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Theoretical models for the coefficient of thermal
expansion (CTE) first proposed in the 1970s are
expanded upon, allowing them, for the first time,
to be implemented over a wide temperature range.
The models are of interest because they predict the
effects of the changes in the crystal lattice spacing and
crystallite modulus on the CTE. Hence, they can in
turn be used to investigate the influence of pressure
and irradiation on the CTE. To date, typographical
and mathematical errors and incomplete or conflicting
assumptions between the various papers had made
the complex mathematical formulations difficult, if
not impossible, to follow and apply. This paper has
two main aims: firstly to revisit and review the
CTE models, correcting the errors and compiling
and updating various input data, secondly to use
the revised models to investigate the effect of
loading and irradiation on the CTE. In particular, the
models have been applied to data for natural and
highly orientated pyrolytic graphite and compared
with experimental data, giving an insight into the
influence of temperature, loading and irradiation on
both single crystal and polycrystalline graphite. The
findings lend credence to postulated microstructural
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mechanisms attributed to the in-reactor behaviour of nuclear graphite, which finds a wide use
in predictive multiscale modelling.

1. Introduction
Significant property and dimensional changes are exhibited by polycrystalline graphite subjected
to fast neutron irradiation [1] and high pressure [2]. Of particular interest are the changes to the
coefficient of thermal expansion (CTE). It is postulated that changes to the CTE in polycrystalline
graphite under loading and irradiation are related to a combination of changes to: the crystallites,
the porosity, the crystal orientation, the microstructural stiffness or more likely a combination
of these factors [3,4]. To separate out these effects, it is therefore important to understand and
define the possible contribution that crystal CTE changes have on the bulk CTE. To this end, Kelly
[5] derived several theoretical models capable of predicting the CTE of a graphite crystal as a
function of temperature and crystal lattice spacing [6–13]. Unfortunately, to date, these theoretical
models have not been widely taken up as typographical errors and incomplete or conflicting
assumptions between the various papers make the complex mathematical formulations difficult,
if not impossible, to follow and apply.

This paper revisits and reviews these CTE models, correcting the errors as well as compiling
and updating various model input data. The models are used to investigate the effect of loading
and irradiation on the CTE, and are compared with available experimental data. In particular,
the models have been applied to data for natural and highly orientated pyrolytic graphite and
compared with experimental data, giving an insight into the influence of temperature, loading
and irradiation on both single crystal and polycrystalline graphite.

2. Development of a graphite semi-continuumcoefficient of thermal expansion
model

The relationship between crystal strains eij and crystal stresses τij are defined by the Cartesian
co-ordinate system, given in figure 1a, with the z-axis parallel to the hexagonal axis of the crystal
c-axis as follows:
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The stresses τij are defined as the force acting on unit area parallel to the ith direction, the normal
to the unit area being in the jth direction. The matrix elements, Sij, are the elastic compliance
constants. This matrix can be inverted to obtain the elastic stiffness constants, Cij, as given below:
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Figure 1. (a) Neighbouring basal layers of graphite; coloured atoms emphasize the offset between ABAB basal planes.
(b) Graphite crystal lattice and first Brillouin zone, a= 0.246 nm, d = 0.335 nm [14,15]; the ‘equivalent cylinder’ is shown
dashed. (Online version in colour.)

The relationships between the compliance and stiffness constants are:

S11 = C11C33 − C2
13

(C11 − C12)X
,

S33 = C11 + C12

X
,

S13 = −C13

X
,

S12 = C2
13 − C12C33

(C11 − C12)X
,

S44 = 1
C44

,

S66 = 2
C11 − C12

,

where
X = C33(C11 + C12) − 2C2

13. (2.3)

The stiffness constants for a graphite crystal are given in table 1 of appendix A; these were
obtained using Born’s long-wave method [14] and local density approximation (LDA) [15]. Owing
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to the crystal structure in which atoms within layers are held together by strong covalent bonding,
whereas bonding between layers is via weak van der Waals bonds, the values of the stiffness
constants perpendicular, C33, and parallel, C11, to the basal planes are different by orders of
magnitude. The shear components C44 and C66 = (C11 − C12)/2 are also small.

The most thermodynamically stable form of graphite crystal is the ABAB hexagonal stacking,
giving a theoretical density of 2.266 × 103 kg m−3. The lattice a-spacing is 0.1415 nm and the
c-spacing is 0.335 nm—calculated using LDA [15]; the lattice d-spacing is half that of the c-spacing.

The development of a semi-continuum model is based on the consideration of the free energy,
F, in a unit cube of graphite crystallites in a thermally dilated state, assuming that there are no
shear strains as follows:

F = U0 + 1
2

(e2
xx + e2

yy)C11 + 1
2

C33e2
zz + C12exxeyy + C13ezz(exx + eyy)

+ kT
∫∫∫

BZ

∑
p

ln
[

1 − exp
(

−hvp

kT

)]
d3σ , (2.4)

where the first term, U0, is the energy/unit volume at absolute zero temperature in the
unrestrained state; the next four terms are the elastic strain energy density; and the last term
is the thermal energy density of the first Brillouin zone, where

vp is the frequency of the pth vibrational mode (Hz),
k is Boltzmann’s constant (1.38064852 × 10−23 J K−1),
h is Planck’s constant (6.626070040 × 10−34 J s−1), and
T is the absolute temperature (K).

The integral is over the first Brillouin zone of the graphite crystal structure [16,17], i.e. the
reciprocal lattice space between two adjacent basal planes; see figure 1b. Note that there must
be a whole number of waves, denoted by the wavenumber, in the x and y planes. Therefore, the
wavenumber z varies from ±1/2d = ±1.49 × 109 m−1. To simplify the integration, the hexagonal
prismatic Brillouin zone has been approximated as a cylinder with an equivalent radius,
defined as:

σm = 1
πa

√
2π√

3
. (2.5)

We use the short-hand notation d3σ ≡ dσxdσydσz.
The integral will be performed in cylindrical co-ordinates (σa, φ, σz) with σa defined as σa =√

σ 2
x + σ 2

y , tranforming to cylindrical co-ordinates and assuming cylindrical symmetry leads to

d3σ = 2πσadσadσz.
It should be noted that previous authors [9] did not include the integral over the Brillouin

zone at this stage of the derivation. In this paper, we explicitly separate the summation over
frequencies from the summation over modes (integration over the first Brillouin zone) for clarity.
This also removes confusion about the dimensionality of the different terms in equation (2.4).

The principal graphite crystallite coefficients of thermal expansion required are given by the
differentials

αc = ∂ezz

∂T

and αa = ∂exx

∂T
= ∂eyy

∂T
.

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

At equilibrium, the free energy, F, given by equation (2.4) is a minimum with respect to the strains.
Thus, noting that vp is a function of strain, differentiating equation (2.4) with respect to ezz and exx
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and equating each to zero leads to
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(2.7)

where [γp]ii ≡ −(1/vp)(∂vp/∂eii), which are the mode Grüneisen [18] parameters describing the
frequency shifts due to strain which have previously been referred to as the anharmonic terms. In
addition, the equations have been simplified by using the fact that, due to symmetry, the strains
in the crystal basal planes are equal, i.e. exx = eyy.

It will be shown analytically later that the derivatives of the elastic constants are of greater
magnitude than the elastic constants themselves; however, the elastic strains are very small, and
so terms that are higher order in the elastic strains can be neglected. Thus, equation (2.7) can be
simplified to
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∫∫∫
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(2.8)

Previously, the assumption was made that the higher order strain terms given above are
negligible, although this is not discussed in [9].

Equations (2.8) can be solved for exx and eyy and then differentiated with respect to temperature
to give the principal crystal CTE as

∂ezz

∂T
= αc =

(
C11 + C12

C33(C11 + C12) − 2C2
13

) ∫∫∫
BZ

∑
p

k
(

hvp

kT

)2 exp(hvp/kT)[γp]zz

{exp(hvp/kT) − 1}2 d3σ

−
(

2C13

C33(C11 + C12) − 2C2
13

) ∫∫∫
BZ

∑
p

k
(

hvp

kT

)2 exp(hvp/kT)[γp]xx

{exp(hvp/kT) − 1}2 d3σ (2.9)
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The elastic stiffness constants, Cij, can be related to the elastic compliance constants, Sij, by
equations (2.3), thus equations (2.9) and (2.10) become

αc = S33
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and

αa = (S11 + S12)
∫∫∫

BZ

∑
p

k
(

hvp
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)2 exp(hvp/kT)[γp]xx
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A model for the frequencies of crystallite vibration modes, vp, is provided by Komatsu &
Nagamiya [19,20], as described in the next section.

3. Graphite vibration model
To solve for αc and αa, we require the frequency of the vibrational modes in the longitudinal,
transverse and out-of-plane principal directions and also the anharmonic modes — themselves
functions of the principal vibrational frequencies. Below, we summarize the Komatsu [20] model
for calculating the principal frequencies; this assumes that the graphite crystallites can be
modelled as elastic extensional vibrations in a series of n thin plates [21,22]. The present authors
modify Komatsu’s notation [20] to match the rest of this paper. The equations for the elastic
extensional vibrations in a series of n thin plates are

∂2un

∂t2 = 1
ρ(1 − ν2)

{
C11

∂2un

∂x2 + C11 − C12

2
(1 − ν)

∂2un

∂y2 + C11 − C12

2
(1 − ν)

∂2vn

∂x∂y

}
,

∂2vn

∂t2 = 1
ρ(1 − ν2)

{
C11

∂2vn

∂y2 + C11 − C12

2
(1 − ν)

∂2vn

∂x2 + C11 − C12

2
(1 − ν)

∂2un

∂x∂y

}

and
∂2wn

∂t2 = −δ2

[
∂4wn

∂x4 + 2
∂4wn

∂x2∂y2 + ∂4wn

∂y4

]
+ C33

ρd2 (wn+1 + wn−1 − 2wn),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

where un, vn, wn are the displacements at a lattice layer point (x, y) in the x-, y- and z-axis
directions, differentiated with respect to time, t; ν is Poisson’s ratio, ρ is the density and d is
the graphite interlayer spacing; δ is related to the bending modulus of a plate. Kelly & Walker [9]
give a value of δ = 6.11 × 10−7 m2 s−1. In the third equation of (3.1), the second term on the r.h.s.
accounts for the interaction between neighbouring plates.

Komatsu [20] modified equations (3.1) to account for shear stress, obtaining the following
terms:
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ρ(1 − ν2)

{
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2
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∂2un
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}
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2
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2
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∂x∂y

}

+ C44

ρd2 (vn+1 + vn−1 − 2vn) + C44

2ρd

(
∂wn+1

∂y
− ∂wn−1

∂y

)

and
∂2wn

∂t2 = −δ2

[
∂4wn

∂x4 + 2
∂4wn

∂x2∂y2 + ∂4wn

∂y4

]
+ C33

ρd2 (wn+1 + wn−1 − 2wn)

+ C44

ρ

(
∂2wn

∂x2 + ∂2wn

∂y2

)
+ C44

2ρd

(
∂un+1

∂x
− ∂un−1

∂x
+ ∂vn+1

∂y
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)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

The longitudinal (transverse) velocity is defined as the square root of the pre-factor in front of
the x (y) second derivative term in the un displacement equation. Assuming that Poisson’s ratio
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Figure 2. Examples of vibration modes plotted over the first Brillouin zone (frequency νi versus Brillouin radius σa). Note for
each vibration mode the curves overlap except for v3, where the difference is small. (Online version in colour.)

is zero, the velocity of the longitudinal wave, VL, can be simplified to

VL =
√

C11

ρ
. (3.3)

Similarly, the velocity of the transverse wave VT is given by

VT =
√

C11 − C12

2ρ
. (3.4)

Equations (3.2) are solved using the conventional substitution in reciprocal space, i.e. in the first
Brilliouin zone

un = U exp{2π i(σxx + σyy + σznd − vUt)},
vn = V exp{2π i(σxx + σyy + σznd − vVt)}

and wn = W exp{2π i(σxx + σyy + σznd − vWt)},

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

where σx, σy and σz are the wavenumbers as discussed previously and vU, vV and vW are
frequencies of the vibrational mode. Komatsu [20] solved for the principal vibrational modes,
vp, which are linear superpositions of vU, vV and vW , leading to

v1 =
√

C11σ
2
a

ρ
+ C44

ρπ2d2 sin2(πσzd),

v2 =
√

(C11 − C12)σ 2
a

2ρ
+ C44

ρπ2d2 sin2(πσzd)

and v3 =
√

4π2δ2σ 4
a + C33

ρπ2d2 sin2(πdσz) + C44σ
2
a

ρ
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

where again σ 2
a = σ 2

x + σ 2
y . It should be noted that, in the derivation, Komatsu [20] assumes that

τ = C44/ρ is small and therefore cross terms with τ as a pre-factor are ignored.
The three vibration modes given in equations (3.6) are insensitive to σz. For illustration, three

of the vibration modes are plotted in figure 2 over the first Brillouin zone for different values of σz.
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Figure 3. Anharmonic functions [γp]zz versus Brillouin radiusσa for different values ofσz . Note the largest contribution to CTE
is from [γ3]zz for σz = ±1/2d, the centre-top and centre-bottom of the Brillouin zone, with the smallest contribution when
σz = 0. (Online version in colour.)

Equations (3.6) are the equations for lattice vibration used previously [9]. The anharmonic
functions for the longitudinal, transverse and out-of-plane principal modes are as follows:

[γ1]ii = − 1
v1

∂v1

∂eii
= −1

2

[
C11σ

2
a

ρ
+ C44

ρπ2d2 sin2(πσzd)

]−1

×
{

σ 2
a
ρ

∂C11

∂eii
+ sin2(πσzd)

ρπ2d2
∂C44

∂eii

}
,

[γ2]ii = − 1
v2

∂v2

∂eii
= −1

2

[
(C11 − C12)σ 2

a
2ρ

+ C44

ρπ2d2 sin2(πσzd)

]−1

×
{

σ 2
a

2ρ

∂(C11 − C12)
∂eii

+ sin2(πσzd)
ρπ2d2

∂C44

∂eii

}

and [γ3]ii = − 1
v3

∂v3

∂eii
= −1

2

[
4π2δ2σ 4

a + C33

ρπ2d2 sin2(πdσz) + C44σ
2
a

ρ

]−1

×
{

8π2δσ 4
a

∂δ

∂eii
+ sin2(πdσz)

ρπ2d2
∂C33

∂eii
+ σ 2

a
ρ

∂C44

∂eii

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

To evaluate these, the differentials of the elastic constants ∂Cij/∂ekk and ∂δ/∂eii are required
with respect to the strain in the longitudinal and transverse in-plane x-axis and the out-of-plane
z-axis. The values used in our simulations are given in table 2 (appendix A). In this paper, only the
anharmonic functions [γ3]zz, in their full form, are used in the derived expressions for αc. The in-
plane [γ1]xx and [γ2]xx anharmonics are simplified in the case of αa, and in effect can be regarded
as constants.

The anharmonic functions [γp]zz are plotted as a function of σa for different values of σz in
figure 3.

The differentials of the anharmonic functions with respect to exx are discussed later with
reference to the derivation of αa.
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4. Coefficient of thermal expansion perpendicular to the basal plane—αc
Having obtained expressions for the orthogonal vibrations and anharmonic modes, expressions
for the CTE can be derived using the semi-continuum model over a range of temperatures to
compare the model with experimental data. Firstly, we consider the thermal expansion coefficient
perpendicular to the basal plane.

It can be seen from table 1 (appendix A) that S13 is two orders of magnitude smaller than S33,
thus equation (2.11) simplifies to

αc = S33

∫∫∫
BZ

∑
p

k
(

hvp

kT

)2 exp(hvp/kT)[γp]zz

{exp(hvp/kT) − 1}2 d3σ . (4.1)

There are three possible vibration modes to consider when calculating αc: in-plane longitudinal
mode, in-plane transverse mode and out-of-plane mode. Previously it has been argued that only
the out-of-plane mode is significant. Unfortunately, the reasoning behind this assumption in
[9] is unclear and there appear to be mistakes in the references and supporting data. However,
due to the large difference in stiffness between the in-plane C11 (1060 GPa) and the out-of-plane
C33 (36.5 GPa) it is not unreasonable to assume that the out-of-plane strain ezz would have less
influence on the values of C11 and C12 than it would have on C33. This assumption appears to be
justified by the implementation of the theory as demonstrated below. The final step is to perform
the integral over a cylinder of equivalent volume to the true Brillouin zone,

αc = −πS33k
(

h
kT

)2 ∫ σm

0

∫ 1/2d

−1/2d

× σa{8π2δσ 4
a (∂δ/∂ezz) + (sin2(πdσz)/ρπ2d2)(∂C33/∂ezz) + (σ 2

a /ρ)(∂C44/∂ezz)}
{exp(h/kT

√
4π2δ2σ 4

a + (C33/ρπ2d2) sin2(πdσz) + C44σ
2
a /ρ) − 1}2

× exp

⎛
⎝ h

kT

√
4π2δ2σ 4

a + C33

ρπ2d2 sin2(πdσz) + C44σ
2
a

ρ

⎞
⎠dσz dσa. (4.2)

Data giving the changes in graphite crystal CTE as a function of temperature can be obtained by
direct thermal expansion measurements or via changes to lattice spacing using X-ray diffraction
(XRD). Measurements have been obtained using either naturally occurring graphite crystals or
highly oriented pyrolytic graphite (HOPG). The quality of these measurements depends on the
graphitic perfection of the sample used, which is usually defined using a p-factor [23,24]; p-factors
range from zero to unity, representing the degree of cryptographic order. Measurements made
on various graphitic structures with p-factors between 0 and 0.7, including irradiated graphite
by Steward et al. [25,26], show that curves of changed interlayer d-spacing versus temperature
are parallel to one another between ∼0 and ∼2600 K, indicating that the thermal expansion
coefficients, which are related to the slopes of these curves, are unaffected by significant disorder
of the graphite lattice. This observation agrees with the estimates of change in CTE due to strain
and irradiation discussed later in this paper.

Morgan [27] presents a comprehensive set of XRD measurements giving changes to αa and αc

taken from Kellett & Richards [28], Nelson & Riley [29], Yang [30], Kellett et al. [31] and Baskin &
Meyer [32].

Kelly [33] also presents a dataset of crystal CTE measurements, but there is confusion with
regard to the source of some of the data. Figure 4 brings together various datasets for αc from
Entwisle [34], Bailey & Yates [35], Yates et al. [36], Harrison [37], Nelson & Riley [29] and Morgan
[27]. Where the measurement error on data are available error bars are given; most of the data
originates from XRD data on graphitic materials with a p-factor of 0.2. The prediction of αc using
equation (4.2) is also included. While equation (4.2) fits well at low values to medium values of
temperature, it does not appear to capture the measured CTE increase at higher temperatures.
Also plotted is an attempt to include the contribution to the CTE of the optical modes of the
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Figure 4. Comparison of fit of the theoretical, semi-continuum model with experimental data; see [27,29,34–37]. (Online
version in colour.)

system. It is possible to make the simplifying assumption [6] that extending the upper integration
limit to

√
2σm has the effect of including contributions from both the in-plane acoustic and the

higher frequency optical mode. It is difficult to say with current experimental data whether the
inclusion of optical modes produces a better fit.

The behaviour of the thermal expansion coefficient can be understood in the high and low
temperature limits by examining the leading order behaviour for hv3 � kT and hv3 � kT.

For low temperatures, hv3 � kT, the leading order behaviour is

αc ≈ −πS33k
(

h
kT

)2 ∫ σm

0

∫ 1/2d

−1/2d
σa

{
8π2δσ 4

a
∂δ

∂ezz
+ sin2(πdσz)

ρπ2d2
∂C33

∂ezz
+ σ 2

a
ρ

∂C44

∂ezz

}

× exp

⎛
⎝− h

kT

√
4π2δ2σ 4

a + C33

ρπ2d2 sin2(πdσz) + C44σ
2
a

ρ

⎞
⎠dσz dσa. (4.3)

For high temperatures, hv3 � kT, the leading order behaviour is

αc ≈ −πS33k
∫ σm

0

∫ 1/2d

−1/2d
σa

{
8π2δσ 4

a
∂δ

∂ezz
+ sin2(πdσz)

ρπ2d2
∂C33

∂ezz
+ σ 2

a
ρ

∂C44

∂ezz

}

×
(

4π2δ2σ 4
a + C33

ρπ2d2 sin2(πdσz) + C44σ
2
a

ρ

)
dσz dσa. (4.4)

We see that as the temperature tends to zero the thermal expansion coefficient exponentially
approaches zero, whereas at high temperatures the thermal expansion coefficient loses all
temperature dependence and becomes simply a constant.

The sensitivities of the predictions of equation (4.2) to the differentials with respect to strain of
δ, C33 and C44 are given in appendix B. Doubling ∂δ/∂ezz has a significant effect on the prediction
but the effect of halving the value is much less, i.e. the influence is nonlinear. Changing ∂C33/∂ezz

by ±1 × 1011 Pa (a few per cent) increases/decreases the prediction by the same amount, whereas
increasing the value of ∂C44/∂ezz by a factor of 4 increases the prediction significantly; however,
reducing it by a factor 10 makes only a small difference, i.e. again the influence is nonlinear.

5. Coefficient of thermal expansion parallel to the basal plane—αa
The CTE, αa, is based on equation (2.12). As before, in deriving an expression for the CTE
perpendicular to the basal plane, the second term in equation (2.12) can be ignored by reasoning
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that S13 is relatively small, thereby making this term insignificant. Thus, the thermal strains within
the basal planes are assumed to be independent of those between layers.

Thus equation (2.12) becomes

αa = (S11 + S12)
∫∫∫

BZ

∑
p

k
(

hvp

kT

)2 exp(hvp/kT)[γp]xx

{exp(hvp/kT) − 1}2 d3σ . (5.1)

Noting that the first terms inside the square brackets for the three vibrational modes given in
equations (3.6) are dominant, it was therefore assumed that the other terms could be ignored.
This assumption greatly simplifies the mathematics. The vibrational mode terms given by
equations (3.6) become

v1 =
√

C11

ρ
σa,

v2 =
√

(C11 − C12)
2ρ

σa

and v3 = 2πδσ 2
a .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

The anharmonic terms can then be easily calculated for the three modes, giving

[γ1]xx = − 1
v1

∂v1

∂exx
= − 1

2C11

∂C11

∂exx
,

[γ2]xx = − 1
v2

∂v2

∂exx
= − 1

2(C11 − C12)
∂(C11 − C12)

∂exx

and [γ3]xx = − 1
v3

∂v3

∂exx
= −1

δ

∂δ

∂exx
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

The integral on the right-hand side of equation (5.1) is accomplished using various substitutions,
defining Debye characteristic temperatures for the longitudinal, transverse and out-of-plane
directions, θL, θT and θo, as

θL

T
= xL = h

kT

√
C11

ρ
σm = 2562

T
,

θT

T
= xT = h

kT

√
(C11 − C12)

2ρ
σm = 1650

T

and
θo

T
= xo = h

kT
2πδσ 2

m = 1120
T

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.4)

Treating each term individually we have that

αa = αa1 + αa2 + αa3 , (5.5)

with the in-plane longitudinal modes

αa1 = (S11 + S12)k
(

h
kT

)2
2π

∫ 1/2d

−1/2d
dσz

∫ σm

0

(
−σ 3

a
2ρ

∂C11

∂exx

exp(h/kT
√

(C11/ρ)σa)
{exp(h/kT

√
C11/ρσa) − 1}2

)
dσa, (5.6)

giving

αa1 = −πρk(S11 + S12)
C11d

[
kT
h

]2 {( 1
C11

)
∂C11

∂exx

}
J3

(
θL

T

)
. (5.7)

The expression for the in-plane transverse modes, αa2 , is identical to the expression for αa1 , with
C11 replaced with C66 = 1

2 (C11 − C12),

αa2 = −πρk(S11 + S12)
C66d

[
kT
h

]2 {( 1
C66

)
∂C66

∂exx

}
J3

(
θT

T

)
. (5.8)
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For the out-of-plane transverse modes, we have

αa3 = (S11 + S12)k
(

h
kT

)2
2π

∫ 1/2d

−1/2d
dσz

∫ σm

0

(
−4π2δσ 5

a
∂δ

∂exx

exp(2πhδσ 2
a /kT)

{exp(2πhδσ 2
a /kT) − 1}2

)
dσa, (5.9)

giving

αa3 = − k(S11 + S12)
2dδ

[
kT
h

]{(
1
δ

)
∂δ

∂exx

}
J2

(
θo

T

)
, (5.10)

where J3(θL/T), J3(θT/T) and J2(θo/T) are Debye integrals of order 3 and 2 which can be solved
numerically as

Jn(xi) =
∫ xi

0

tnet

(et − 1)2 dt. (5.11)

It is possible to make the simplifying assumption [6] that including contributions from both the
in-plane acoustic and the higher frequency optical mode can be made by extending the upper
integral limit as follows:

θM =
√

2θL = 3623,

θQ =
√

2θT = 2334

and θN = 2θo = 2238.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.12)

The square root arises from the particular wavenumber–frequency relationships for the in-plane
mode. The contributions that each of equations (5.7), (5.8) and (5.10) makes to the total CTE,
assuming that C11

−1∂C11/∂exx = C66
−1∂C66/∂exx = δ−1∂δ/∂exx = 1, are given in figure 5. Solutions

are included for acoustic (θL, θT, θo) and acoustic plus optical (θM, θQ, θN) modes.
The resultant curves are slightly different from those previously published [6], which may

be related to some errors in the previous equations. Generally, the contributions to αa from the
longitudinal and transverse modes are similar in magnitude, while the magnitude of the out-
of-plane mode is larger, as would be expected. In all cases, the acoustic plus optical is smaller
in magnitude in the lower to mid-temperature range (between 0 and ∼ 1500 K) than for the
acoustic alone. This effect is larger in the case of the out-of-plane mode. These differences indicate
that combining the optical and acoustic modes results in less excitation in the lower to mid-
temperature ranges. Above ∼ 1500 K, the contributions from the two cases converge. This has
implications for the prediction of the basal plane CTE αa as discussed and shown in figure 6.

Kelly [6] derived values for terms C11
−1∂C11/∂exx, C66

−1∂C66/∂exx and δ−1∂δ/∂exx based on
assuming a Morse potential and ‘scientific judgement’ on coefficients as −8.2, −8.2 and 8.2,
respectively; however, his calculations are not outlined in any great detail. In addition, there are
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typing errors and omissions in the version of equations (5.7), (5.8) and (5.10) given in [6]. In this
paper, to obtain a reasonable fit by eye, it was found necessary to use values of −8.2, −8.2 and
5.47, respectively. Data from various references for αa, as discussed in §4 of this paper, are given
in figure 6 along with the prediction of αa obtained using equation (5.5).

Applying these values and summing the three expressions as equation (5.5), the following
comparisons with experimental data are obtained.

The fit to the data in figure 6 is very similar to that given by Kelly [6], although there is
significant scatter in the data; a much better experimental dataset would be required to justify
further optimization of equation (5.5). The initial negative CTE at low temperatures arises from
the interaction of the out-of-plane anharmonic modes with the two in-plane modes, whereas at
temperatures above about 300 K the in-plane modes start to dominate and αa becomes positive
around 675 K. With reference to figure 5, making the approximation of ignoring the optical
contribution gives a better fit to the data at low to mid-temperature ranges (between 0 and 1500 K)
and makes little contribution to the higher temperatures, above 1500 K.

6. Graphite crystal CTE model—Lennard-Jones approach to deriving a
relationship forαc

(a) The relationship between lattice d-spacing and temperature
To develop the methodology further, a relationship between lattice d-spacing and temperature is
required. This is obtained using fits to experimental data obtained from Nelson & Riley [29],

d = 1
2 (0.66915 + 18.7 × 10−6(T + 273) + 1.263 × 10−9(T + 273)2), (6.1)

Matuyama [38]

d = 0.33525 + 8.241 × 10−6(T + 273) + 1.03 × 10−9(T + 273)2 (6.2)

and Walker et al. [39]

d = 0.3358 + 9.52 × 10−6(T + 273). (6.3)

Taking the simple mean of the above fits gives

d = 0.3328 + 8.63 × 10−6T + 5.538 × 10−10T2. (6.4)
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These fits are shown in figure 7. The average fit implies that the d-spacing at absolute zero
and room temperature has values of 0.3328 nm and 0.3354 nm, respectively, compared with the
usually accepted value of 0.335 nm at ambient room temperature [14,15]. It is of course possible
to determine an equilibrium value of d from a calculation of the thermodynamically stable
crystal structure. We, however, decided to take an average from experimental data because, as
will become apparent later on, this lattice spacing temperature dependence is crucial for better
matching to experimental data at high temperatures.

(b) Lennard-Jones approach to deriving a relationship forαc

This approach is outlined in references [10–12] and starts with the Lennard-Jones-type
relationship for the potential energy between two atoms separated by distance d0,

E′ = −A

{
1
r6 − 1

2
r6

0
r12

}
, (6.5)

where r is the atomic separation, A = 2.43 × 10−78 Jm6 and r0 is a constant.
An approximation is required in which the carbon atoms are assumed to be distributed with

uniform density within a set of basal planes. This is achieved by integrating equation (6.5) over
the graphite crystal lattice to give the equivalent energy per unit volume of the lattice. Following
a methodology suggested by Crowell [40] gives

E = −2πσAN0

∫∞

0

x
(d2 + x2)3 dx + πσAN0r6

0

∫∞

0

x
(d2 + x2)6 dx, (6.6)

where σ = 1/q (q = 2.62 × 10−20 m2 is the area per atom in a basal layer [8]) and N0 = ρNa/M =
1.13 × 1029 atoms m−3 is the number of atoms per unit volume (graphite crystal density ρc =
2.26 g cm−3, Avogadro’s number Na = 6.022 × 1023 atoms or molecules per gram-mole, the
molecular weight of carbon M = 12.01 atomic mass units). The radial distance in the basal planes
is given by x.
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Solving equation (6.6) gives

E = πσAN0

2d4

[
1
5

( r0

d

)6
− 1

]
. (6.7)

The equilibrium spacing, d0, is given by ∂E/∂d = 0, which leads to

r6
0 = 2d6

0. (6.8)

The elastic modulus for a lattice spacing, d, perpendicular to the basal plane is given by the second
derivative of equation (6.7) with respect to strain between the basal planes, i.e.

C33(d) = ∂2E

∂e2
zz

= d2

(
∂2E
∂d2

)
= πσAN0

2d4

[
22
( r0

d

)6
− 20

]
, (6.9)

which gives an equilibrium value of

C33(d0) = 12πσAN0

d4
0

. (6.10)

Another important function is the derivative of the elastic modulus with respect to strain,

∂C33

∂ezz
= d3 ∂3E

∂d3 = πσAN0

d4

[
60 − 132

( r0

d

)6
]

, (6.11)

with an equilibrium value of(
∂C33

∂ezz

)
d0

= −204πσAN0

d4
0

= −17 C33(d0). (6.12)

Using the average relationship between temperature and lattice spacing d, given by equation (6.4),
the relationships given by equations (6.9) and (6.11) are shown in figure 8. Thus we obtain room
temperature values for C33 and ∂C33/∂ezz of 31.25 GPa and −531.7 GPa, respectively, which are
slightly lower than the accepted value of 36.5 GPa [15] for C33 and −600.0 GPa for ∂C33/∂ezz used
by Kelly & Walker [9].

If the crystal lattice is expanded from d0 to some other spacing d, equation (6.7) becomes

E = C33(d0)
24

[
2
5

(
d0

d

)10
−
(

d0

d

)4
]

. (6.13)
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Thus, equation (2.4) can be modified to

F = U0 + C33(d0)
24

[
2
5

(
d0

d

)10
−
(

d0

d

)4
]

+ kT
∫∫∫

BZ

∑
p

ln
[

1 − exp
(

−hvp

kT

)]
d3σ . (6.14)

Minimizing equation (6.14) gives

∂F
∂d

= C33(d0)
6

[
−d10

0
d11 + d4

0
d5

]
− 1

d

∫∫∫
BZ

∑
p

hvp

exp(hvp/kT) − 1
[γp]zzd3σ = 0. (6.15)

Noting that αc = (1/d)(∂d/∂T) and pre-multiplying by d before differentiating equation (6.15) with
respect to T gives

C33(d0)
6

[
10
(

d0

d

)10
− 4

(
d0

d

)4
]

αc =
∫∫∫

BZ

∑
p

k
(

hvp

kT

)2 exp(hvp/kT)[γp]zz

{exp(hvp/kT) − 1}2 d3σ . (6.16)

As previously discussed, in the case of deriving αc only the out-of-plane mode v3 is required.
It can also be argued [12] that the only significant term in the vibrational mode is the first one,
whereas the only significant term in the anharmonic term is the second one. This was justified by
stating that previous numerical modelling showed this to be true for the first model [11], meaning
it is reasonable that this would still hold true in this new approach. It should be noted that this
approximation cannot hold to zero wavenumber, as will be shown later. Applying this reasoning,
equations (3.6) and (3.7) simplify to

v3 = 2πδσ 2
a

and [γ3]zz = − sin2(πd0σz)

8ρπ4δ2d2
0σ

4
a

∂C33

∂ezz
.

⎫⎪⎪⎬
⎪⎪⎭ (6.17)

This simplifies equation (6.16) upon rearranging to

αc = − 6
C33(d0)

∂C33

∂ezz

[
10
(

d0

d

)10
− 4

(
d0

d

)4
]−1

h

8ρπ2δd3
0

1
T

∫ xm

0

exp(x)(
exp(x) − 1

)2 dx, (6.18)

with an upper integration limit defined as

xm = θo

T
= 2πhδσ 2

m
kT

= 1120
T

. (6.19)

The version of equation (6.18) derived [12] mistakenly has a denominator of 4 instead of 8;
however, this mistake is compensated for by an error in the lower integration limit as discussed
below. The integral in equation (6.18) does not converge for small values of x—the neglected
frequency terms in the approximation (equation (6.17)) are important in the small wavenumber
regime—it is therefore necessary to define a lower limit. It was originally assumed [11] that
the smallest value of σa at which the out-of-plane vibrations can be regarded as purely two
dimensional is at the point where the first term starts to become significant and equal to the
second term, leading to

C33(d0)

ρd2
0π

2
= 4π2δ2σ 4

o ,

giving

σ 2
o = 1

2π2d0δ

√
C33(d0)

ρ

and

xo = θ ′

T
= 2πhδσ 2

o
kT

= 169.61
T

. (6.20)

However, this lower limit underestimates the value of the Debye integral derived using the full
expressions for the out-of-plane vibration and its anharmonic by a factor of approximately 2.
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A lower limit of xo ≈ 0.083xm, θ ′ ≈ 93 K is required to give a good fit to available data. A smaller
limit will overestimate the Debye integral whereas a higher limit will underestimate the Debye
integral.

Equation (6.11) can be written in terms of equilibrium values as

∂C33

∂ezz
= − 1

34

(
∂C33

∂ezz

)
d0

[
10
(

d0

d

)4
− 44

(
d0

d

)10
]

. (6.21)

Equation (6.18) can now be solved to give

αc = 1
C33(d0)

(
∂C33

∂ezz

)
d0

(
6
34

)
[10 − 44(d0/d)6]
[10(d0/d)6 − 4]

h

8ρπ2δd3
0

1
T

{
exp(θo/T) − exp(θ ′/T)

[1 − exp(θo/T)][1 − exp(θ ′/T)]

}
,

(6.22)

which is plotted in figure 9 along with the previous model given by equation (4.2) for reference.
As before an attempt to include optical modes is included [6], by taking an upper limit of 2θo.

We can again examine the behaviour of the thermal expansion coefficient in the high and low
temperature limits by examining the leading order behaviour for θ ′, θ0 � T and θ ′, θ0 � T. It is
important to remember that θo > θ ′.

For low temperatures, θ ′, θ0 � T, the leading order behaviour is

αc = 1
C33(d0)

(
∂C33

∂ezz

)
d0

(
6
34

)
[10 − 44(d0/d)6]
[10(d0/d)6 − 4]

h

8ρπ2δd3
0

1
T

{
exp

(
− θ ′

T

)
− exp

(
− θo

T

)}
. (6.23)

For high temperatures, θ ′, θ0 � T, the leading order behaviour is

αc = 1
C33(d0)

(
∂C33

∂ezz

)
d0

(
6
34

)
[10 − 44(d0/d)6]
[10(d0/d)6 − 4]

h

8ρπ2δd3
0

(
θo − θ ′

θoθ ′

)
. (6.24)

We again see that, as the temperature tends to zero, the thermal expansion coefficient
exponentially approaches zero. However, at high temperatures, the thermal expansion coefficient
only has temperature dependence through the change in lattice spacing, d, with temperature.
This temperature dependence is responsible for the up-turn of the CTE at high temperatures,
which appears to be in good agreement with the data. Without it, the CTE would level off at high
temperatures just like the original continuum coefficient of thermal expansion model.
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Equations (5.5), (4.2) and (6.22) give methods of estimating crystal αa and αc, respectively, from
first principles without resorting to atomistic modelling. Furthermore, they allow for sensitivity
studies to be performed to determine the influence of crystal strain, modulus, temperature,
etc. on CTE. The sensitivity of this simplified methodology is mainly dependent on the ratio
C−1

33 (d0)(∂C33/∂ezz)d0 , which is (from equation (6.12)) equal to −17. Kelly & Duff [8] calculated this
ratio using a slightly different methodology based on the work of Agranovich & Semenov [41] and
Girifalco & Lad [42] to be −7.27 × 1011/38.6 × 109 = −18.8 and −6.04 × 1011/36.5 × 109 = −16.5,
respectively. Thus, the first ratio of 18.8 would overpredict αc by 10% and the second ratio would
underpredict by 3%.

7. Influence of loading polycrystalline graphite on individual crystal thermal
expansion

It has been observed that both mechanical applied loading of unirradiated polycrystalline
graphite [2] and irradiation creep strain [43] can induce a significant change in bulk CTE, with
tensile strains reducing CTE and compressive strains increasing CTE. The equation for αc derived
above can be used to investigate the effect of pressure on the thermal expansion coefficients of
graphite crystals [7], assuming a change in interlayer spacing. More recently, Marrow et al. [44]
measured the change in lattice d-spacing with loading using neutron diffraction and synchrotron
XRD. Taking the room temperature lattice d-spacing from [44] to be 0.3353 nm implies a maximum
strain of ∼0.015% associated with a bulk stain of 3000 µε. Assuming a Young’s modulus of
11.9 GPa [44], this implies a bulk stress loading of 35 MPa, which is a similar order to that given
in [2].

Modifying equation (6.22) to be a function of strain gives

αc = 1
C33(d0)

(
∂C33

∂ezz

)
d0

(
6
34

)
[10 − 44(1/εPT)6]
[10(1/εPT)6 − 4]

h

8ρπ2δd3
0

1
T

×
{

exp(θo/T) − exp(θ ′/T)
[1 − exp(θo/T)][1 − exp(θ ′/T)]

}
, (7.1)

where

εPT = ε(T) + ε(P), (7.2)
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Figure 11. Irradiation-induced changes to the lattice c-spacing (a) and a-spacing (b), reported by the various authors from the
UKAEA [45–47] and from NRG in Petten [48]. (Online version in colour.)

0
18

20

22

24

26

28

–0.5

–1.5

–1.0

–2.0

0

5 10 15

fluence (dpa)

20 25 0 5 10 15

fluence (dpa)

20 25

a c 
(×

 1
0–6

 K
–1

)

a 
(×

 1
0–6

 K
–1

)

ac 300°C

ac 350°C

ac 440°C

ac 400°C
ac predictions 400°C

ac predictions 550°C

ac predictions 750°C
aa predictions 400°C

aa 450°Caa 300°C

aa 350°C

aa 400°C

aa 440°C

aa 460°C

aa predictions 550°C
aa predictions 750°C

ac 450°C

ac 460°C

(a) (b)

Figure 12. Thermal expansion coefficients both perpendicular (a) and parallel (b) to the basal plane measured on irradiated
HOPG [1] and predictions using the NRG XRD data and equations (7.1) (a) and (5.5) (b). (Online version in colour.)

ε(T) is the lattice thermal strain, which can be calculated using equation (6.4), and ε(P) is the
lattice strain due to bulk loading. Predictions of αc are plotted in figure 10 over the range 20
to 1000 K.

From these calculations, it is clear that the change in crystal strain measured by Marrow et al.
[44] is unlikely to account for the change in bulk CTE due to loading. It is also clear that crystal
strains greater than approximately 1% are required to lead to significant changes in αc. Thus for
practical purposes such strains are unlikely to be generated by bulk loading. However, they could
result from fast neutron irradiation as discussed below.

8. Influence of irradiation onαa andαc
Small changes, less than a maximum of 2% at an irradiation fluence of 25 dpa, in lattice spacing
due to fast neutron irradiation measured using XRD have been reported by the United Kingdom
Atomic Energy Authority (UKAEA) [45–47] and more recently by the Nuclear Research Group
(NRG) in Petten, The Netherlands [48]; see figure 11. These data have been used here in
equations (5.5) and (7.1) to predict the change in CTE in the a- and c-directions as a function
of fast neutron fluence and are compared with measurement of the thermal expansion measured
on HOPG irradiated between 300◦C and 650◦C in figure 12. Although there is significant scatter
in the measured data the predictions uphold the assumption of invariance in graphite crystal CTE
for all practical purposes. However, data on irradiated polycrystalline graphite show a significant
reduction in CTE with increasing fast neutron fluence. Possible reasons for this behaviour are
discussed in §9.
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9. Irradiation-induced changes to bulk polycrystalline CTE—application and
some observations

To determine the bulk CTE, one can consider a simple Reuss model [49], in which all the crystals
are arranged in series. For isotropic graphite, this gives a linear CTE of

αbulk = 1
3 (αc + 2αa). (9.1)

If all the crystallites in nuclear graphite were randomly distributed with no porosity, this
would imply an unirradiated CTE of ∼ 8 × 10−6 K−1. However, there is porosity particularly
perpendicular to the crystal c-axis, which reduces the influence of the crystal c-axis expansion,
reducing the overall bulk CTE. The expansion in the c-direction is said to fill this accommodation
porosity without increasing the specimen length in that direction. Thus, using the predictions
of crystal CTE in equation (9.2) and normalizing the results to the virgin value a prediction of
irradiated bulk CTE is compared with the measured data for well-graphitized, medium-grained
nuclear graphite grade 1 in figure 13.

While this does predict some reduction in CTE with increasing fluence as observed in all
medium-grained graphite, the reduction is small compared with the experimental observations.
The Reuss approximation effectively assumes that the phases are infinite in one direction or are
at least continuously connected in one direction. However, analysis of the XRD peak broadening,
based on the Scherrer equation [50], showed that the crystal size La and Lc both decreased with
increasing irradiation, appearing to start to saturate at higher fluence [48,51]; this is shown in
figure 14. This may suggest that the Reuss approximation breaks down in much the same way as
it does in composite mechanics with discontinuous reinforcements [52–54].

Assuming that the reduction in crystallite size increases porosity these data can be used to try
and account for the increase in porosity by weighting equation (9.1) as follows:

αbulk = 1
3

(
αc

Lc

Lc(0)
+ 2αa

La

La(0)

)
, (9.2)

where Lc(0) and La(0) are the unirradiated values of Lc and La.
Figure 13 suggests a combination of the two models is required to fit the data, above and

below about 5 dpa. Below 5 dpa bulk CTE is largely invariant to fast neutron fluence, whereas



21

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180075

...................................................

0
0

10

20

30

40

5 10 15

fluence (dpa)

20 25

L
a 

or
 L

c 
(n

m
)

La

Lc

NRG XRD measurements

Figure 14. Grade 1 graphite irradiated at 750◦C, change in crystal size La and Lc [48,51]. (Online version in colour.)

1.5
0

10

20

30

40
grade 1 grade 2

2.0 2.5 3.0 3.5 4.0 4.5

La

Lc
La

Lc

CTE (× 10–6 K–1)

2.0 2.5 3.0 3.5 4.0 4.5

CTE (× 10–6 K–1)

cr
ys

ta
l c

oh
er

en
t s

iz
e 

(n
m

)

0

10

15

5

20

25

30

35

cr
ys

ta
l c

oh
er

en
t s

iz
e 

(n
m

)

Figure 15. Measurements of crystal coherent scattering domain size against irradiated CTE for grade 1 and grade 2 graphite
[48,51]. (Online version in colour.)

above 5 dpa CTE falls with increasing fluence. Figure 15 shows the crystal coherent scattering
domain size data [48,51] against irradiated CTE for EU medium-grained nuclear graphite grade 1
and grade 2, clearly showing a correlation between CTE and large coherence crystal size. These
comparisons suggest that the reason for the fall in CTE above 5 dpa is caused by irradiation-
induced changes in crystal perfection, leading to disruption of the crystal lattice, and resulting in
a smaller scattering length.

10. Conclusion
— Theoretical models for the prediction of the CTE in graphite crystals and HOPG proposed

in the 1970s and 1980s have been revisited. Numerous errors have been corrected and
equations reformulated where necessary.

— Using more recent input data, the equations have then been applied to the prediction of
graphite crystal CTE both parallel and perpendicular to the hexagonal basal planes as a
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function of temperature, from absolute zero to 3000 K. The results are shown to give an
excellent fit to experimental data.

— The theoretical equations have been reformulated to give the change in CTE as a
function of strain. Recent neutron and XRD experiments measuring changes to lattice
spacing under load have demonstrated that, in bulk graphite, crystal CTE is unlikely
to be modified under load. This implies that changes in bulk graphite CTE observed in
loaded graphite are most likely to be due to changes in microstructural perfection and
orientation.

— The equations have then been applied to the prediction of crystal CTE subject to fast
neutron irradiation showing that above 300◦C the crystal CTE is largely invariant of
fluence. This confirms experimental observations obtained on irradiated HOPG.

— The use of averaging techniques (Reuss) to predict irradiated induced bulk CTE in
polycrystalline graphite is shown to give poor results. However, the fall in CTE at
moderate to high irradiation fluence is shown to be proportional to the crystal coherent
scattering domain size. This may imply that changes to irradiated CTE may be driven
by the formation of nano-cracks or that there exists a length below which the Reuss
approximation is invalid. This would also imply that irradiation-induced dimensional
changes and modulus changes are driven by larger microstructural features.
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Appendix A. Tables of data
See tables 1 and 2.

Table 1. Crystal elastic stiffness and compliance constants for graphite.

compliance constants

stiffness (calculated from 10−12 (Pa)−1

constants [14,15] GPa stiffness constants)

C11 1060 S11 0.97
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C33 36.5 S33 27.47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C12 180 S12 −0.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C13 7.9 S13 −0.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C44 5.05 S44 198
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C66 440 S66 2.27
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 2. Estimated values of derivatives required to evaluate the anharmonic functions.

differential value reference
∂C33
∂ezz

−6 × 1011 N m−2 [7]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−5.5 × 1011 N m−2 [55]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂C44
∂ezz

−3.55 × 1010 N m−2 [9]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−10 × 1010 N m−2 [9]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−8.1 × 1010 N m−2 [8]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−4.05 × 1010 N m−2 [7]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−2.4 × 1010 N m−2 [55]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂δ
∂ezz

−1.4 × 10−7 m2 s−1 [9,56]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
C11

∂C11
∂exx

−8.2 [6]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Appendix B. Sensitivity studies
See figures 16 and 17.
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Figure 16. Sensitivity ofαc to ∂C33/∂ezz , ∂C44/∂ezz and ∂δ/∂ezz [27,29,34–37].
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