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Abstract

Respondent-driven detection is a chain recruitment method used to sample contact persons

of infected persons in order to enhance case finding. It starts with initial individuals, so-called

seeds, who are invited for participation. Afterwards, seeds receive a fixed number of cou-

pons to invite individuals with whom they had contact during a specific time period. Recrui-

tees are then asked to do the same, resulting in successive waves of contact persons who

are connected in one recruitment tree. However, often the majority of participants fail to

invite others, or invitees do not accept an invitation, and recruitment stops after several

waves. A mathematical model can help to analyse how various factors influence peer

recruitment and to understand under which circumstances sustainable recruitment is possi-

ble. We implemented a stochastic simulation model, where parameters were suggested by

empirical data from an online survey, to determine the thresholds for obtaining large recruit-

ment trees and the number of waves needed to reach a steady state in the sample composi-

tion for individual characteristics. We also examined the relationship between mean and

variance of the number of invitations sent out by participants and the probability of obtaining

a large recruitment tree. Our main finding is that a situation where participants send out any

number of coupons between one and the maximum number is more effective in reaching

large recruitment trees, compared to a situation where the majority of participants does not

send out any invitations and a smaller group sends out the maximum number of invitations.

The presented model is a helpful tool that can assist public health professionals in preparing

research and contact tracing using online respondent-driven detection. In particular, it can

provide information on the required minimum number of successfully sent invitations to

reach large recruitment trees, a certain sample composition or certain number of waves.
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Introduction

Many infectious diseases are transmitted via close or intimate contact between individuals. By

sampling contact persons of infected persons in a network, one can study transmission routes

of these pathogens within networks and to detect hitherto hidden cases. Such information is

important for effective control of disease outbreaks. Respondent-driven detection (RDD), a

method derived from snowball sampling, is a chain recruitment method that allows for sam-

pling of contact persons of participants [1, 2]. With RDD, initial individuals (or ‘seeds’) are

invited for participation, which includes filling in a questionnaire. At the end of the question-

naire, seeds receive a fixed number of invitation coupons (usually four, according to standard-

ised methodology of respondent-driven sampling (RDS) [3]), and are asked to invite a number

of contact persons whom they have met during a specific time period. Recruitees (i.e., invitees

who participate) are then asked to do the same, resulting in successive ‘waves’ of contact per-

sons. Unlike with snowball sampling, each coupon contains a personal code with which peer

recruitment is followed. A set of participants connected via recruitment links to one seed is

referred to as a ‘recruitment tree’.

The composition of the sample consisting of all participants who completed the survey

depends on how likely individuals with certain characteristics are recruited. For instance, indi-

viduals with a high probability of being recruited will likely be overrepresented in the sample.

For RDS, statistical techniques are available to estimate population characteristics from the

respondent-driven sample [4–6]. Most of these techniques are based on the assumption of a

first-order Markov chain process, i.e., correlations found between recruiters and recruitees are

only dependent on the direct recruiter [7]. Given that seeds may be chosen non-randomly,

and that people tend to have contact with individuals with similar characteristics [8], the char-

acteristics of the participants in the first few recruitment waves may still reflect the characteris-

tics of the seeds [9]. If peer recruitment proceeds through a sufficiently large number of waves,

recruitees with different characteristics enter the sample. With increasing number of waves,

the composition of the sample will converge to a stable distribution and become independent

of the (often) non-randomly selected seeds [3, 10, 11]. Although the primary objective of RDD

is to detect cases, rather than to estimate population proportions from samples, we were inter-

ested in how fast equilibrium is reached under different mixing conditions, e.g., random

recruitment versus recruitment with a preference.

Previously, we conducted surveys to investigate the feasibility of online RDD to study con-

tact patterns that are relevant for the transmission of respiratory pathogens and to exploit the

use of the network of cases to detect other cases [1, 2]. However, in those studies, the numbers

of recruitees via online peer recruitment were low. The majority of participants did not or not

fully comply with sending invitations, and a limited number of invitees actually participated.

Therefore, peer recruitment stopped after a few waves. This problem is common with respon-

dent-driven studies [12]. To improve case finding with online RDD, or obtain a required num-

ber of recruitees or a required sample composition, it is key to find ways to increase rates of

peer recruitment, and to understand under which circumstances sustainable recruitment is

possible.

In the literature, there are many examples of models used to study recruitment behaviour

with RDS or snowball sampling (see e.g., [13–18]). Malmros et al. (2014) used a configuration

model, without empirical data, to analyse the influence of the number of coupons and proba-

bility of coupon transfer between a recruiter and recruitee on the recruitment process [13]. To

our knowledge, there is one simulator of the recruitment process available in the public

domain; this model allows for only a limited number of factors influencing recruitment, and

only reports aggregated numbers of recruitees [19]. Mathematically, the recruitment process

Stochastic model and respondent-driven recruitment

PLOS ONE | https://doi.org/10.1371/journal.pone.0207507 November 15, 2018 2 / 19

https://doi.org/10.1371/journal.pone.0207507


can be described by a multitype branching process, and results from the theory of branching

processes can be applied (e.g. [20]).

Here, we used simulations of a multi-type branching process that included more factors to

study the dynamics of a respondent-driven recruitment process. Simulating the recruitment

process enabled us to analyse the influence of various factors on the final sample size and sam-

ple composition. We used empirical data to suggest parameter choices in the simulation

model. Data were taken from a sample of recruitment trees collected with online RDD in the

Netherlands during the winter season of 2013–2014 [1, 2]. We aimed to determine which fac-

tors are important for the success of recruitment, to identify thresholds for reaching sustain-

able recruitment in recruitment trees, and to determine how fast a steady state is reached in

the sample composition for individual characteristics. Successful recruitment can be defined at

two levels. At the level of a recruiter, successful recruitment means that an invitee also com-

pletes the questionnaire and becomes a recruitee. At the level of a recruitment tree, successful

recruitment indicates that a tree continues to grow due to continued peer recruitment. The

results of our analysis can be used to inform future online RDD surveys, e.g., for determining

the mean number of successfully sent invitations per participant required to obtain on average

growing recruitment trees.

Methods

A stochastic simulation model

We considered respondent-driven recruitment in a heterogeneous population. Individuals

(i.e., recruiters and recruitees) were characterized by three categorical variables, namely sex,

age groups, and education level. Starting from a seed, the recruitment process was modelled as

a multi-type discrete time branching process. Number and type of recruitees of a recruiter in

wave W depended on that recruiter’s characteristics, on the number of invitations he sent out,

and the number of invitees who accepted the invitation, for all W. Each recruiter could send a

maximum number of invitations c.
We assumed that the number of invitations per recruiter had a beta-binomial distribution,

with shape parameters α and ß depending on the characteristics of the recruiter. The reason to

choose a beta-binomial distribution was that it can reproduce bimodal distributions of num-

bers of invitations as observed in the data, with a peak at zero and another peak at the maxi-

mum value c. The latter reflects a restricted number of invitations per recruiter, which is

common in RDS surveys. We then assumed that given a number of invitations, the number of

accepted invitations had a binomial distribution where the probability of acceptance p
depended on the characteristics of the recruiter. The characteristics of recruitees were depen-

dent on the characteristics of the recruiter to reflect correlations between recruiter–recruitee

pairs in their characteristics, but assuming independence of the three characteristics. We used

the mean number of invitations sent out (�x) and the proportion accepted invitations (p) from

our sample to calculate the mean number of successfully sent out invitations (�x � p).

Simulation model

Each model run started with one seed in wave 0. For each wave W, the model generated a list

of individuals and their characteristics. Then, for each recruiter, the number of invitations sent

out and the number of invitations accepted by invitees was determined based on random

draws from probability distributions. Characteristics of new recruitees were determined based

on correlations with characteristics of their recruiters. New recruitees then formed wave W+1.

Each recruitee in the model received a unique identifier (a numerical string) that linked it to

its recruiter. A model run stopped when no invitations were sent out, when no invitations
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were accepted, or when after a wave a total number N of recruitees was exceeded. In our simu-

lations, the number N of recruitees, at which further recruitment was stopped, was set to

N = 1000. If a recruitment tree became larger than 1000 recruitees, the tree showed ongoing

recruitment and continued to grow if the model run was not stopped manually. The final

recruitment tree consisted of all recruitees recruited during one simulation run. The model

was implemented in R (R Foundation for Statistical Computing, Vienna, Austria) version 3.2.2

and is available online: https://github.com/SteinML/RDDmodel.git. For model formulation

and details, we refer the reader to S1 Text.

Outcome measures

To quantify the success of recruitment, we kept track of the number of recruitees in each recruit-

ment tree starting with one seed (i.e., the size of recruitment trees). If the size of a recruitment tree

was larger or equal than N = 1000, we labelled it as ‘large’. We then computed the proportion of

runs with large recruitment trees for each set of parameters. The probability of obtaining large

recruitment trees depends on the specific parameter combination. If participants successfully

invite on average less than 1 new recruitee, only small recruitment trees occur, while above this

threshold small and large recruitment trees occur. The proportion of large recruitment trees

increases with increasing mean number of successfully sent invitations. We recorded for which

parameter combinations at least 5% of runs resulted in a large recruitment trees. We also recorded

the maximum wave number reached by each tree to quantify the length of recruitment trees.

To investigate the sample composition at equilibrium, we calculated for each simulation run

the composition of each wave with respect to sex, age group and educational level. We used the

standard criterion from the RDS literature to define equilibrium [3, 9]. This criterion states that

sample proportions are viewed as stable when the relative difference between proportions in sub-

sequent waves is less than two percent. To quantify the convergence of the composition in our

simulations, we investigated at which wave equilibrium according to the above criterion was

reached. Proportions were calculated per wave and averaged over simulation runs.

By way of illustration of how the model can provide guidance for future surveys, we also

included influenza vaccine beliefs in the model. Beliefs about a vaccine can strongly affect indi-

vidual vaccination decisions. In particular, negative vaccine beliefs can lead to low vaccination

rates, which in turn can lead to higher likelihood of a disease outbreak [21].

Model parameters

Study population. Model parameters were suggested by data collected during an online

RDD study performed in the Netherlands during the winter season of 2013–2014 [1]. Partici-

pants were enrolled via a large web based participatory surveillance panel. After filling out a

questionnaire, each participant received four unique electronic coupons to invite contact per-

sons whom they had met in the previous two weeks. A total of 1015 volunteers entered the

RDD survey as seeds, and 433 recruitees were successfully recruited. Recruitment reached up

to 6 waves of recruitees. For each participant, sociodemographic variables were recorded,

including sex (females and males), age (three age groups), education level (two categories) and

vaccine belief (two categories: ‘positive’ and ‘negative or undecided’). Participants were

allowed to fill in the survey for one of their children. Overall, participants had a mean age of

53.7 years (standard deviation (SD): 14.5 years; range: 3–97 years), 64.8% was female, 57.3%

had an academic education (i.e., participants obtained a bachelor degree or higher in higher

education) and 53.5% had a negative vaccine belief (see Table 1).

Recruitment behaviour. Of the 1448 participants (i.e., seeds and recruitees) who com-

pleted the survey, 609 (42.1%) sent out invitations. The overall mean number of invitations
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sent out was 1.36 (s2: 3.21). The distribution of the number of invitations sent out was bimodal,

with a peak at zero and another peak at four. We fitted a beta-binomial distribution to the

observed frequency distribution of invitations sent out by participants, using maximum likeli-

hood estimation in the R package “VGAM” (function “betabinomialff”). The mean number of

invitations sent out varied for different subgroups of participants depending on sex, age and

educational level between 0.64 (s2: 2.02) and 1.67 (s2: 3.48) (see S1 Table). Furthermore, a dif-

ference in mean numbers of sent invitations between seeds and all recruitees was observed (see

S1 Fig). Seeds sent on average slightly less invitations compared to recruitees, 1.33 (s2: 3.24)

and 1.47 (s2: 3.23) respectively (see Table 1 and S2 Table). Female seeds, with an academic edu-

cation in the age group 60 years and older, were most active with sending invitations to others.

We based the probability of an invitation being accepted in the model on the number of

recruitees divided by total number of invitations sent out by recruiters with specific character-

istics in the data set. The acceptance probability therefore depended on the characteristics of

the recruiter, and not on the characteristics of the recruitee. Overall, 19.2% (range: 10.0% -

27.2% for different recruiter characteristics) of all invitations sent were accepted by recruitees.

The mean proportion of acceptance only slightly differed between seeds (18.9%) and recruitees

(20.1%). S2 Table displays an overview of the fitted beta binomial distributions and propor-

tions of invitations accepted stratified by recruiter characteristics, and by seeds and recruitees.

Mixing parameters. The characteristics of the recruitees were determined based on ran-

dom draws from probability distributions for sex, age and educational level, where the proba-

bility distributions depended on characteristics of the recruiter and were assumed to be

independent for the three characteristics. Overall, the data showed that participants tended to

recruit recruitees with similar characteristics. This is reflected by correlation coefficients for

recruiter-recruitee pairs by characteristic [22]. A positive correlation (>0.10) reflects assorta-

tive mixing (i.e., inviting recruitees with the same characteristics), while a negative correlation

(< -0.10) reflects disassortative mixing (i.e., inviting recruitees with other or the opposite char-

acteristics). A correlation between -0.10 and 0.10 is usually interpreted as random mixing,

which indicates that participants do not have a tendency to recruit recruitees with specific

characteristics. Participants recruited mainly recruitees of a similar age group (rrank: 0.33

(0.25–0.42)) and with a similar education (rφ: 0.31 (0.22–0.39)). We based the probability dis-

tributions for sex, age and educational level on the proportions observed in the data set, e.g.,

the proportion of female participants who invited female recruitees. As the mixing behaviour

Table 1. Participants’ characteristics and recruitment behaviour as observed during RDD survey in the Netherlands.

Variables Seeds in wave 0�� Recruitees in waves 1 to 6�� Overall (seeds + recruitees)�

Number of female participants (%) 662 (65.2%) 277 (64.0%) 939 (64.8%)

Mean age in years of participants (SD; range) 55.5 (13.0; 4–97) 49.4 (16.8; 3–82) 53.7 (14.5; 3–97)

Number of participants in age group 0–39, a1 (%) 127 (12.5%) 121 (27.9%) 248 (17.1%)

Number of participants in age group 40–59, a2 (%) 465 (45.8%) 173 (40.0%) 638 (44.1%)

Number of participants in age group 60+, a3 (%) 423 (41.7%) 139 (32.1%) 562 (38.8%)

Number of participants with an academic education, B¥ 596 (58.7%) 234 (54.0%) 830 (57.3%)

Number of participants with a negative vaccine belief 482 (47.5%) 293 (67.7%) 775 (53.5%)

Mean number of invitations sent out, �x (s2) 1.33 (3.24) 1.47 (3.23) 1.36 (3.21)

Mean proportion invitation was accepted, p (range) 18.9% (0%– 26.9%) 20.1% (7.7%– 31.6%) 19.2% (10.0%– 27.2%)

�A stratification by recruiter characteristics can be found in S1 Table.

��A stratification by recruiter characteristics and by seeds and recruitees can be found in S2 Table.
¥Academic education defined as acquired a bachelor degree or higher in higher education.

https://doi.org/10.1371/journal.pone.0207507.t001
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varied over waves (e.g., recruiters in wave 1 invited more females and recruitees with an aca-

demic education, as compared to seeds in wave 0), we calculated both overall mixing propor-

tions and mixing proportions stratified by waves (see Table 2).

We assumed that vaccine belief is determined by individual characteristics and does not

influence the recruitment process. We used a logistic regression model to estimate the proba-

bilities of having a positive or negative belief about the influenza vaccine depending on age,

sex, and education. Vaccine beliefs of individuals were determined based on random draws

from the estimated probability distributions (see S1 Text and S4, S5 and S6 Tables). The

observed time between sending of invitations by a recruiter and the moment of acceptance by

their recruitees was not related to the characteristics of the recruiter, and therefore not

included in the scenario analyses.

Scenarios. In total, we defined and investigated 18 scenarios (see Table 3), which were dis-

tinct in their parameter choices. For each parameter combination, starting with one seed, we

Table 2. Heterogeneity in recruitment mixing behaviour over waves as observed during RDD survey in the Netherlands.

Mixing Proportions

waves 0–1 (n:

295)

correlation Proportions

waves 1–2 (n: 86)

correlation Proportions

waves 2 to 6 (n:

52)

correlation Mean overall

proportions (n:

433)

Overall

correlations (n:

433)

Female–Female 0.61 0.02 [-0.09–

0.14]

0.73 0.16 [-0.05–

0.36]

0.83 0.23 [-0.05–

0.47]

0.66 0.08 [-0.01–

0.17]

Female—Male 0.39 0.27 0.17 0.33

Male–Male 0.41 0.43 0.50 0.42

Male–Female 0.59 0.57 0.50 0.58

Age 0–39 (a1)–Age 0–39

(a1)

0.56 0.23 [0.12–

0.34]

0.57 0.52 [0.34–

0.66]

0.86 0.65 [0.46–

0.78]

0.60 0.33 [0.25–0.42]

Age 0–39 (a1)–Age 40–

59 (a2)

0.12 0.29 0.14 0.18

Age 0–39 (a1)–Age 60+

(a3)

0.31 0.14 0.00 0.22

Age 40–59 (a2)–Age

0–39 (a1)

0.28 0.19 0.20 0.26

Age 40–59 (a2)–Age 40–

59 (a2)

0.51 0.67 0.67 0.56

Age 40–59 (a2)–Age 60+

(a3)

0.21 0.14 0.13 0.19

Age 60+ (a3)–Age 0–39

(a1)

0.23 0.10 0.07 0.19

Age 60+ (a3)–Age 40–59

(a2)

0.29 0.21 0.20 0.26

Age 60+ (a3)–Age 60+

(a3)

0.49 0.69 0.73 0.55

Lower than academic

education (A)—Lower

than academic

education (A)

0.65 0.29 [0.18–

0.39]

0.67 0.41 [0.22–

0.57]

0.68 0.21 [-0.06–

0.46]

0.65 0.31 [0.22–0.39]

Lower than academic

education (A)—

Academic education (B)

0.35 0.33 0.31 0.35

Academic education (B)

—Academic education

(B)

0.65 0.76 0.53 0.66

Academic education (B)

—Lower than academic

education (A)

0.35 0.24 0.47 0.34

https://doi.org/10.1371/journal.pone.0207507.t002
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performed 100 simulation runs. In scenario S1, we explored the relation between mean (μ)

and variance (σ2) of the beta-binomial distribution for the number of invitations, and the

probability of obtaining large recruitment trees. We randomly drew 9000 combinations of μ
and σ2, ran the simulations and recorded the proportion of large trees per parameter combina-

tion. We assumed a probability of acceptance of invitations of 1.

In scenarios S2 to S4, we ran 1000 simulations with 1015 seeds each, with characteristics (sex,

age group and education level) and recruitment patterns as observed in the data. One set of seeds

together with their recruitment trees was interpreted as one simulated data set, which could be

compared to the observed data set. In scenario S2, the mean number of sent invitations and prob-

ability of acceptance were stratified by recruiter characteristics, with overall mixing proportions as

observed in the data. In scenario S3, probabilities of sending and acceptation were stratified by

recruiter characteristics, and differed between seeds (wave 0) and all recruitees in waves 1 to 6. In

addition, in scenario S4, we used mixing proportions stratified by waves (Table 2).

Next, we defined 10 scenarios (S5 to S14) to study conditions for obtaining large recruit-

ment trees, and the influence of increased recruitment on the total number of recruitees and

maximum wave number reached by recruitment. Per scenario, we varied the mean number of

invitations sent out by individuals (μ) between 0.1 and 3.9, and we varied the probability of

acceptance of an invitation between 0.19 (as observed in the data), 0.40, 0.60, 0.80 and 1. In

total this led to 10 scenarios with different recruitment probabilities, where recruitment proba-

bility was not stratified by characteristics of the recruiter. In scenarios S5 to S9, we defined σ2

based on the sample variance of the number of sent invitations observed in the data; for higher

values of μ, the observed sample variance was not compatible with the beta-binomial distribu-

tion; we then used the maximum value of σ2 possible. We used a high value of σ2 to maintain

in each set of simulations a bimodal distribution of the number of invitations sent out, as

observed in the data. To investigate the influence of other than bimodal distributions of num-

ber of invitations sent out, in scenarios S10 to S14 the lowest possible value of σ2 compatible

with a given value of μ was used. The shapes of the beta-binomial distributions used in scenar-

ios S5-S14 are shown in S2 Fig.

To investigate how differences between recruiters and assortative recruitment can be

exploited to increase the number of recruitees and waves, and how this affects the sample com-

position, we performed simulations for an additional four scenarios (S15 to S18). For each sce-

nario, we assumed that each type of recruiter sent out on average �x + 0.6 invitations. This

value was chosen to ensure that the mean number of successfully sent invitations was above 1

for all types of recruiters (see S3 Table). The variance of number of invitations was set to s2–

0.6, to ensure compatibility with the beta-binomial distribution. The probability of acceptance

was set to 1. In scenario S15, we used mixing proportions stratified by waves as observed in the

data. We then compared random mixing by characteristics (S16) with a situation where

females recruit only females and academics only academics (S17). In scenarios S15 to S17, we

used 100 seeds, whose characteristics were matched to 100 randomly drawn seeds from the

observed data set. Again, we interpreted one set of 100 seeds together with simulated recruit-

ment trees as one simulated data set. In the last scenario (S18), we used the mixing proportions

described in scenario S17, but started with 100 seeds, whose characteristics matched seeds

from the data set who had the highest observed mean numbers of sent invitations.

Results

Probability of a large recruitment tree

Fig 1 shows the proportion of large trees for scenario S1. The domain in the parameter region,

for which results are plotted, is determined by the range of possible combinations of μ and σ2
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of the beta-binomial distribution. In general, the probability of getting a large recruitment tree

increases with increasing μ. There is a parameter region where an increase of μ leads to a

decrease in the probability of large trees. This is the case for μ around 3 and σ2 equal to 2. This

may suggest that, for some parameter combinations it is not necessary to achieve the highest

possible number of invitations for maximal success of peer recruitment for a fixed variance. In

this parameter region, increasing μ may result in a lower probability of getting a large recruit-

ment tree. However, for a fixed variance, increasing the mean is only possible if more weight

of the distribution is moved to the extremes, i.e., the probability of sending either zero or c
invitations increases while probabilities of the values in between decreases. The extinction

probability in such a situation is larger than when probability weights are distributed more

evenly over the possible values of number of sent out invitations (see S2 Fig for different shapes

of the beta-binomial distribution). Note that a beta-binomial does not include distributions

with very small values of σ2 for all values of μ.

Simulation runs based on empirical data

In scenarios S2 to S4 we compared the simulations with the observed data, to explore how well

the model with the chosen parameter values could reproduce observed data. Our model

Fig 1. Relation between numbers of invitations and proportion of large recruitment trees. For 9000 randomly chosen combinations or μ
and σ2 for the beta-binomial distribution for number of invitations we ran 100 simulations (scenario S1). We then calculated the proportion

of simulations runs that resulted in a large recruitment tree (N� 1000 recruitees) under the assumption of an acceptance probability of 1.

The black triangle indicates the �x and s2 of numbers of invitations sent out by participants in the data set collected in the Netherlands.

https://doi.org/10.1371/journal.pone.0207507.g001
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Fig 2. Simulation runs based on empirical data. Starting with a set of 1015 seeds with characteristics as in the

empirical data, we performed 1000 simulation runs. One set of seeds together with their recruitment trees was

interpreted as one simulated data set, which could be compared to the observed data set. The boxplots show the

variability among simulated data sets, each boxplot consists of 1000 simulated points. The legend refers to scenarios S2

to S4 described in Table 3. The blue dots indicate the observed data. (A) Number of recruitees in recruitment trees in

one simulated data set; (B) wave reached by recruitment trees in one simulated data set. Plots C to E show, for each

wave, the variability in composition of each simulated data set, with (C) proportion of females, (D) age group 60+ and

(E) having an academic education. A green cross indicates, for each wave, the mean proportion over all simulated data

sets.

https://doi.org/10.1371/journal.pone.0207507.g002
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slightly underestimated the number of recruitment trees with zero recruitees, and overesti-

mated the number of trees with one and two recruitees, and one and two waves (see Fig 2A

and 2B). By taking into account that seeds sent out a lower mean number of invitations than

recruitees in consecutive waves (scenario S4), the model estimations slightly improved as com-

pared to only taking recruiters’ characteristics into account (scenario S3). This suggests that

seeds recruited recruitees who were more motivated than themselves to participate and to

invite others. The remaining discrepancy between the simulations and the observed data, is

most likely due to a practical issue during the data collection. The online software system used

for sending invitations was only able to register the number of invitation letters that partici-

pants requested for further use via the survey web site. However, no information is available

on whether participants actually used those requested invitation letters. If participants did not

use all the invitation letters they requested, the mean number of invitations actually sent out

during the data collection is lower than the mean number of requested invitation letters. The

actual mean number of invitations sent out is therefore lower than estimated from the data.

Using a lower value of �x in the simulations would reduce the number of seeds in the model

who successfully recruit recruitees and would thus improve the agreement of model results

with data.

Simulated proportions of characteristics agreed with observed data in the first four waves

with respect to all three variables (see Fig 2C–2E). For the remaining waves, the numbers were

too small to obtain good estimates. For the first few waves, and for females in waves 0 to 4, the

simulated mean proportions were in better agreement with the observed data when using mix-

ing proportions stratified by waves (scenario S4), instead of overall mixing proportions (sce-

narios S2 and S3). This illustrates the influence of heterogeneity in mixing behaviour over

different waves on the sample composition.

Increasing successfully sent invitations

In general, an increased mean number of invitations in combination with an increased proba-

bility of acceptance led to a higher probability of obtaining large recruitment trees (scenarios

S5 to S9). The proportion of 0.19 that accepted an invitation as observed in the data set (used

in scenario S5), was too low to reach a value of successfully sent invitations above 1, even when

all recruiters sent out the maximum number of 4 invitations. For probabilities of acceptance

between 0.40 and 1, the probability of a large tree was below 5% when the mean number of

successfully sent invitations was approximately 1, but above 5% for larger mean values of

acceptance probability. When assuming a bimodal distribution for the numbers of invitations

sent out (as assumed in scenarios S5 to S9), with peaks at zero and four, the probability of

acceptance seems to be of less importance for obtaining large recruitment trees, especially for

values for μ of 2.4 and higher with acceptance probabilities of 0.8 and 1, as the (solid) lines

overlap for larger p (Fig 3).

We further investigated a situation where 60% of all invitations sent out are accepted (scenario

S7), to explore the influence of increased successful recruitment on the distribution of the number

of waves reached in recruitment trees. Around a mean number of successfully sent invitations of

1, the number of waves in a tree at the end of the simulation ranged from 0 to 35. Increasing the

number of successfully sent invitations resulted in lower numbers of waves reached by recruit-

ment trees (S3 Fig). This can be explained by the termination of recruitment when a number N of

recruitees was exceeded. If more recruitees enter the sample in each wave, the recruitment tree

becomes wider and reaches N with a smaller number of waves.

Remarkably, when we assumed that more participants send out 2 or 3 invitations than 0 or

4, i.e., if the beta-binomial distribution was unimodal (scenarios S10 to S14), the mean number
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of invitations can be lower to reach the same probability of a large recruitment tree (Fig 3, and

S2B Fig in supplementary information). This holds for simulations where the probability of

acceptance of an invitation was at least 0.4. Fig 3 also shows, in situations with a unimodal

beta-binomial distribution, that the probability of obtaining a large tree can approach 1 for sit-

uations with a high mean μ and a probability of invitation acceptance of at least 0.8. Further-

more, the probability of acceptance seems to influence the probability of obtaining a large tree

for all values of μ (i.e., the dashed lines do not overlap in Fig 3). Our simulations suggest that

for a given mean number of invitations it is more effective to motivate participants to send out

at least one invitation, compared to a situation where most participants do nothing and a

smaller group sends out c invitations.

Exploiting asymmetric differences in recruitment

In scenarios S15 to S18, we explored how differences in who mixes with whom can be used to

reach a higher proportion of large recruitment trees, and how this affects the sample composi-

tion. Increasing the probability that females only recruit females and academics only recruit

academics (scenario S17) slightly increased the number of recruitees, and reached large

Fig 3. Increased number of invitations sent and probability of acceptance. Solid lines show probability of a large tree for different values

of μ and a high σ2, as observed in the data (scenarios S5 to S9). The dashed lines show the same, but now assuming the lowest possible σ2 for

each μ (scenarios S10 to S14).

https://doi.org/10.1371/journal.pone.0207507.g003

Stochastic model and respondent-driven recruitment

PLOS ONE | https://doi.org/10.1371/journal.pone.0207507 November 15, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0207507.g003
https://doi.org/10.1371/journal.pone.0207507


recruitment trees within a lower number of waves, compared to simulations based on the data

(scenario S15) and random mixing parameters (scenario S16). Large recruitment trees were

Fig 4. Scenario analyses of mixing behaviour. We ran simulations starting with 100 seeds with characteristics

randomly drawn from the observed data (scenarios S15 to S17) and 100 active seeds (scenario S18), 1000 runs per seed.

The boxplots show the variability between runs. The legend refers to scenarios S15 to S18 described in Table 3. (A)

Number of recruitees in recruitment trees in one simulated data set; (B) wave reached by recruitment trees in one

simulated data set. Plots C to E show, for each wave of large recruitment trees, the variability in composition of each

simulated data set, with (C) proportion of females, (D) age group 60+ and (E) having an academic education. A green

cross indicates, for each wave, the mean proportion over all simulated data sets.

https://doi.org/10.1371/journal.pone.0207507.g004
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reached even faster when simulations were additionally started with 100 active seeds (scenario

S18; see Fig 4A and 4B).

With random mixing (scenario S16: no correlation between recruiter and recruitee), an

equilibrium was reached with a lower number of waves than when mixing proportions were

stratified by waves as observed in the data (scenario S15), or mixing where participants had an

increased preference for recruiting recruitees with the same characteristics (scenario S17; see

Fig 4C–4E). With random mixing (scenario S16), the mean proportions of the three character-

istics, over all simulated data sets, did not change more than 2% after wave 1. For mixing

behaviour based on the data (scenario S15), and mixing behaviour where participants have a

strong preference to invite similar others (scenario S17), equilibrium was attained at wave 4

for the proportions female and academic education. However, in scenario S15, no equilibrium

was reached within 10 waves for the age group of 60 years and older. If simulations started

with a random sample of seeds (scenario S16), strong assortative mixing of females and partici-

pants with an academic education eventually led to proportions of 1 in the sample (i.e., recruit-

ers only invited recruitees with the same characteristics). If simulations started with seeds with

these characteristics (scenario S18, with mixing parameters of 1 for females and academic edu-

cation), the sample only included participants with the same characteristics.

Fig 5. Composition per wave for negative vaccine beliefs. We ran simulations starting with 100 seeds with characteristics randomly

drawn from the observed data (scenarios S15 to S17) and 100 active seeds (scenario S18), 1000 runs per seed. The boxplots show the

variability between runs. The legend refers to scenarios S15 to S18 described in Table 3. A green cross indicates, for each wave, the mean

proportion over all simulated data sets.

https://doi.org/10.1371/journal.pone.0207507.g005
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The mean proportion of negative vaccine beliefs in each wave did not change more than 2%

after wave 1 for simulations based on mixing behaviour as observed in the data (scenario S15;

see Fig 5). With random mixing (scenario S16), preferred mixing (scenario S17), and with sim-

ulations additionally started with active seeds (scenario S18), equilibrium was attained at wave

1. The logistic regression analysis showed significant influence of sex and age on having a posi-

tive or negative vaccine belief (see S6 Table). However, the changes over waves in the com-

bined characteristics of individuals (e.g., the number of females in the age group 60 years and

older with an academic education) were small, and therefore did not lead to large differences

over waves in the proportion of individuals with a negative vaccine belief.

Discussion

This is the first study, to our knowledge, where a simulation model and empirical data are

used to analyse factors specifically important for the success of online respondent-driven

recruitment. We formulated the recruitment process as a simulation model and used empirical

data to quantify parameters. We included heterogeneous recruitment behaviour into our

model that depended on individual characteristics. By analysing the impact of changes in

model parameters on recruitment, we were able to investigate thresholds for successful peer

recruitment and obtain evidence based guidance for future implementation of online RDD.

One main finding is that for some parameter combinations, it is more effective if partici-

pants send out any number of invitations between 1 and 4 for reaching large recruitment trees,

than a situation where the majority of participants does nothing and a low proportion sends

out all four invitations. Also, in the former situation, the probability of acceptance appeared to

be of relevance for obtaining large recruitment trees for all values of the mean number of invi-

tations. In the latter situation, the probability of acceptance seemed to be of less importance,

especially for high values of the mean. In the observed data, the probability of invitation accep-

tance by invitees (0.19) was too low, and even with increasing the mean number of invitations

to a maximum value of 4, large recruitment trees could not be obtained. Here, the average

number of successful invitations stayed below 1, and therefore only small recruitment trees

occurred.

We explored the influence of different mixing behaviour on the recruitment process, by

choosing a combination of parameter values that led to mean numbers of successful invitations

above the threshold. With assortative mixing, and by starting with seeds active with sending

invitations, large recruitment trees are reached faster, within a lower number of waves, com-

pared to random mixing. Nevertheless, assortative mixing (e.g., females only invite other

females) led to samples with an overrepresentation of participants with specific characteristics,

and equilibrium is reached slower, compared to random mixing. In practice, random recruit-

ment (i.e., participants invite persons randomly from their total pool of contact persons) is dif-

ficult to ensure [16, 23], but not necessary in case RDD is used for finding other cases [2]. The

observed data showed correlations for the three characteristics that increased over consecutive

waves. This indicates a tendency of recruitees to ‘copy’ the recruitment behaviour of their

recruiters. When using RDS estimators, which are often based on a Markov chain model, to

estimate proportions of population characteristics, recruitees with certain characteristics who

have a higher probability of being recruited receive a larger weighting factor. However, a viola-

tion of the first-order Markov process not only influences the point at which equilibrium is

reached (as our simulations showed), it can also influence RDS estimations of the population

composition [15].

Parallels exist between modelling the peer recruitment process and the spread of infectious

diseases. An analogy is that the recruitment process takes places in waves, which are
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comparable with generations of infected in an epidemic process. We simulated the effect of an

increased number of invitations sent and probability of acceptance on the probability of

obtaining a large recruitment tree. This is in essence the probability of a major outbreak in a

multi-type branching process, where the average number of accepted invitations determines

the reproduction number of the branching process. We showed that large recruitment trees

were reached more often when starting with active seeds. This is similar to stochastic epidemic

models where a large outbreak of an infectious disease is more likely to occur if the index case

is a high-risk individual or a superspreader [24]. A difference with transmission models is that

in our peer recruitment model individuals have a maximum number of invitations and are

therefore restricted in the number of individuals that they can invite, while in transmission

models the number of secondary infections is not limited.

Our simulations were based on a data set collected during an online RDD survey. During

this study, participants were asked to invite contact persons they had physically met in the past

two weeks. Assuming that participants invited contact persons whom they actually met, the

simulation results are relevant for online RDD studies that sample contact networks relevant

for the transmission of respiratory pathogens. A comparison with a typical RDS study would

not be justified, since the ratio of seeds to recruitees is different in RDS data sets with the aim

to obtain accurate population estimates. A future RDD survey requires a combined approach

to reach ongoing peer recruitment and large recruitment trees. When the mean number of

invitations sent out by participants is limited, it is important that the acceptation of invitations

is high. More information is needed on how to improve peer recruitment in practice. One way

to learn more about ways to stimulate peer recruitment is to ask participants directly about the

reasons why they do or do not invite others, e.g., as part of a questionnaire or in a follow-up

study. However, this will result in information from those participants who are inclined to par-

ticipate and invite others, and is therefore biased. It would be particularly important to obtain

information about individuals who do not participate, but this is obviously much more diffi-

cult as they do not take part in the first place. A similar approach is to conduct proper forma-

tive research before the actual data collection, to choose the best way to invite others and the

most appealing (monetary) incentives, but also by sending reminders and using technical

innovations to make participation as easy as possible [25, 26].

It should be kept in mind that models always represent a simplification of reality. We

assumed that the probabilities of accepting an invitation by invitees were dependent on the

characteristics of the recruiter, not on those of the invitee. This adds uncertainty to our simula-

tions, and may be one the factors why the simulation results are not fully in agreement with

the observed data. We require more information on the invitees who did not participate. Such

information can be collected by asking the participants more details about the persons they

invite. The other limitation concerns the data itself, these were just one realization of the

recruitment process and therefore provide limited information about the process in reality.

Furthermore, we used data from an online survey, which limits the generalizability of our find-

ings to offline respondent-driven studies. Moreover, during this online RDD survey, seeds

were recruited from participatory surveillance panels that were not representative for the gen-

eral Dutch population in terms of sex, age and educational level. We did perform two other

pilot studies using RDD [27, 28], but both samples consisted of small numbers of participants

and involved mainly university students of one age group.

In our model, the maximum number of invitations was kept constant (c = 4) to reflect the

present practice in online RDD as closely as possible. A larger number of maximum invitations

per recruiter will generally lead to a larger number of invitations sent out [13], but the extent

to which this happens is unknown. The marginal benefits of setting a higher number of invita-

tions are likely to be decreasing, as the number of invitations is also dependent on the number
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of family members, friends and acquaintances that a recruiter is able to invite. Some partici-

pants may have few close contact persons who they can invite, while others have many.

Although the branching process describing recruitment may also be studied using an ana-

lytic approach (e.g., Fig 1 can be reproduced using an analytic solution), we chose to use a sim-

ulation model to be able to include population heterogeneity. Although a simulation model

does not provide exact analytic results, it is more flexible for incorporating heterogeneity and

correlations between model variables. To illustrate model applicability, we included vaccine

belief in the model to investigate the influence of RDD on the proportion of individuals with

negative beliefs in each wave. Any other individual characteristic could be added to the model

in a similar way, in order to understand the influence of recruitment behaviour on the sample

composition. In a next step, we plan to add more complexity to the model by considering,

among others, more covariates of participants (e.g., number of contact persons, infection sta-

tus, and the behaviour of participants towards prevention programs).

By combining a simulation model with empirical data, we were able to explore the condi-

tions for obtaining large recruitment trees and to investigate how the size and structure of

recruitment trees are influenced by heterogeneous recruitment behaviour of participants. The

presented model is a helpful tool that can assist public health professionals with preparing

research or contact tracing using online RDD. In particular, the simulation model can provide

input on the required mean number of successfully sent invitations to reach large recruitment

trees, a certain sample composition or a certain number of waves.
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