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Abstract

Antigenic variation by variant surface glycoprotein (VSG) coat switching in African trypano-
somes is one of the most elaborate immune evasion strategies found among pathogens.
Changes in the identity of the transcribed VSG gene, which is always flanked by 70-bp and
telomeric repeats, can be achieved either by transcriptional or DNA recombination mecha-
nisms. The major route of VSG switching is DNA recombination, which occurs in the blood-
stream VSG expression site (ES), a multigenic site transcribed by RNA polymerase I.
Recombinogenic VSG switching is frequently catalyzed by homologous recombination
(HR), a reaction normally triggered by DNA breaks. However, a clear understanding of how
such breaks arise—including whether there is a dedicated and ES-focused mechanism—is
lacking. Here, we synthesize data emerging from recent studies that have proposed a range
of mechanisms that could generate these breaks: action of a nuclease or nucleases; repeti-
tive DNA, most notably the 70-bp repeats, providing an intra-ES source of instability; DNA
breaks derived from the VSG-adjacent telomere; DNA breaks arising from high transcription
levels at the active ES; and DNA lesions arising from replication—transcription conflicts in
the ES. We discuss the evidence that underpins these switch-initiation models and consider
what features and mechanisms might be shared or might allow the models to be tested fur-
ther. Evaluation of all these models highlights that we still have much to learn about the earli-
est acting step in VSG switching, which may have the greatest potential for therapeutic
intervention in order to undermine the key reaction used by trypanosomes for their survival
and propagation in the mammalian host.

VSG switching in Trypanosoma brucei

African trypanosomes, including T. brucei spp., are unicellular parasites that cause chronic
infections in humans and other mammals, often resulting in death if left untreated. These
chronic infections (including African sleeping sickness in humans and nagana in livestock) are
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potentiated by the parasites’ ability to undergo antigenic variation, which is common to many
pathogens and involves switches in surface antigens to thwart effective adaptive-immunity-
mediated eradication. In T. brucei, antigenic variation is carried out by switching expression of
the variant surface glycoprotein (VSG) “coat” [1-5]. The expressed VSG coat is composed of a
single variety of densely packed VSG that is highly immunogenic (eliciting a robust humoral
response) while occluding immune detection of other antigens on the cell surface [6]. Though
the precise number of VSG genes that can encode a coat are unknown, hundreds to thousands
of VSG-encoding genes, most of which are pseudogenes or gene fragments, have been cata-
logued in the nuclear genomes of T. brucei and are housed in the subtelomeres of the parasite’s
11 megabase and approximately 100 intermediate and minichromosomes [7-9]. Only one
VSG at a time is monoallelically transcribed from one of approximately 15 dedicated blood-
stream expression sites (ESs) [10]. These ESs present a conserved organization of features: an
RNA polymerase I (RNAP I) promoter, a variable series of ES-associated genes (ESAGs), a
region of repetitive DNA termed the 70-bp repeats, and one functional VSG gene, which
appears always to be adjacent to the telomeric repeats [10]. Survival of the Trypanosoma
population in the mammal requires a switch from the expressed VSGs to antigenically distinct
variants, maintaining the cell’s essential VSG coat and allowing a subpopulation to escape anti-
body-mediated killing—at least temporarily. In a single cell, this switching is achieved by
changing the identity of the monoallelically ES-transcribed VSG [11-13].

The majority of VSG switching occurs by recombination events, which translocate a novel
VSG into the ES, replacing the resident VSG and leading to its transcription. Recombinogenic
VSG switching predominates over transcriptional switching because it is the mechanism that
allows access to the full VSG repertoire, including VSG pseudogenes. In contrast, transcrip-
tional switches that silence the actively transcribed ES and transcriptionally activate a silent ES,
although frequently observed, can only access the approximately 15 VSGs housed in the ES
transcription sites [14,15]. Translocation of a silent VSG into the ES by recombination can
arise in three ways: from a crossover event that retains a copy of the previously active VSG, by
way of a duplicative gene conversion event, in which activation of a new VSG is coupled with
deletion of the resident ES VSG, and by segmental gene conversion events that act on multiple
intact and pseudogenic VSGs to generate novel VSG “mosaics” [11,16,17]. This range of
recombination pathways suggests considerable mechanistic flexibility, which is undoubtedly
not fully explored. Nonetheless, available genetic analyses reveal two broad features of recom-
bination-based VSG switching in T. brucei. First, the reaction can be activated by the targeted
introduction of a double-stranded DNA break (DSB) in the active ES, suggesting that DNA
lesion repair elicits a switch [18,19]. Second, mutation of a number of conserved proteins of
homologous recombination (HR) impairs the activation of intact VSGs (reviewed in [20,21]).
Taken together, these findings suggest that T. brucei has co-opted a general genome mainte-
nance pathway—HR—to execute at least some forms of VSG switching, a conclusion that has
parallels with targeted genome rearrangements in many other organisms [4]. Despite this,
uncertainty remains about many aspects of VSG switching, including the nature and source of
the DNA lesions that trigger recombination-based VSG switching. Below, we consider a num-
ber of proposals for this critical initiating event in T. brucei antigenic variation.

Targeting of a nuclease to the active ES?

One hypothesis that would allow the initiation of VSG switching through the direct generation
of a DNA break would be the action of a nuclease (Fig 1). This idea was first proposed by J.D.
Barry [22]; he suggested that a dedicated endonuclease could introduce a DSB in the 70-bp
repeats in the active ES, perhaps in a comparable way to the homothallic switching (HO)
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Fig 1. Targeting of an uncharacterized nuclease to the active ES?. A schematic diagram of a bloodstream VSG ES
(not to scale), detailing some key elements: the promoter (green), 70-bp repeats (black), the VSG gene (yellow), and the
telomeres (orange). An uncharacterized nuclease could act in some region of the ES-generating DNA breaks. One such
region could be the 70-bp repeats. ES, expression site; VSG, variant surface glycoprotein.

https://doi.org/10.1371/journal.ppat.1007321.g001

endonuclease reaction that catalyzes initiation of Saccharomyces cerevisiae mating-type switch-
ing [22-24]. Indeed, targeting of the DSB-generating yeast intron-encoded endonuclease
I-Scel to the active ES does induce VSG recombinogenic switching [18]. Nonetheless, no such
native endonuclease has been described to date, though of course this may only indicate that it
is truly trypanosome specific and lacks homology with known nucleases [25]. Also, the target
of such an enzyme is unknown, including how it might target (preferentially or only) the active
ES or what sequences it might act on. In fact, it remains possible that such an enzyme might
not act on a conserved sequence but could target secondary structures formed in the ES, per-
haps on the 70-bp repeats. Moreover, if such an enzyme did not generate a DSB, but a distinct
form of DNA lesion, the absence of a detectable role for meiotic recombination 11 (MRE11) in
VSG switching might be explained [26]. For example, recent studies in different cell types and
organisms have characterized junction endonucleases, such as the structure-specific endonu-
clease Mus81), which associate with different substrates and trigger DNA breaks during vari-
ous processes, most of them involving HR [27-30]. Further work might be considered to ask if
any other conserved nucleases, such as enzymes from the xeroderma pigmentosum (XP) fam-
ily [31], could have dual roles in genome repair and VSG switching. Searching for a genuinely
VSG-specific nuclease and determining whether it generates DSBs or other lesions (e.g., DNA
single-strand breaks or nicks), is a greater challenge.

Rather than an endonuclease, topoisomerase and helicase activities have also been impli-
cated in trypanosome VSG switching. TOPO3a has been proposed to remove undesirable
recombination intermediates arising between active and silent ESs, thereby suppressing VSG
switching and promoting the integrity of the ES during VSG recombination [32,33]. Indeed,
VSG switching frequency increased not only in the absence of TOPO30. [32] but after muta-
tion of RMI1 [32] and RECQ2 [34], which may act together. However, we do not currently
know whether this complex, or the individual components, act directly to initiate VSG switch-
ing or follow from earlier-acting events.

Do the 70-bp repeats act in DNA break formation?

One of the first observed features of the VSG ES was the AT-rich 70-bp repeats upstream of
the VSG, which serve as the 5’ limit of DNA recombination during some VSG switching events
[35,36]. Three predominant predictions surfaced about the function of the 70-bp repeats in
switching: a binding site for a specific endonuclease (see above), sites of inherent DNA insta-
bility, and conserved sequences to allow homologous alignment between highly sequence-
diverged VSGs [36-38]. The endonuclease hypothesis fell out of favor when it was demon-
strated that 70-bp repeats are not required for VSG switching by gene conversion [39]. How-
ever, the possibility yet remains that a 70-bp repeat-specific endonuclease operates under
conditions that have not been identified. More broadly, it is clear that the 70-bp repeat’s
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sequence composition can cause them to adopt unusual DNA conformations and to promote
recombination, at least in plasmids [40,41].

Following the complete sequence of the T. brucei genome and the subtelomeric ES sites, it
was established that the 70-bp repeat contains a highly conserved AT-rich sequence with
anchoring GC regions and also contains a triplet repeat component whose function needs to
be further investigated [40]. The 70-bp repeats are present in long arrays (3-20 kb) in the ES
and in smaller iterations of between 1 and 3 repeats in the proximity of 90% of VSG genes
throughout the genome [7,9,10,42]. Using genetic alterations of the 70-bp repeats in the active
ES, it was shown that they are required (after exogenous DNA break formation) to guide
homologous pairing between the ES and VSG genes throughout the genomic repertoire. Thus,
the 70-bp repeats clearly provide roles in homologous pairing and perhaps more complex
mechanisms of VSG selection [42]. Whether the 70-bp repeats also provide a long-predicted
role in the formation of VSG switch-activating DNA breaks remains untested; if they do, this
role is not crucial for switch initiation in all circumstances.

Repetitive DNA (including the 70-bp repeats) can present some specific DNA replication
challenges that result in DNA break formation, such as strand slippage during replication and
secondary structure formation [43,44] (Fig 2). All of these challenges can result in DSB or
DNA lesion formation, often arising from replication fork collapse, including following colli-
sions with transcriptional machinery [44-46], which will be discussed below. Early evidence
for DNA break formation at the active ES was observed in the form of loss and replacement of
the telomere, occurring at a higher frequency compared to silent ES [47,48]. In addition, natu-
rally occurring subtelomeric DNA breaks have been observed in VSG ESs, though the available
data do not settle the debate over whether they occur more in transcriptionally active or silent
sites [18,19]. Together, these data suggest that DNA breaks arise naturally in the VSG ES,
which could result in recombination-based switching. However, to date, the role of 70-bp
repeats in such DNA break formation has not been firmly tested, nor have the mapped breaks
been shown to be the triggers of VSG recombination. Nonetheless, presence or absence of the
70-bp repeats alters the cell cycle progression of T. brucei cells after induction of an ES DSB
through I-Scel endonuclease-mediated cleavage [42].
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Fig 2. Do the 70-bp repeats act in DNA break formation?. The presence of 70-bp repeats may result in DNA break
formation, such as during DNA replication or transcription, due to strand slippage. Alternatively, the formation of
secondary structures due to the repeats could also impair DNA replication or transcription, resulting in DNA breaks.
The dashed light orange ellipse emphasizes the existence of several 70-bp repetitions in the region termed 70-bp. The
square around a 70-bp repeat highlights the consensus sequence, shown as a sequence logo, from the repeats found in
BES 1. Adapted from Hovel-Miner et al. (2016) [42]. BES 1, bloodstream expression site 1; ES, expression site; VSG,
variant surface glycoprotein.

https://doi.org/10.1371/journal.ppat.1007321.9002
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DNA breaks from the telomere?

Another proposal is that VSG switching is not directly initiated by events within the ES but
indirectly through processes occurring in the telomere adjacent to the VSG. As in most
eukaryotes, the T. brucei telomere is composed of tandem repeats of a G-rich sequence (in T.
brucei this is 5 TTAGGG 3'), which are elongated by telomerase [49]. It seems that most T.
brucei telomere 3’ overhang ends have the sequence 5 TTAGGG 3/, whereas a small part of
the overhang has the sequence 5 TAGGGT 3'. Telomerase activity is essential for the mainte-
nance of 5 TTAGGG 3’ ends but apparently does not affect the 5 TAGGGT 3’ ends [50]. This
finding suggests that the 5 TAGGGT 3’ ends can be maintained and/or generated by a poten-
tially telomerase-independent mechanism, such as telomerase-independent telomere length-
ening, which involves telomeric recombination [51-53]. Several studies suggest that telomere
recombination influences VSG switching, mainly because the VSGs in the ES are located
within 2 kb of the telomere repeats [10], and both telomere proteins and telomere length influ-
ence the frequency of VSG switching [15,54-56].

A further unusual feature of T. brucei telomeres is that the repeats attached to the active ES
grow more rapidly than inactive ES telomere and, furthermore, undergo more frequent break-
age [57]. Dreesen and Cross (2007) proposed that such DNA break events, particularly when
acting on short telomeres, might encroach into the upstream ES and initiate VSG switching
[58]. Support for this proposal was found by examining T. brucei telomerase mutants, which
undergo a progressive loss of telomere repeats [15]. Consistent with previous observations [59],
telomerase mutants with short telomeres switched the expressed VSG by recombination more
frequently than mutants with longer telomeres [15]. Further support may be found in analyses
of mutants in components of the T. brucei shelterin complex, which binds telomere sequences:
though the effects seen for different subunits show variation and are normally lethal, accumula-
tion of subtelomeric DNA breaks and VSG recombination is sometimes seen [54,55,60]. Also,
it is known that critically short telomeres are stabilized in T. brucei telomerase mutants by an
uncharacterized mechanism [57]. Whether such a mechanism is similar to telomerase-inde-
pendent telomere lengthening and relies on HR, using subtelomeric intra-ES sequences acti-
vated after prolonged growth of telomerase mutants, is unclear (Fig 3). Also, further studies are
needed to determine whether such telomere-derived reactions are also seen at the shorter,
slower-growing chromosome ends of inactive ES. Finally, it remains perplexing that targeted
deletion of the telomere tract adjacent to the active ES does not elicit a VSG switch [19].

Instability derived from high levels of transcription?

High levels of transcription enhance HR, a phenomenon known as transcription-associated
recombination (TAR) [61]. In S. cerevisiae, transcription and DSBs induce similar mitotic HR
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Fig 3. DNA breaks from the telomere?. Short telomeres in T. brucei telomerase and shelterin mutants can elicit the
accumulation of subtelomeric DNA breaks and VSG recombination by an unknown mechanism. Whether or not this
mechanism is similar to telomerase-independent telomere lengthening is still unclear. ES, expression site; VSG, variant
surface glycoprotein.

https://doi.org/10.1371/journal.ppat.1007321.9003
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Fig 4. Instability derived from high levels of transcription?. High levels of transcription could precipitate DNA
breaks due to the formation and processing of secondary structures and/or DNA:RNA hybrids (also called R-loops) in
repetitive DNA regions. ES, expression site; RNAP, RNA polymerase; VSG, variant surface glycoprotein.

https://doi.org/10.1371/journal.ppat.1007321.9004

events [62]. It has been demonstrated that RNAP I transcription stimulates HR in bloodstream
forms of T. brucei more than 3-fold [63,64], perhaps suggesting that one consequence of
RNAP I ES transcription is elevated DNA breaks and HR in the active ES. RNAP can also gen-
erate DNA breaks on repetitive regions [62,65] by mechanisms that are not fully elucidated.
One potential explanation is that RNAP passage over repeats allows the formation of DNA sec-
ondary structures, which can generate DNA breaks in a manner dependent on or independent
from DNA repair processes [66,67] (Fig 4). Transcription across triplet repeats is a widespread
cause of genetic instability [68,69], suggesting that further dissection of the T. brucei 70-bp
repeat components is warranted. Transcription-associated genetic instability can also be
driven by DNA:RNA hybrids, which can also mediate TAR [70]. Very recent studies have used
genome-wide mapping and immunofluorescence to determine where DNA:RNA hybrids
form in the T. brucei genome [71,72], as well as when they form during the parasite’s cell cycle
[73].

Mismatch repair and nucleotide excision repair have both been implicated in repeat insta-
bility [67,74], but to date, only the former has been tested for a contribution to T. brucei VSG
switching, without revealing any evidence [75]. In contrast, impaired repair of uracil in DNA
increases VSG switching [76], though it is unclear whether this relates to ES transcription.
Beyond these genetic analyses, no experiments have tested whether TAR or transcription rate
during traversal of the ES, including the 70-bp repeats, is a driver of VSG switching.

Very recently, a protein called VSG exclusion-1 (VEX 1) was described and has been sug-
gested to coordinate VSG expression through a “winner-takes-all” strategy [77]. Put simply, it
is proposed that VEX 1 is recruited to a single ES by a positive feedback mechanism related to
RNAP I, enhancing VSG transcription of the active ES, while VEX 1 also aids homology-
dependent silencing of the other ES [77,78]. Other studies point to a crucial role of ES chroma-
tin in regulating VSG expression, including through a modified nucleotide called base J (3-D-
glucosyl-hydroxymethyluracil) and a histone H3 variant (H3.V) [79,80]. To date, whether
VEXI, RNAP I, and chromatin combine to not only influence ES transcription but also to gen-
erate DNA lesions is an open question, though elevated levels of RNA:DNA hybrids in the ES
increase VSG switching and intra-ES damage [71].

Replication—transcription conflicts in the active ES?

Replication-transcription conflict is a phenomenon that occurs when there is an encounter
between the replisome and the RNAP because both complexes use the same template to
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Fig 5. Replication-transcription conflicts in the active ES?. Collisions between the replisome and RNAP I, especially
head-to-head, could generate DNA breaks in the active ES. Of note, the DNA breaks in the scheme are represented as
DSBs, though this is unknown. DSB, DNA double-strand break; ES, expression site; RNAP, RNA polymerase.
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synthesize DNA and RNA, respectively [81]. When a replisome and RNAP progress in the
same direction, a co-directional collision can occur if the speeds of replication and transcrip-
tion are different [82-84]. In bacteria, this type of collision usually preserves genome integrity
[81,85,86], but in eukaryotes, this is still an open question. On the other hand, progression of
the replisome and RNAP in opposite directions leads to head-on collisions, which frequently
induce blockage and collapse of the replication fork, generating DNA lesions, especially DSBs
[81]. Such collisions increase recombination frequency, as observed in S. cerevisiae [87].

A recent study carried out by Devlin and colleagues (2016) suggested an association
between DNA replication and transcription of the active ES in T. brucei [34]. This study
showed that the active ES is replicated early in S phase, whereas all the silent ESs are replicated
late [34], which strongly suggests that high levels of transcription happen concurrently with
DNA replication in the active site. The early replication of the active ES, in addition to provid-
ing the ideal scenario for collisions, also provides a fully replicated copy of the ES at the begin-
ning of the S phase, i.e., the target and potential substrate for VSG switch HR events during S
phase. This finding adds to genetic analysis of TOP30., whose ablation elevates VSG switching
by intra-ES crossovers, an effect suggested to be driven by replication—transcription collisions
[32]. It also confirms a functional link between transcription initiation and DNA replication
initiation throughout the T. brucei genome [88], consistent with a very recent study showing
transcription and replication overlap in the T. brucei cell cycle [73].

The active ES is unique from all silent ESs in that it is highly transcribed, is chromatin
depleted, and resides in a specialized subnuclear compartment known as the ES body [89]. It
has long been understood in other eukaryotes that transcription, chromatin state, and subnu-
clear localization are all intimately associated with the timing of replication origin firing [90-
92]. Therefore, at least one strong prediction can be made: the transcriptional state of the active
ES supports its replication early in S phase. The outcome of these events is predicted to result
in collisions between the replisome and RNAP I (Fig 5), which are widely known to result in
DSB formation in other systems [93-95]. Therefore, it is possible that transcription alone does
not lead to the described active ES fragility [19] or the generation of DNA breaks in these telo-
meric loci [18], but instead, the juxtaposition of transcription and DNA replication drives
VSG switch initiation. Nonetheless, the site of DNA replication initiation in or around the
active ES is currently unknown, as is the direction of replication through the ES, meaning the
potential for intra-ES replication—transcription conflicts, including whether they are head-on
or co-directional, requires experimental tests.

Conclusions and perspectives

Here, we have compiled the mechanisms so far suggested to act in the initiation of VSG
switching, providing a nuanced molecular description of the potential sources and forms of
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DNA breaks long suspected as initiating lesions. Of note, most of the evidence regarding initia-
tion of VSG switching was suggested based on in vitro assays, which may not necessarily reflect
the conditions found in vivo during mammal infections. For instance, no studies have exam-
ined VSG recombination in mutants of T. brucei cells capable of undergoing differentiation
from replicative long slender forms to nonreplicative short stumpy forms, a developmental
reaction critical for transmission [96]. Therefore, further investigation is needed to test all the
mechanisms proposed and to ask whether one predominates or whether there is a joint action
of some of them. For instance, could high ES transcription generate DNA:RNA hybrids within
the 70-bp repeats, with the hybrids then processed by an endonuclease, generating DNA
breaks and driving VSG switching?

Beyond the action of these mechanisms (individually or jointly) in the establishment of
antigenic variation in African trypanosomes, it is worth considering whether these processes
have wider parallels throughout the trypanosomatids, which emerged around 200 to 500 mil-
lion years ago [97]. For instance, might similar HR strategies drive diversification of the hugely
abundant gene families found in T. cruzi [98], and in what way do the known roles of HR fac-
tors in generating genome plasticity in Leishmania [99] correspond with exploitation of this
general genome repair pathway during T. brucei antigenic variation? Uncovering the molecu-
lar mechanisms that initiate VSG switching may lead to the discovery of targets for the devel-
opment of antiparasitic therapies. Moreover, this immune evasion mechanism is not only
crucial in African trypanosomes but in all pathogens that use antigenic variation and perform
gene expression control to ensure that only one antigen is expressed in a single cell, such as
Plasmodium, Giardia, Neisseria, Borrelia, and others.
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