporal resolution granted by this technique. At the same time, the EEG

analyses did not consider that neural oscillatory effects could be modulated for the observation

of different phases of an ongoing action. Indeed, Mu and Beta power might be modulated dif-

ferently across different phases of an ongoing action. Specifically, desynchronization starts

very soon, peaks during movement to later rebound after the end of the action (i.e., ERS) [18].

At the same time, corticospinal excitability is differentially modulated during the different

phases of hand opening and closing observation [14, 19], while it is also influenced by the

ongoing alpha and beta power [20, 21]. As a consequence, to fully evaluate the relationship

between Mu/Beta ERD and corticospinal excitability, the two measures need to be time-locked

to specific kinematic landmarks of the observed actions.

Herein we designed a classical reach-to-grasp action observation task directed towards a

small and a large object, thus requiring a precision or a power grip, respectively. We collected

EEG and MEPs from the First Dorsal Interosseous muscle, in the same subjects in two separate

sessions. Our main goal was to evaluate corticospinal excitability and Mu or Beta rhythms

modulation at different critical time points during the action and then correlate these mea-

sures. The first time point was aligned with maximum hand aperture (t1), when maximal corti-

cospinal modulation has been previously reported [14]. The second time point was aligned to

the end of the action where we observed in our data, at the group level, that the Mu rhythm

resynchronizes (t2). Transitive actions (object-directed) were chosen due to previous studies

suggesting greater modulatory effects on both Mu rhythm [18, 22] and corticospinal excitabil-

ity [23]. Our prediction is that the two measures bear no relationship with each other mostly

due the inherent temporal and spatial sensitivity differences between them.
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Methods

Participants

Eighteen right-handed subjects (11 female; mean age = 27.22, SD = 4.32, age range: 22–39

years old) were included in the study after verifying compliance with inclusion criteria for the

safe use of TMS [24]. They had normal or corrected-to-normal visual acuity, and were naive to

the purposes of the study. The study was conducted according to the standards of the Declara-

tion of Helsinki (World Medical Organization, 1996) and was approved by the local ethics

committee (protocol 32/08 del 2/10/2008 –Azienda Sanitaria Locale (ASL) 3 Genova). Partici-

pants gave their written informed consent prior to performing the experiment and were remu-

nerated for their participation.

Estimation for sample size was run with G�Power (V. 3.1.9.3), based on data from the 12

subjects collected by Lepage and colleagues [15]. The non-significant correlation between

MEPs size and mu power (8-13Hz), during action observation (-0.186) was set as ρH0 and the

correlation value observed in the action execution condition (exploratory analyses; -0.75) was

set as ρH1. The power analyses showed that to demonstrate a significant correlation between

TMS and EEG indexes of action observation effects, which are as evident as those shown dur-

ing action execution in Lepage and colleagues [15], the needed sample size is of at least 15 par-

ticipants (two tails; alpha = 0.05; beta = 0.2).

Stimuli

We recorded goal-directed action video stimuli performed with the right hand, lasting approx-

imately 2100ms, divided in two categories: precision grip and power grip. Both videos started

with the presentation for 600ms of a still image depicting the lateral view of an upper limb rest-

ing on one side of a black table and two white spheres (2 cm and 10 cm in diameter, the to-be-

grasped objects) positioned on the opposite side of the table. After the first 600ms, participants

were presented with a reaching-grasping-lifting action directed towards one of the two objects.

Thus, the two videos differed according to the goal of the action (precision grip or power grip).

In order to introduce some variability across the stimuli we used four different actors (2 males

and 2 females). During video recording, actors’ kinematics was acquired by a 9-cameras Vicon
system (Vicon Motion Systems, Oxford, UK). Kinematic recordings were done at 100 Hz, with

markers attached to the ulnar styloid, pinkie knuckle, index knuckle, thumb nail, index finger

nail, 3rd finger nail, 4th finger nail, 5th finger nail, 5th finger knuckle). Kinematic data was ana-

lyzed using Matlab (The MathWorks Inc., Natick, MA, USA). We selected a total of 8 videos,

four of precision grips and four of power grips, in which the peak of transport velocity and the

maximum hand aperture overlapped between actors as much as possible. Maximum hand

aperture occurred approximately 1500ms after video onset.

TMS

TMS stimulation was delivered through a figure-of-eight coil (70 mm) connected to a Magstim

200 stimulator (Magstim Co., Whitland, UK). EMG was recorded from the right First Dorsal

Interosseous (FDI), using a standard tendon-belly montage with Ag/AgCl electrodes. Data was

amplified via wireless electromyography (ZeroWire EMG, Aurion), band-pass filtered (50–1000

Hz), and digitized at 2000 Hz by an analog-to-digital acquisition board (CED Power1401, Cam-

bridge Electronics, UK; Signal software version 4). A pre-stimulus recording of 200 ms was

used to check for the presence of EMG activity before TMS pulse. TMS coil positioning over the

left primary motor cortex was optimized to induce the largest responses at the lowest intensity,

with the handle pointing backwards, 45˚ from the midline. Coil position was kept constant
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through a coil holder, whereas the head was stabilized using a 3-points arc-shaped holder. Rest-

ing Motor Threshold (rMT) was defined as the lowest stimulation intensity capable of evoking

MEPs of at least 50μV, 5 times out of 10 (24). Participants’ right hand was kept on a pillow in

relaxed prone position. During the experiment, single pulse TMS was applied over the identified

hotspot, with an intensity of 120% of the rMT. TMS was triggered by the PC parallel port con-

trolled by E-prime 2.0 software (E-prime, http://www.pstnet.com/eprime.cfm).

EEG

The EEG data was recorded by means of a 32 Ag/AgCl active electrodes cap (ActiCap, Brain

products, München, Germany) placed over the scalp according to the international 10–20 sys-

tem. Data was amplified using Brain Amp MR plus (Brain Products, München, Germany) and

acquired via the Brain Vision Recorder software (Brain Products, München, Germany) at a

500Hz sampling rate, in continuous mode. EEG signal markers for the onset of video were

sent through the parallel port controlled by E-prime 2.0 (E-prime, http://www.pstnet.com/

eprime.cfm). Electrode impedance was kept below 5KΩ throughout the experiment. Two elec-

trodes, placed at the outer canthi of each eye, recorded horizontal eye movements (EOG). All

data was stored for offline analyses.

Procedure

Upon arrival, all participants were informed about the procedure and provided written

informed consent. The two tasks were performed according to a fixed order (EEG first and

TMS after one month). The EEG protocol was conducted before TMS as we intended to use

the EEG results to guide the choice of the TMS pulse timing (t2). All participants completed

both experiments. After the initial preparation (EEG cap montage or TMS hot-spot localiza-

tion and motor threshold assessment), participants started the appropriate task. They sat on a

comfortable chair at a distance approximately of 58 cm from a 17” LCD computer monitor

(1024 × 768 pixels; refresh rate: 60 Hz). Both tasks were controlled using E-prime scripts.

EEG experiment. The task comprised 64 trials (32 trials of precision grip and 32 trials of

power grip). Trials were presented divided in 4 experimental blocks, to check electrodes

impedance between blocks. Each trial started with a central black fixation cross over a grey

background (500ms) followed by the video presentation. As soon as the video ended, a black

screen was presented for 2000ms. This interval was defined considering the Mu and Beta

rhythms rebound effect (i.e., resynchronization) that takes at least 1000ms to return to base-

line. In addition, in 12 occasions, randomly included among trials, subjects had to report if the

last observed video was the repetition of the previous one. Participant had to respond as soon

and as accurately as possible within 1000 ms, by pressing a key with their left hand. Whenever

an attentional question was presented it was also followed by additional 2000ms of black

screen before the next video presentation. EEG was recorded during the whole experiment.

The total duration of the procedure, including preparation, was approximately 30min.

TMS experiment. The task comprised 40 experimental trials and 40 catch trials (without

TMS), for a total of 80 trials. Catch trials were included to control the effects of adaptation and

to prevent subjects’ prediction of TMS timing. Trials were intermingled by 5 checks of the coil

position. In experimental trials, TMS was delivered randomly in one of the two pre-established

time points; specifically, 1500ms (t1) and 1900ms (t2) after action onset. The first time point

(t1) corresponded to maximum hand aperture/reaching velocity, whereas t2 corresponded to

the end of object lifting. In order to determine t2, we visually inspected the modulation of the

Mu band, at the group level, acquired in the EEG experiment, looking for a time-window of

synchronization during the presentation of the two action video types (please see Fig 1). Each

Motor system recruitment during action observation
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trial started with a central black fixation cross over a grey background (500ms) followed by the

video presentation. After the end of the video, a black screen was presented for 3000ms.

Twelve attentional questions were randomly included among trials (see above). Due to TMS

safety issues and to resume basal corticospinal excitability a minimum of 10s intervals between

TMS pulses was established. The total duration of the TMS procedure, including preparation,

was approximately 35 min.

Analyses

EEG analyses. EEG data was pre-processed using the EEGLab toolbox (http://sccn.ucsd.

edu/eeglab/) in the MatLab software environment. Data pre-processing was performed as fol-

lows: a) 0.1 Hz High-pass, 100 Hz Low-pass and a Notch filter; b) artefact removal through

visual inspection by Independent Component Analysis (ICA) considering time, topographic

and spectral distribution of the components; c) re-reference of scalp potentials using the aver-

age of all connected electrodes; d) data segmentation in epochs of -400ms before and 4400 ms

after the beginning of each video.

After pre-processing, the spectral representations of precision and power grasp trials were

computed. For this purpose, a Morlet transformation was applied to each trial using 7 cycles to

analyze oscillatory activity in the range of 1–30 Hz using 1 Hz step [25]. The spectral represen-

tation of the data in the electrodes of interest (i.e., C3) was used to select the most reactive fre-

quency range of Mu and Beta bands in our sample (Fig A in S1 File). The most reactive

frequency range for the Mu band was determined as 8–12 Hz and for the Beta band as 15–23

Hz. Next, we plotted the Mu power throughout the trial window to verify peaks of ERD and/or

ERS and guide the choice of timing (t2).

For the EEG analyses two time-bins were considered. The first one (t1) from 1400 to

1600ms, represent a 200ms window centered on maximum hand aperture and arm peak veloc-

ity at 1500ms. The second one (t2) from 1800 to 2000ms, corresponding to an ERS peak repre-

senting the moment when the grasping action was concluded and the object was lifted (Fig 1).

Fig 1. Time course of Mu and beta EEG rhythms. The graph shows the spectral perturbation of Mu (8–12 Hz) and

beta (15–23 Hz) bands recorded in the left hemisphere (C3). The ‘X’ axis represent the time in milliseconds; whereas

T1 (1500ms) and T2 (1900ms), represent the instants of TMS pulses and grey rectangles highlight the correspondent

time-bin of EEG analyses. The ‘Y’ axis represents the log transformed ratio of the power at each time point relative to

the average power of the respective condition. At the top of the figure we illustrate in a few frames the action presented

in the video clips.

https://doi.org/10.1371/journal.pone.0207476.g001
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Importantly, 200ms bins is a duration previously used and shown sensitive to oscillations of

alpha and beta activity [18].

The power change, defined as Event-Related Spectral Perturbation (ERSP) in the time-bins

of interest, was computed based on the logarithmic ratio of the power within bins of interest

(t1 or t2) with respect to the power of the whole trial (as a baseline) of the respective condition

(precision or power grip). We extracted the resulting values of t1 and t2 for power and preci-

sion grip in C3 and C4 electrodes to compute statistical analyses. We performed 2 separate

2x2x2 repeated measures ANOVAs, with Mu and Beta power as dependent variables. The fac-

tors were Time (t1 vs t2), Condition (precision vs power) and Electrode (C3 vs C4). Newman–

Keuls corrected post-hoc tests were conducted to further explore significant data.

TMS analyses. First, we eliminated trials containing EMG activity before TMS (time win-

dow -200 to 0ms) and outlier data points above and below 2SD from the mean (on average we

eliminated 3.5, SD = 3 trials per subject, 8.7%). MEPs were z-score transformed at the single

subject level, then we averaged values for each time point and condition. We then performed a

2x2 repeated measures ANOVA with MEPS amplitude as dependent variable and factors Time

(t1, t2) and Condition (precision, power). Newman–Keuls corrected post-hoc tests (p<0.05)

were used to further explore significant factors and interactions.

Correlational analyses. Lastly, we performed Pearson Correlation analyses between the

normalized MEPs value and Mu or Beta ERSP during each condition (precision, power) and

times of interest (t1, t2). Because TMS was delivered to the left hemisphere, Mu and Beta

power recorded from the electrode C3 were used for the correlation analyses.

Finally, considering that ongoing EEG oscillatory dynamics may modulate upcoming

MEPs size [20; 21], we ran a further correlation analyses by considering additional time-win-

dows preceding and following the TMS at t1 (1300-1500ms and 1500-1700ms) and t2 (1700-

1900ms and 1900-2100ms). This analysis was employed to verify whether effects evidenced by

the two techniques suffered from a relative temporal lag.

Results

EEG

The ANOVA on Mu rhythm revealed a main effect of Time (F1,17 = 8.75, p< 0.01, ηp
2 = .34)

and no significant main effect of Electrode (F1,17 = 1.15, p = 0.31, ηp
2 = .06) or Condition

(F1,17 = 0.28, p = 0.6, ηp
2 = 0.02). Concerning interactions, there was only a trend for the inter-

action Electrode�Time (F1,17 = 3.69, p = 0.07, ηp
2 = .18). Mean values and standard error for

Mu and Beta rhythms are provided in Table 1. As can be seen in Fig 2A, we found an ERD dur-

ing the first time-bin, followed by a relative resynchronization at the second time-bin. Qualita-

tively speaking, the non-significant interaction trend suggests that the synchronization at t2

was more prominent in C4 electrode.

Table 1. Means and standard error of mean (SE) of Mu and beta ERSP for each condition (precision grip vs power grip) and time bin (t1 vs t2).

C3 C4

mu Beta mu beta

mean SE Mean SE mean SE mean SE

Precision t1 -0.610 0.193 -1.031 0.242 -0.672 0.246 -0.808 0.260

t2 -0.351 0.196 -1.219 0.302 -0.123 0.201 -0.661 0.264

Power t1 -0.622 0.241 -1.075 0.249 -0.556 0.206 -0.687 0.250

t2 -0.295 0.206 -0.964 0.211 -0.051 0.248 -0.417 0.226

https://doi.org/10.1371/journal.pone.0207476.t001
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The ANOVA on Beta rhythm revealed a main effect of Electrode (F1,17 = 12.79, p = 0.002,

ηp
2 = 0.43), no significant main effect of Time (F1,17 = 0.45, p = 0.51, ηp

2 = 0.03), or Condition

(F1,17 = 1.98, p = 0.18, ηp
2 = 0.10) nor interaction effects. As can be seen in Fig 2B, irrespective

of time, there was a higher Beta band desynchronization in C3 when compared to C4.

In acknowledgement of the difficulty to choose an ideal baseline [26], we have also per-

formed EEG analysis using the 200ms of static hand presentation as baseline. Specifically, the

time window from 150–350 ms of the video. This analysis, for Beta rhythm, resulted in no sig-

nificant main effects and no interaction effects. For the Mu rhythm, analysis using static hand

as baseline resulted in the same effects as using whole trial as baseline. Namely, main effect of

time (p = 0.009) and a trend for the interaction electrode�time (p = 0.071). As baseline condi-

tions have been argued to arise potential confound [26] hereafter we will refer only to the data

normalized using the whole trial as baseline. In principle, this choice is more conservative as it

is supposed to let emerge only transient and large power modulations.

TMS results

The ANOVA performed on MEPs revealed a significant interaction Condition�Time (F1,17 =

4.77, p = 0.04 ηp
2 = 0.22). The factors Condition (F1,17 = 2.63, p = 0.12, ηp

2 = 0.13) and Time

(F1,17 = 2.56, p = 0.13, ηp
2 = 0.13) did not show any significance. As shown in Fig 3 and con-

firmed by post-hoc analysis, observation of precision grip yielded larger MEPs at t1 when

Fig 2. Mu and beta ERSP results. Panel A represents data for Mu, while Panel B shows the Beta ERSP. Bars indicate confidence interval (95%), (�) indicate

significant differences with p<0.05 and (•) a trend p<0.1.

https://doi.org/10.1371/journal.pone.0207476.g002
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compared to t2 (p = 0.04) and also when compared to power grip at t1 (p = 0.03) and t2

(p = 0.01) (see Table 2).

EEG-TMS correlation analyses

First analysis showed no correlations between Mu or Beta rhythms and MEPs amplitude.

Finally, correlations between the two additional time-windows preceding and following the

TMS pulses also showed no significant effects (see Table 3).

Discussion

Action observation has shown to activate the same neural network involved in action execu-

tion. This evidence has been derived from neurophysiological techniques allowing very differ-

ent spatial and/or temporal specificity.

Fig 3. Corticospinal excitability results. Normalized MEPs amplitudes for each condition (Precision vs Power grip)

in time points 1 (maximum hand aperture) and 2 (movement end). Bars represent confidence interval (95%). Asterisks

indicate significant comparisons (p<0.05).

https://doi.org/10.1371/journal.pone.0207476.g003

Table 2. Means and standard errors of normalized MEPs amplitude for each condition (precision grip vs power

grip) and time (t1 vs t2).

Mean SE

Precision t1 0.215 0.05

t2 -0.076 0.06

Power t1 -0.066 0.09

t2 -0.054 0.06

https://doi.org/10.1371/journal.pone.0207476.t002
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EEG

In agreement with Coll and coworkers [27], we showed that the Mu rhythm was not modu-

lated by the observed grasp-type. Considering that power modulations of EEG rhythmic activi-

ties inform about the global activity of huge neural population, previous studies showed

dissociable activities only for different effectors (i.e. leg vs. arm [27, 28, 29]). However, in line

with Avanzini et al. [18] we found that Mu modulation depends on the phase of the observed

action, i.e. in our experiment there was a greater ERD during observation of maximum hand

aperture.

Differently, the Beta rhythm showed no significant differences between time and grasp-

type. This is in line with the idea that each frequency band likely reflects different aspects of

action observation and execution processing [16]. Specifically, Beta band modulations is

related to motor functions such as sustained muscle contraction or voluntary movement,

being thus linked to motor control of the ongoing action [30]. In contrast, modulations of the

Mu band reflect somatosensory processes associated with action observation [27] and motor

learning through observation [31].

In our study, Mu rhythm rebounds bilaterally at the end of the movement with a trend for a

higher ipsilateral re-synchronization (at C4). It has been proposed that contralateral (e.g., [32,

33, 34]) or bilateral (e.g., [35, 36]) rhythmic modulations vary according to the experimental

task [37]. A previous study testing neuromodulatory effects over the Mu rhythm during right

Table 3. Pearson correlation for corrected Mu or beta rhythm and MEPs. Table show r and p values for Precision

and Whole grasp conditions in times 1 and 2 (Fig B in S1 File) and also for the time-windows preceding and following

the TMS at t1 (1300-1500ms and 1500-1700ms) and at t2 (1700-1900ms and 1900-2100ms).

r p

Mu Rhythm Precision t1 0.291 0.227

t2 -0.119 0.627

1300-1500ms 0.907 0.720

1500-1700ms 0.033 0.897

1700-1900ms -0.007 .977

1900–2100 ms -0.065 0.799

Power t1 -0.103 0.674

t2 0.03 0.904

1300-1500ms -0.334 0.176

1500-1700ms -0.117 0.643

1700-1900ms -0.058 0.820

1900–2100 ms 0.134 0.595

Beta Rhythm Precision t1 0.148 0.557

t2 -0.068 0.789

1300-1500ms 0.051 0.840

1500-1700ms 0.137 0.586

1700-1900ms -0.096 0.705

1900–2100 ms -0.247 0.324

Power t1 0.124 0.657

t2 -0.114 0.653

1300-1500ms 0.074 0.772

1500-1700ms 0.235 0.355

1700-1900ms -0.356 0.147

1900–2100 ms 0.398 0.102

https://doi.org/10.1371/journal.pone.0207476.t003
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hand action observation demonstrated that anodal stimulation over C3 led to synchronization

and desynchronization measured at C3 and C4, respectively, such findings are discussed con-

sidering that the ipsilateral hemisphere is recruited when the contralateral motor area cannot

process the information [32]. Accordingly, additional recruitment of the ipsilateral hemisphere

in unimanual tasks has been related to task complexity during motor execution [38]. However,

such studies did not compare inter-hemispheric Mu oscillations over the time course of an

observed action.

Altogether, our findings suggest that initial action phases may recruit bilateral motor areas

to provide greater effectiveness in extracting movement features. We speculate that after the

action has been decoded, the additional ipsilateral hemisphere activation might no longer be

necessary, thus leading to a greater rebound. In any case, our task consisted in monitoring the

unfolding of a relatively simple action and indeed results are aligned with previous findings

accounting task complexity as a major factor in determining the degree of inter-hemispheric

cooperation [39]. Regarding the Beta rhythm, ERD effects were more prominent over the left

hemisphere. Similar hemispheric differences have been recently demonstrated in an elegant

study where participants watched tennis movements and were requested to predict the tennis

ball direction [33]. This lateralized desynchronization pattern was associated with a higher

accuracy in the behavioral task, suggesting a correlation with goal prediction. The lack of time-

dependent Beta modulation in our study reinforces previous interpretations about the inde-

pendence of Mu and Beta rhythms (for a review see [40]).

TMS

As expected, corticospinal excitability during action observation differentiates between preci-

sion and power grips when tested in correspondence of the maximum hand aperture; showing

significantly larger FDI muscle MEPs during precision grip. Different motor neural popula-

tions are recruited depending on grip type, and such differences can be evidenced by MEPs

size [41, 7]. Precision grip requires more accuracy in finger positioning and consequently

greater control on muscle activity during execution [42]. Moreover, as shown by cortical stim-

ulation and recording experiments performed on monkeys [43, 44] and humans [45], preci-

sion grip has a larger cortical representation than power grip. Concerning the action phase,

results match previous reports [14, 41]. Larger corticospinal modulations during mid-phases

of the action indicate that one important function of this system could be to predict action out-

comes [46]. In general, our results are in line with previous studies suggesting that corticosp-

inal excitability modulation can probe the activity of the action observation network with high

temporal (i.e. movement phase) and spatial (i.e. grip type configuration) accuracy [5, 6].

Correlation between EEG and TMS data

When comparing TMS and EEG results, we found no correlation between MEPs amplitudes

with Mu or Beta power. This result agrees with a previous report [15] although with important

differences. While in the above mentioned study the observed action consisted in the cyclic

squeezing of a ball, here we implemented a reaching-grasping action towards objects of differ-

ent sizes, both present on a table. Therefore, the goal is not specified since the beginning, but it

gradually emerges while the action unfolds. This fact potentially engages the mirror system

and its possible role in prediction [18, 46]. More importantly, we also anchored the time win-

dows of exploration to two critical functional landmarks. The first was based on the actors’

motion kinematics corresponding to maximal action observation effects [14, 41]. The second

was aligned to the synchronization of EEG activity after the first time point. Therefore, our

design allowed us to correlate the effects observed at two functionally different time points,
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across techniques. This analysis showed no significant correlations between the two measures.

No correlation was observed even when we considered EEG windows preceding and following

t1 and t2.

In general, the lack of a clear and statistically reliable correlation pattern suggests that EEG

and TMS measures of action observation effects have at least a foggy relationship at the single

subject level. Therefore, the question is whether the lack of consistent correlations is due to the

inherent differences in resolution of the two techniques or because they target different aspects

of the same mechanism which are at best loosely related.

The different spatio-temporal resolution of each method may be the first obvious reason for

the lack of correlation. TMS measures temporally resolved muscle-level corticospinal excitabil-

ity while ERSPs report cortical network-wide slow oscillations with smaller temporal and spa-

tial resolution. Furthermore, there is also a spinal contribution to the modulation of MEPs

amplitudes [47], which is fundamentally reduced in EEG recordings. A recent meta-analysis

reported Mu rhythm suppression over central areas during overt action execution, while

action observation modulates Mu oscillations also at more frontal and parietal areas [17]. This

may suggest that during action observation Mu modulation reflects system–wide slow cortical

modulations that may not correlate with the temporally fine-grained description allowed by

corticospinal excitability modulations.

Importantly, some limitations of our study should be accounted. Firstly, participants under-

took the experiments in fixed order, first EEG and then TMS. As expertise [48] and learning of

a novel action [49] have been demonstrated to respectively modulate MEPs and EEG rhythmic

activity, it is arguable that a fixed experimental order could introduce a potential confound.

Although the present actions are very familiar (reach to grasp an object) and the two sessions

were separated by one month interval, we acknowledge that it is not possible to completely

exclude a learning effect. A second limitation is that we did not select individual Mu rhythm

range (e.g., [31]). Instead we selected the Mu range at group level, which also coincided with

the most usual selected range of 8–12 Hz (e.g., [9, 32, 33]). Although results are largely aligned

with the literature, we acknowledge that this could potentially increase a type II error.

Conclusions

The neural processes triggered by action observation have been proposed to be layered in sev-

eral functionally interconnected levels. These levels are (i) the muscular level–decodes the pat-

tern of muscle activity necessary to perform the action; (ii) the kinematic level–maps the

effector movement in time and space; (iii) the aim level—includes transitive or intransitive

short-term goal; (iv) the intention level–regards the long-term purpose of the action [50, 51,

52]. Future studies may indeed combine these techniques to obtain complementary informa-

tion and thus allow the investigation of the hierarchical organization of action observation-

induced effects.

Our results are to be read as a cautionary note towards the overly simplistic generalization

of results across techniques granting very different potential. In fact, it is still to be understood

if differences in temporal and spatial resolution explains the lack of correlation, or the two

techniques could still be providing different measures of the same neural process. Given the

obvious differences in temporo-spatial resolution granted by the two techniques, we believe

the first hypothesis to be the most likely.

Supporting information

S1 File. Fig A. Time-frequency power spectrum plot. Illustrates, at group level, the power

spectrum for Precision (P) and Power (W) conditions at C3 electrode. Fig B. Correlation
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between Mu and Beta rhythms and MEPs. B1. Precision condition at t1; B2. Precision condi-

tion at t2; B3. Power condition at t1; B4. Power condition at t2.

(PDF)
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