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Abstract

One-dimensional Doppler ultrasound (1D-DUS) provides a low-cost and simple method for 

acquiring a rich signal for use in cardiovascular screening. However, despite the use of 1D-DUS in 

cardiotocography (CTG) for decades, there are still challenges that limit the effectiveness of its 

users in reducing fetal and neonatal morbidities and mortalities. This is partly due to the noisy, 

transient, complex and non-stationary nature of the 1D-DUS signals. Current challenges also 

include lack of efficient signal quality metrics, insufficient signal processing techniques for 

extraction of fetal heart rate and other vital parameters with adequate temporal resolution, and lack 

of appropriate clinical decision support for CTG and Doppler interpretation. Moreover, the almost 

complete lack of open research in both hardware and software in this field, as well as commercial 

pressures to market the much more expensive and difficult to use Doppler imaging devices, has 

hampered innovation. This paper reviews the basics of fetal cardiac function, 1D-DUS signal 

generation and processing, its application in fetal monitoring and assessment of fetal development 

and wellbeing. It also provides recommendations for future development of signal processing and 

modeling approaches, to improve the application of 1D-DUS in fetal monitoring, as well as the 

need for annotated open databases.

1. Introduction

1.1. Background

Despite the advances in maternal and fetal healthcare, complications during birth still 

accounts for 40% of perinatal and maternal deaths of a total of over 287000 worldwide 

(World Health Organization, 2009). Globally 18.4 babies in every 1000 total births were 

stillborn as in 2015, mostly in Low- and Middle-Income Countries (LMICs) (World Health 

Organization, 2016). A variety of factors contribute to fetal and maternal compromise, 

which can be categorized as either pathophysiological or infrastructural. Among the 
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pathophysiological causes, asphyxia, infection, congenital anomalies and prematurity 

contribute the most to stillbirth, particularly in LMICs (McClure et al., 2017). The most 

common congenital defect is Congenital Heart Disease (CHD), with an incidence of around 

1% of live births, which is the leading cause of morbidity and mortality in childhood due to 

structural defects (Bruneau & Srivastava, 2014; Ferencz et al., 1985). Pathological fetal 

development such as Intrauterine Growth Restriction (IUGR), with a global incidence of 

between 3% and 7% (Romo et al., 2009), also significantly contributes to perinatal 

morbidity and mortality and associated with 8-fold increased risk of stillbirth, compared to 

non-IUGR cases (Creasy & Resnik, 2008; Bukowski, 2010; Gardosi et al., 2013).

Early detection of these pathologies is critical to prevention of perinatal morbidity and 

mortality, while providing tremendous medical, psychological and economic benefits (Merz, 

2004; Hameed & Sklansky, 2007). However, insufficient infrastructure and a shortage of 

skilled healthcare personnel are the key causes of failures in health risk identification, 

referral and intervention rates, particularly in low-resource and rural regions (Woods, 2008; 

Stroux et al., 2016). The high incidence of global perinatal mortality indicates the critical 

need for more accurate and affordable methods of identifying risks to fetal health.

One of the fundamental approaches to monitoring fetal health and development is through 

fetal cardiovascular function assessment. For example Fetal Heart Rate (FHR) and FHR 

variability (FHRV) provide markers that assist in the detect of hypoxia and CHD. FHRV is 

also associated with gestational age and therefore facilitates discrimination of healthy versus 

pathological fetal development, such as IUGR (Van Leeuwen et al., 2004; Ueda et al., 2009; 

Warrick et al., 2010; Freeman et al., 2012; Van Leeuwen et al., 2003; Hoyer et al., 2013). 

Current fetal heart assessment approaches are ranging from simple but with low specificity 

such as Cardiotocography (CTG), to expensive and highly specialized such as fetal echo-

cardiography. The latter is based on ultrasound imaging and provides a more comprehensive 

fetal heart assessment, which is however relatively expensive and is only useful when 

performed by heavily trained experts, and in the context particular maternal and fetal 

indications (Caserta et al., 2008). CTG, on the other hand, is an inexpensive and less 

specialized method for fetal cardiac activity assessment, which is routinely performed during 

pregnancy and labor for monitoring of FHR and the response to uterine contractions. 

Noninvasive one-dimensional Doppler Ultrasound (1D-DUS) is usually used in CTG for 

FHR monitoring. Similarly, it is used for in-home fetal monitoring devices, which can cost 

as little as $17 and can be performed by nonexperts, e.g. pregnant women (Martinez et al., 
2018; Stroux et al., 2017; Valderrama et al., 2018). These low-cost devices can be easily 

adapted to connect to mobile devices such as smart phones, for recording and processing, 

motivating their use in mobile-health (mhealth) systems for risk screening in low-resource 

environments (Stroux et al., 2016; Stroux & Clifford, 2016). Table 1 summarizes available 

methods for non-invasive fetal monitoring, their affordability, training burden and 

availability in LMICs.

Although CTG is well-established, several randomized controlled trials have questioned its 

effectiveness in reducing perinatal morbidity and mortality (Alfirevic et al., 2013; Steer, 

2008). Despite its high negative predictive value, its high false positive rate has also caused 

unnecessary interventions (Alfirevic et al., 2013; Kwon & Park, 2016). Insufficient standards 
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of CTG interpretation and poor inter- and intra-observer agreement in assessing FHR 

patterns contribute to this issue (Kwon & Park, 2016; Steer, 2008). In addition, due to the 

complex and changing nature of the 1D-DUS signal, variable signal quality and lack of well-

defined fiducial points in the waveform, it has proved difficult to extract an accurate beat to 

beat heart rate from the signal. Therefore an averaging process is performed, often resulting 

in a less useful FHRV signal (Jezewski et al., 2017; Lee et al., 2009b). Technical 

improvements of the hardware apparatus, the introduction of new cost-effective techniques, 

and the development of clinical support systems have been recently investigated to address 

the issues of prevention of unnecessary interventions and perinatal morbidity and mortality 

(Marzbanrad et al., 2014a; Stroux & Clifford, 2016). A new application of 1D-DUS has 

been also introduced for assessment of fetal heart function beyond the FHR, through 

identification of fetal heart valve movements, further facilitating monitoring of fetal well-

being and development (Marzbanrad, 2015; Marzbanrad et al., 2017, 2014d).

1.2. Scope and structure of review

This review covers the use of 1D-DUS for human fetal monitoring in current clinical 

practice and its issues, recent advances in the field, and future directions. Following this 

introduction, basics of fetal circulation, heart development and function are described in 

section 2. A background on the function of 1D-DUS modality for fetal monitoring is 

presented in section 3. In section 4, the main open and closed access databases for CTG 

recordings and 1D-DUS (raw) data are outlined. Section 5 discusses the importance of 

assessing 1D-DUS signal quality for reliable fetal monitoring and presents the techniques 

for quality assessment in previous studies. Various current and potential applications of 1D-

DUS in fetal monitoring are discussed in section 6, including fetal movement and heart rate 

monitoring, cardiac valve movement detection and assessment of fetoplacental circulation. 

Further applications of 1D-DUS in identification of various pathological conditions are 

presented in section 7. The final section summarizes the current challenges and future 

directions of 1D-DUS application in fetal monitoring.

2. Fetal circulation

The embryonic human heart starts developing in the third week of pregnancy and becomes 

functional by the end of the eighth week (Archer & Manning, 2009). During its critical 

development (3rd-7th weeks), it changes from a simple tube to a four chamber structure. 

Although the heart is capable of blood-pumping in the 3rd week, the heartbeat has only been 

auscultated by Doppler from 10 weeks of gestation onwards, and monitored after 18 weeks 

by non-invasive fetal electrocardiogram (fECG) or magnetocardiogram (fMCG) (Sameni & 

Clifford, 2010; Van Leeuwen et al., 2004; Kimura et al., 2012; Peters et al., 2001). A 

developed human fetal heart consists of four chambers, similar to the heart after birth: right 

atrium and ventricle as well as left atrium and ventricle (See Figure 1). To ensure the blood 

flows in the right direction, the heart has atrioventicular valves, which open from the atria 

into the ventricles. These are known as the tricuspid and mitral valves, located on the right 

and left sides of the heart, respectively. There are also two semilunar valves which open 

from the ventricles into the aorta and pulmonary artery (OpenStaxCollege, 2015). All of the 

oxygen and nutrition are supplied maternally via the placenta. The fetal blood detours away 
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from the non-operational lungs, via two openings: the Foramen ovale between the right and 

left atria and the Ductus Arteriosus linking the aorta and pulmonary artery. Normally these 

openings close around 30 minutes after the newborns first breaths (Feinstein et al., 1993). 

The lungs do inflate and deflate (although not continuously) in utero, moving amniotic fluid 

through the lungs and creating breathing patterns, amplitude changes on the recording 

device as well as beat interval modulation. The movement is thought to exercise the lungs 

and increase surfactant. At birth, when the lungs inhale air for the first time, the pulmonary 

vascular pressure decreases and the left atrial pressure exceeds that of the right hand side. 

This makes the septum primum (the thin wall of inter-atrial septum) fuse with the septum 

secundum (a muscular tissue growing to the right of the septum primum), forcing the 

foramen ovale to close. The tissue around this then starts to seal (Homma & Sacco, 2005). 

Abnormalities in this process can be detected via heart sounds or ultrasound. Nevertheless, 

the cardiac valve and wall motion are the same preand postnatally.

Normal cardiac rhythm originates from an action potential at the sinoatrial (SA) node (the 

pacemaker) (OpenStaxCollege, 2015). The action potential from the SA node causes atrial 

contractions during systole (fECG P-wave), then travels via the atrioventricular (AV) node, 

while spreading through the bundle branches and Purkinje fibers along the ventricle walls, 

causing ventricular contraction (fECG QRS complex) (OpenStaxCollege, 2015). It is 

followed by the ventricular diastole, when the action potential leaves the ventricles and the 

ventricular wall repolarizes (fECG T-wave), as depicted in Figure 2 (OpenStaxCollege, 

2015).

The normal FHR range is around 120 to 160 bpm, being controlled by the Autonomic 

Nervous System (ANS) and baroreceptors, i.e. the pressure sensors in the aortic arch and 

carotid arteries, and brain stem (Von Steinburg et al., 2013; Baker et al., 2009; Blackburn, 

2013). The ANS includes sympathetic and parasympathetic branches innervating atria, 

ventricles and the SA node. The parasympathetic input (vagal stimulation) reduces the FHR 

through decreasing the rate of the SA node stimulation and transmission to the ventricles. 

The sympathetic nervous system, on the contrary, can increase the FHR. The balance 

between parasympathetic and sympathetic inputs mediates the FHR baseline, while its 

continuous recalibration generates the FHR variability (FHRV). Earlier maturation of the 

sympathetic system causes a higher FHR in the preterm fetus, while with advancing 

gestational age the parasympathetic development decreases the FHR. The fluctuations in 

vagal impulse and sympathetic reflexes constantly change the FHR, while the normal 

baseline variability reflects the balanced parasympathetic and sympathetic control and 

proper oxygenation (Blackburn, 2013; Von Steinburg et al., 2013).

The FHR is also controlled by the baroreceptors. If the blood pressure increases, the vagal 

nerve receives a stimulus to slow the FHR to lower the pressure. Decreasing blood pressure 

reduces the parasympathetic tone leading to an increase in FHR and blood pressure. The 

chemoreceptors located in the carotid bodies of the carotid arteries and in the aortic bodies 

of the aortic arch, sense a decrease in circulating oxygen (hypoxemia) and compensate by 

increasing the FHR and cardiac output. Hypoxemia, or an increase in carbon dioxide 

(hypercapnia), however triggers a vagal response to decrease FHR and increase blood 

pressure, as typically observed in a cord compression event. The FHRV can be affected by 
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several factors such as gestational age, fetal movement, fetal sleep state, acidemia (low 

blood pH) and hypoxia (decreased oxygen in tissue) and even the maternal physiological and 

psychological state (Mantel et al., 1991; Ivanov et al., 2009; Marzbanrad et al., 2015b; 

Stroux & Clifford, 2016; Monk et al., 2000).

3. 1D-DUS basics

An ultrasound probe has a piezoelectric transducer which transmits and receives ultrasound 

waves by transforming the electrical charge into mechanical energy and vice versa. The 

frequency range of ultrasound waves is higher than the human audible limit (i.e. 20 kHz). 

The common types in clinical use include pulsed and continuous wave transducers. Several 

modes are available in medical applications, including the brightness mode (B-mode) 

producing an image of a selected scanned plane in the body, also known as 2D mode, and 

M-mode which emits pulses in rapid succession producing an ultrasound video. These 

modes have been commonly used for fetal echo-cardiography. The 1D-DUS transducers for 

fetal monitoring commonly operate in continuous Doppler mode with a frequency of 1–4 

MHz, as employed in previous studies (Stroux & Clifford, 2016; Marzbanrad, 2015; Sato et 
al., 2007; Shakespeare et al., 2001; Yumoto et al., 2005). This type of probe continuously 

generates and receives, using a two-crystal transducer to fulfill both functions. Doppler 

mode refers to the probe’s capability to measure the change in frequency between the 

emitted and the observed signal, reflected from the moving structures on the ultrasound 

beam path. This enables estimation of the velocities of the moving cardiac structures, and in 

the application of fetal monitoring, the identification of heart valve and wall motion, as 

illustrated in Figure 3.

The shift in frequency is called the Doppler effect and is written as:

f D =
2 f o

c Vcos θ (1)

where fD is the measured change in frequency (Hz), fo the frequency of emitted ultrasound 

(Hz), c the speed of sound in soft tissue (m/s), V the velocity of the reflecting target (m/s) 

and its angle with the ultrasound beam (Hill et al., 2004). The Doppler mode for FHR 

assessment is also described as auscultation Doppler, since the resultant Doppler signal is 

usually translated into audible cardiac sounds. To distinguish clearly from the 2D ultrasound 

such as B-mode, which is commonly associated with medical ultrasound imaging, the signal 

is also referred to as one-dimensional (Stroux & Clifford, 2016).

For the fetal Doppler, the expected fetal cardiac information is composed of blood flow, 

cardiac wall and valve motion, while cardiac tissue motion is dominating with higher 

intensity (Tutschek et al., 2003). These movements are also differentiable based on their 

different velocities, resulting in different Doppler frequencies (Marzbanrad, 2015). The 

ventricular motion could be recorded from early on in gestation (12 weeks onwards) by 

tissue Doppler echo-cardiography, whereas the detection rate of valve motion increases with 

gestational age (Tutschek et al., 2003).

Marzbanrad et al. Page 5

Physiol Meas. Author manuscript; available in PMC 2019 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Databases

The field of ultrasound-based fetal heart rate assessment has been limited by the lack of 

public databases and open source algorithms so far. Since the commercial 1D-DUS devices 

in clinical practice have been designed as closed systems, the raw signals are not accessible. 

There are also very limited publicly available databases of Doppler FHR data.

As summarized in table 2, there is however the CTU-UHB Intrapartum Cardiotocog-raphy 

Database 2, which contains 552 CTG traces, all carefully selected from 9164 recordings 

collected between 2010 and 2012 at the University Hospital in Brno, Czech Republic 

(Chudáček et al., 2014). The CTG recordings were from no longer than 90 minutes before 

the actual delivery, and at most 90 minutes long. Each recording contains FHR time series 

and a uterine contraction signal, both sampled at 4 Hz. Each CTG is also accompanied by 

maternal, delivery, and fetal clinical details. There are two limitations with this database; 

firstly it was recorded intrapartum only, and secondly it did not provide the raw fetal 1D-

DUS signal. Many CTG databases were also used in previous studies, but without public 

access. Some of these databases are summarized in tables 2 and 4, which include CTG 

tracings collected from healthy and growth restricted fetuses in second and third trimesters. 

The largest of these databases is a set of 1163 IUGR and 1163 control cases at 23–42 weeks 

of gestation in the UK (Stroux et al., 2017). This database is a subset of the Oxford database 

collected by Dawes, Redman and colleagues over the last three decades, which now contains 

CTG from 22,790 women in labor (at more than 36 weeks of gestation) together with paired 

umbilical blood analyses (Dawes et al., 1992a; Georgieva et al., 2017). Another large but 

closed access CTG database with more than hours of tracing just prior to delivery was used 

in a study on discrimination of normal and at-risk populations from fetal HRV (Warrick & 

Hamilton, 2014). It consisted of 5320 normal cases, 10 cases with neonatal depression and 

99 with metabolic acidosis, from two US hospitals. However these closed databases 

contained FHR tracings without the raw 1D-DUS signals.

Several studies used raw 1D-DUS signals to either improve FHR estimation or extract 

additional information, such as fetal movement, mechanical activity of the fetal heart or 

other physiological parameters, as detailed in section 6. The databases used in these studies 

are all closed access, and with various devices working at different ultrasound frequencies 

ranging from 1 MHz to 3.3 MHz. Details of these databases are summarized in table 3.

5. 1D-DUS quality assessment

Despite the benefits and wide use of 1D-DUS in fetal monitoring, the data quality is often 

affected by noise, the movement of the probe against the skin, and maternal and fetal 

movements. Changes in the position of the probe or the fetus affect the alignment of the 

ultrasound beam with the fetal heart, causing non-stationarity. Ensuring the quality of data is 

essential particularly in mobile-health applications, and it needs to be validated at data 

acquisition point. Timely feedback on the quality of recordings enables retaking the data if 

required, avoiding decision and actions based on unreliable data and having a measure of 

confidence while interpreting the output. The importance of DUS signal quality assessment 
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for FHR monitoring, was investigated in several studies (Valderrama et al., 2018; Stroux & 

Clifford, 2013, 2014, 2016; Magenes et al., 2001; Marzbanrad et al., 2015a).

The pattern and the quality of the 1D-DUS signal were found to be variable, even on a beat-

to-beat basis (Marzbanrad et al., 2014a), as shown in figure 4 for different time windows of 

a single 30-minute recording from a single subject. The figure shows that not all cardiac wall 

or valve movements are detectable from every beat of 1D-DUS. It was recently 

demonstrated how closely the accuracy of FHR analysis depends on the signal quality, 

showing the necessity of quality assessment while data collection (Stroux & Clifford, 2013). 

It was recommended by Magenes et al. to remove CTG signals with low quality before 

applying methods for detecting fetal anomalies (Magenes et al., 2001). While Magenes et al. 

assessed the quality based on the FHR (Magenes et al., 2001), recent studies have been more 

focused on the 1D-DUS signal features (Stroux & Clifford, 2016; Marzbanrad et al., 2015a). 

One of these features is Sample Entropy (SampEn) which was investigated by Stroux, to 

analyze reoccurring patterns, together with wavelet features as the percentage of energy at 

different resolution levels to evaluate the localized signal power (Stroux & Clifford, 2016). 

In the system developed by Stroux et al., a mobile-phone was mounted on the 1D-DUS 

probe, therefore features derived from the phone’s in-built accelerometer could also be 

analyzed to characterize the probe movements, as a possible contributor to the signal quality. 

All these features were used for classification, through logistic regression (LR) and Support 

Vector Machines (SVM) (Stroux & Clifford, 2016). Using a database of 17 one-minute 

recordings evaluated by three annotators as good or poor quality, an accuracy of 96.18% was 

achieved by SVM, based on all cardiac input features, while the best performance on the test 

set using a LR was 95.41%, based on the cardiac as well as accelerometer features.

The study by Stroux was followed by another work, which proposed a templatebased 

method using only the 1D-DUS-based features (Valderrama et al., 2017). It used Empirical 

Mode Decomposition (EMD) to detect the fetal heart beats and to segment the recording 

into short, time-aligned temporal windows. A template was initially derived for each 15-

second window by averaging the signal in all beats in the window, then the template was 

updated by averaging only the beats which were highly correlated with the initial template. 

The DUS signal quality index (SQI) was calculated by correlating the segments in each 

window with the corresponding running template using four different pre-processing steps. 

The template-based SQIs were combined with additional features based on SampEn and 

power spectral density and the quality was classified using SVM. Using a combination of 

these features, this method achieved a median out of sample classification accuracy of 

85.8% on the test set. This method was promising not only for classifying (annotated) good 

and bad quality data, but also the borderline (mostly clean and mostly noisy) signals. 

Although this study was on the same dataset used by Stroux (Stroux & Clifford, 2016), 

different statistical validation approaches where used, which limited direct comparison. 

While Stroux trained on two thirds of the data set and held out one third for testing, 

Valderrama et al. used stratified five-fold cross validation with bootstrapping (repeated 100 

times), with subject stratification across different folds in each repetition.

Another study analyzed the 1D-DUS signal quality specifically for the application of valve 

motion detection (Marzbanrad et al., 2015a). In this work, simultaneous 1D-DUS and fECG 
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were recorded for one minute from 57 fetuses and annotated by four independent reviewers. 

The method was based on various quality features of the high frequency component of the 

1D-DUS signal associated with valve motion. The DUS signal was decomposed by wavelet 

analysis and the normalized envelope of the signal was segmented into cardiac cycles using 

the corresponding R-R intervals from fECG. Twelve features were selected mainly based on 

the signal properties in the valve motion ranges compared to the remaining time intervals 

(Khandoker et al., 2009; Marzbanrad et al., 2014d). The features included the power density, 

number of peaks, average of the peak amplitude and variance in the valve motion range 

compared to the values in the remaining ranges. Other features included Kurtosis, skewness, 

Hjorth parameters, SampEn and Singular Value Decomposition (SVD) based features 

(Marzbanrad et al., 2015a). Naive Bayes (NB) classifier was used to classify the signal 

quality as poor or good and the performance was tested by 10-fold cross validation, which 

showed an average classification accuracy of 86% on training and 84% on test data 

(Marzbanrad et al., 2015a).

Despite the promising methods proposed so far, the Doppler quality assessments have all 

been evaluated only on healthy cases. It would be crucial to validate these techniques for 

various arrhythmias and heart anomalies to investigate if the abnormalities would confound 

the quality assessment. All studies so far have been based on data collected in a hospital 

setting by medical professionals. It is important, however, to also build a database recorded 

by non-experts when considering the application of 1D-DUS in low-resource settings. In 

addition, further investigation is recommended for making the quality assessment 

computationally efficient to be able to provide real-time feedback to the user.

6. 1D-DUS applications for fetal monitoring

The main role of fetal monitoring techniques is to evaluate antepartum and intrapartum fetal 

risks which indicate the need for intervention. These methods are aimed at reducing the risk 

of stillbirth and damage to the fetal nervous system (Signore et al., 2009; Ramanathan & 

Arulkumaran, 2009; Devoe, 2008; Malcus, 2004). The risks include, but are not limited to, 

placental insufficiency, perinatal hypoxia and asphyxia leading to Hypoxic-Ischemic 

Encephalopathy (HIE), IUGR and congenital abnormalities, and have a particularly high 

prevalence in LMICs (McClure et al., 2017). Available monitoring techniques can be 

categorized into internal (invasive) and external (noninvasive) methods. Invasive methods 

often involve rupture of membranes therefore typically employed during labor, while non-

invasive methods are more suitable for antenatal screening. Electronic fetal monitoring using 

1D-DUS has been established as a widely used non-invasive technique even for low risk 

pregnancies (Grivell et al., 2010). Although it is typically used for FHR estimation as in 

CTG, other applications have also been proposed including fetal movement monitoring 

(Wróbel et al., 2014; Maeda, 2013), fetal cardiac valve motion identification (Marzbanrad, 

2015; Shakespeare et al., 2001) and umbilical artery circulation assessment (Thuring et al., 
2015), which will be briefly discussed in the following sections.
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6.1. Fetal movement monitoring

Fetal movement counting is one of the oldest and simplest techniques, aiming at identifying 

the reduced fetal movement. Traditionally this has been based on maternal perception, which 

is however inaccurate as confused by uterine contractions or aortic pulsation and dependent 

of the gestational age, the fetal size or the amount of amniotic fluid (Johnson et al., 1990). 

The analysis of the fetal movement activity (actogram) is also important for detection of the 

nonreactive recording (Wróbel et al., 2014; Jezewski et al., 2002). The most reliable method 

for the detection of movement, its type and volume, is through ultrasound imaging, which is 

however costly and specialized. Wrobel et al., showed that the fetal movement can also be 

obtained using 1D-DUS (Wróbel et al., 2014). Fetal movement activity can be extracted 

from 1D-DUS using bandpass filtering, since it generally corresponds to lower frequency 

bands compared to heart wall and valve movements (e.g. the movement speed of 1–3 cm/s is 

reflected at 20–80 Hz range if the transducer operates at 2 MHz) (Wróbel et al., 2014; 

Maeda, 1990). Wrobel et al. proposed an algorithm estimating an adaptive classification 

threshold, rather than the fixed threshold which was used in other studies (Wróbel et al., 
2014; Maeda, 1990). This technique could ensure detection of up to 89% of movement 

perceived by the mother, while resulting in 84% incorrectly detected episodes (Wróbel et al., 
2014). However, the latter does not necessarily represent incorrect detection, since only 

about 30% of the actual fetal movements can be perceived by the mother. Further 

investigation is required using ultrasound imaging as a reliable gold standard to evaluate the 

accuracy of the 1D-DUS-based actogram.

6.2. Fetal heart rate monitoring

The FHR provides a reliable evaluation of the function and development of the ANS, which 

regulates the heart beat dynamics. The most accurate measurement of FHR is through direct 

fECG, which is invasive. Noninvasive fECG through the maternal abdomen has been an 

alternative fECG approach for potential antenatal use and has been a challenging area of 

research (Sameni & Clifford, 2010; Clifford et al., 2014; Kimura et al., 2012; Behar et al., 
2016; Lewis, 2003). The obtained signal by this method contains a weak fECG with a low 

signal to noise ratio, because of the small size of the fetal heart and several low conductive 

layers through which the signal passes to reach the maternal abdomen surface. Furthermore, 

fECG is not the only recorded signal, but is mixed with the maternal ECG overlapping in the 

time and frequency domain. It is also contaminated by maternal respiration, motion artifacts 

and uterine contractions. Fetal movement also has an influence depending on the orientation 

of the fetus. Moreover, limitation of clinical knowledge about the fetal cardiac function, 

compared to that of adult’s have limited the advancement in this field (Sameni & Clifford, 

2010; Clifford et al., 2014). Some commercial noninvasive fECG devices have been recently 

entered the market, such as the Monica fetal monitor from Monica Healthcare (UK) and the 

Meridian monitor from MindChild Medical (USA). However, they are still at an early stage 

with studies being limited by the number of patients and population size, hence further 

studies and development are required.

The most widely used antepartum and intrapartum FHR monitoring approach remains 

Doppler ultrasound and is performed using CTG. A recent study compared noninvasive 

fECG and 1D-DUS for FHR monitoring, not only in terms of FHR specifically, but also the 
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clinically important indices describing the instantaneous FHRV (Jezewski et al., 2017). The 

FHR comparison showed no measurement bias between the acquisition methods, while the 

mean absolute difference was 1.2 bpm, which does not practically affect the visual 

assessment of the FHR signal. However, inconsistencies of several percent were reported for 

acceleration (7.8%) and particularly deceleration (54%) patterns (Jezewski et al., 2017). The 

authors explained the inconsistencies for deceleration as the effect of signal loss for FHR by 

DUS which is on average twice higher than for FHR by fECG. In addition, the 

autocorrelation technique, commonly used for FHR estimation in CTG, is often unable to 

follow the rapid decrease of FHR signal related to deceleration. Nevertheless, the ability of 

clinical parameters to distinguish between normal and abnormal groups was not affected by 

choice of the acquisition method (Jezewski et al., 2017).

CTG is usually performed through a non-stress test (NST) to examine the reactivity of the 

FHR, i.e. showing at least two accelerations of more than 15 bpm from the baseline (110–

160 bpm) lasting more than 15 seconds, within the 20 minute test. However, the absence of 

accelerations may be due to fetal sleep (Bobby et al., 2003). In practice, if the fetus does not 

show reactivity after 40 minutes, further assessment is performed by contraction stress test 

(CST), e.g. through intravenous admission of dilute Oxytocin or Vibroacoustic stimulation 

(Arora & Bhatnagar, 2015). Another factor involved with false positive results is the 

gestational age. Reactivity typically appears between 28 to 30 weeks and 50% of the normal 

fetuses in 24–28 weeks and 15% in 28–32 weeks of pregnancy fail to show reactivity in 

FHR (Malhotra et al., 2014; Lavin Jr et al., 1984; Druzin et al., 1985). Possible causes for 

nonreactive FHR include prolonged fetal sleep, prematurity, preexisting neurologic damage 

or other abnormal conditions (Walton & Peaceman, 2012). While the false negative rate of 

this method is low 0.3%, the false positive rate is around 50% (Devoe, 2008). False negative 

results may severely affect the health outcomes of the fetus and the mother, while false 

positive results may lead to inappropriate and potentially risk-bearing procedures and an 

additional burden on resources.

The effectiveness, reliability and reproducibility of CTG have been the matters of 

controversy, since the current antenatal CTG has not significantly improved the perinatal 

outcome (Grivell et al., 2010; Steer, 2008). The issues include insufficient standards of CTG 

interpretation leading to poor inter- and intra-observer agreement in interpretation of FHR 

traces (Kwon & Park, 2016; Steer, 2008). The complexity and changing nature of the 1D 

DUS, the variable signal quality and lack of well-defined fiducial points in the waveform (as 

shown in figure 4), also lead to inaccurate FHR estimates. More promising results compared 

to standard CTG could be demonstrated using computer-assisted interpretation methods, to 

improve the accuracy and reduce the variation in interpretation (Grivell et al., 2010; Stroux 

& Clifford, 2016).

The rest of this section reviews the FHR estimation methods using 1D-DUS recordings.

6.2.1. Auto-correlation based methods—The early methods for FHR estimation 

from 1D-DUS in the 1980s were based on correlation providing relatively robust FHR with 

acceptable accuracy compared to invasive fECG (Tuck, 1982; Lawson et al., 1983). 

Autocorrelation-based approaches have been the basis for both cardiotocographs and 
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handheld Doppler devices while being improved progressively (Peters et al., 2004). They 

basically uncover the regular patterns by comparing the signal with its delayed versions, 

considering that the fetal cardiac activity has an almost periodic nature. To measure the 

repetitive patterns, the signal and its delayed versions are multiplied sample-wise and their 

product is summed over the analysis window. The autocorrelation function decreases the 

noise contribution and highlights the periodicity of the input signal. This periodicity can 

reflect the mean interval between cardiac events, to measure the FHR. The conventional 

autocorrelation approach has been improved in several ways, including processing time 

reduction for handheld devices (Hua et al., 2005), decreasing the number of missed FHR 

samples (Voicu et al., 2010), exploring signal envelope alternatives for correlation 

assessment (Kret & Ka lużyński, 2006), assessing optimal parameter settings, such as the 

auto-correlation window and overlap size (Voicu et al., 2014; Lee et al., 2009a), and the 

evaluation of a number of different correlation approaches (auto-, cross-correlation, 

correlation coefficient and YIN, a fundamental frequency estimator for speech and music) 

(Voicu et al., 2010).

One of the properties of autocorrelation approaches used in the commercial Doppler-based 

fetal monitors, is averaging over a certain period, e.g. providing FHR values every 250 msec. 

The choice of sampling interval is based on a maximum expected fetal heart rate of 240 bpm 

(Jezewski et al., 2008). The averaging nature of correlation-based approaches also masks the 

detailed and short term HRV. The diagnostic potential of HRV markers can be improved by 

higher accuracy of the HRV, which is achievable by fECG or fMCG (Hoyer et al., 2013). 

Several researchers studied the effect of averaging on heart rate variability measures, which 

are significantly lower compared to variability measures computed from the fECG (Jezewski 

et al., 2011; Roj et al., 2010; Lawson et al., 1983). In contrast to fECG and fMCG, where the 

R-peaks are distinctive markers, 1D-DUS reflects the mechanical activity of the heart 

including various valve or heart wall motion events, which complicates detection of a unique 

fiducial point for each cardiac cycle. As shown in figure 4, considerable variation in the 

signal pattern is often observed depending on the orientation of the fetal heart with respect to 

the ultrasound beam which may vary even during a single one-minute recording(Marzbanrad 

et al., 2014a). The beat-to-beat intervals can be estimated from 1D Doppler recordings in 

two ways: post-processing the evenly sampled autocorrelation trace by eliminating duplicate 

samples; or the segmentation of the Doppler signal prior to heart rate estimation (Stroux & 

Clifford, 2016). The latter is sensitive to noise (Peters et al., 2004), since for the correlation-

based approaches, there is a potential trade-off between susceptibility to noise and beat-to-

beat accuracy (Lee et al., 2009a). Jezewski et al. combined measurements in multiple cycles 

to improve the robustness to noise with a segmentation process translating the trace into 

beat-to-beat intervals (Jezewski et al., 2011).

6.2.2. HMM and HSMM methods—Despite the non-stationarity and dynamic spectral 

characteristics, 1D-DUS can be used for fetal auscultation similar to a phonocardiogram. 

The signal represents the sequential physiological process of the cardiac heart cycle in 

phenotypical manner which bears a resemblance to heart sounds captured during acoustic 

auscultation. Recently, given the success on heart sound data (Ricke et al., 2005; Schmidt et 
al., 2010; Springer et al., 2016), Stroux and Clifford proposed the use of a Hidden Markov 
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Model (HMM) approach for segmenting the 1D-DUS signal into heart cycles, as a 

preprocessing step for heart rate variability and intrauterine growth studies (Stroux & 

Clifford, 2016). This segmentation procedure involved a preprocessing step for removing 

spikes in the signal, i.e. the samples greater than a certain threshold within the analysis 

window of a minimum of one beat. The signal was bandpass filtered (between 25Hz and 

600Hz, for ultrasound transducer frequency of 3.3 MHz) to minimize the influence of fetal 

movement and blood flow, occurring at lower and higher frequencies respectively. An 

extended version of HMM, namely Hidden Semi-Markov Model (HSMM) was then 

employed which is based on the state duration probabilities and have been successfully used 

in speech recognition (Vaseghi, 1995) and heart sound segmentation (Schmidt et al., 2010; 

Springer et al., 2014). In the HSMM, the probability of staying in a state is governed by the 

duration densities rather than self-transition probabilities used in conventional HMM 

(Rabiner, 1989). The signal envelope representing the signal’s amplitude component was 

used as feature, using three different time domain, frequency domain and time-frequency 

domain envelopes, namely, homomorphic, wavelet and the power-spectral density (PSD). 

The primary cardiac oscillations in a cycle and the interval between successive oscillations 

were used as the states. The training process of HSMM was by the Baum-Welch algorithm 

and the optimal state path was estimated by Viterbi approach. Comparing against manual 

annotations, the percentage of estimates within the 10% tolerance limit for excellent, 

intermediate and poor quality signals was reported as 100%, 92% and 59% for 

autocorrelation and 97%, 91% and 71% for HSMM approach. Therefore good performance 

of both methods for intermediate to excellent signal qualities and a superior performance of 

HSMM for poor quality signals were observed (Stroux & Clifford, 2016). One limitation of 

the study by Stroux and Clifford was the use of manual annotation for benchmarking whose 

accuracy may be affected by signal quality. This could be improved by comparing the 

accuracy of the HSMM segmentation against a more robust and simultaneously acquired 

measure of cardiac activity such as fECG or fMCG. Furthermore, the dataset was recorded 

from 17 healthy patients, while a larger dataset is recommended especially for earlier 

gestation weeks, e.g. lower than 35 weeks.

HMM has also been the basis of several methods for automated identification of opening 

and closing of fetal heart valves from 1D-DUS recordings, as reviewed in the next section 

(Marzbanrad et al., 2014a,d; Marzbanrad, 2015).

6.3. Identification of fetal cardiac valve motion

The Doppler shift of the ultrasound beam which is reflected from the moving valves of the 

fetal heart and collected by the transducer, uncovers the opening and closure of the fetal 

cardiac valves. Using 1-D DUS signal, the timings of cardiac valve movements can be 

estimated with less expertise and cost compared to the echocardiography. The valve motion 

timings are the main bases for estimating the mechanical and electromechanical indices of 

the fetal heart illustrated in figure 5. Considering the synchronous operation of both sides of 

the fetal heart, in this figure the semilunar and atrioventricular valve motions are expressed 

as the aorta and mitral valve movements, respectively. From the intervals shown in figure 5, 

the Myocardial Performance Index (MPI) is calculated as (ICT + IRT)/VET, which is a 

parameter for measuring global myocardial function and a useful highly sensitive parameter 

Marzbanrad et al. Page 12

Physiol Meas. Author manuscript; available in PMC 2019 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of dysfunction in fetal pathologies (Mahajan et al., 2015). A modified index was recently 

proposed as (ICT + IRT)/VFT, which has been shown significantly decreasing with 

gestational age, while no significant correlation of MPI with gestational ages was found 

(Khandoker et al., 2016). From a clinical standpoint, PEP, ICT, IRT, VET are the most useful 

cardiac intervals for assessing fetal development and wellbeing, as sensitive markers of the 

functional state of the fetal myocardium, cardiac performance and ANS function, and can 

reflect the early development of hypoxemia and acidosis (Tongprasert et al., n.d.; Hassan et 
al., 2013; Velayo et al., 2011; Mensah-Brown et al., 2010; Cruz-Martínez et al., 2012; 

Yumoto et al., 2005; Marzbanrad et al., 2016).

The frequency content of DUS which is associated with cardiac valve motion is higher 

compared to the cardiac wall motion and the movement of other organs, hence could be 

identified based on its spectral and temporal characteristics (Shakespeare et al., 2001; 

Marzbanrad, 2015), as shown in figure 4. Early studies in the 1980s proposed noninvasive 

methods which mainly aimed to analyze the systolic time interval, while using fECG as 

reference (Murata et al., 1978; Sampson, 1980; Organ et al., 1980; Koga et al., 2001). All of 

these methods were based on bandpass filtering to extract the high frequency component of 

the DUS, from which the valve movements were identified ‘manually’ by experts. There 

were three main issues with these methods. Firstly, due to the noisiness and variability of the 

DUS data on a beat-to-beat basis, as well as the wide changes in the signal contents and 

spectral characteristics over time (figure 4), bandpass filters could not effectively provide the 

component originated by the valve motion. Secondly, manual identification of beat-to-beat 

opening and closing of valves was time consuming, required special expertise and was 

subject to inter and intra observer and visual errors. Finally, these techniques required 

simultaneous fECG as reference. Improvement in the aforementioned aspects has been 

essential to make this technique more reliable and applicable with less required expertise, as 

discussed in the next sections.

6.3.1. Extraction of the valve-motion-related component of1D-DUS—Several 

studies suggested applying advanced signal processing techniques to extract the information 

content of the DUS signal (Shakespeare et al., 2001; Kupka et al., 2004; Khandoker et al., 
2009; Marzbanrad et al., 2014d). Shakespear et al. used Short Time Fourier Transform 

(STFT) analysis of the DUS signal and showed that the component with a higher frequency 

was linked to valve movement (Shakespeare et al., 2001). However, the frequency range of 

the valve motion related component was not constant over time and there were some 

instances where the valve motion was not detectable from the spectrogram (Shakespeare et 
al., 2001). Considering the nonstationarity and transient nature of the DUS signal as well as 

the wide changes in the signal content and spectral characteristics over time, it was proposed 

by Khandoker et al., to apply the multi-resolution wavelet analysis to the DUS signal 

(Khandoker et al., 2009). Using the wavelet analysis, valve movements were visualized as 

peaks in the detailed signal (at level 2 wavelet decomposition, for an ultrasound frequency of 

1.15 MHz). Other studies proposed to use EMD, which is a data-driven algorithm used for 

decomposing nonlinear and nonstationary time series (Marzbanrad et al., 2014d; Valderrama 

et al., 2017). Using EMD, the first intrinsic mode function (IMF), i.e. the highest frequency 

component, was locally extracted out of the 1D-DUS signal and used to detect the valve 
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movements, as validated against simultaneous echo-cardiography images (Marzbanrad et al., 
2014d).

6.3.2. Automated identification of valve motion events—The first method which 

was proposed for automated valve motion detection was based on HMM and used a 

simultaneous 1D-DUS and noninvasive abdominal ECG recordings (Marzbanrad et al., 
2013b). The 1D-DUS signal was first decomposed into the first IMF using EMD, and the 

peaks of its envelope were detected. The interval from each fECG R-peak to the following 

peaks of the first IMF before the next R-peak were selected as observation samples. The 

aorta and mitral opening and closing, together with their transition were assumed as hidden 

states. The opening and closure of the valves were then automatically assigned to the IMF 

peaks using HMM. Fetal echocardiography images and expert annotation were used for 

training and validation (Marzbanrad et al., 2013b). This method was further extended using 

a multi-dimensional HMM approach to incorporate multiple features, such as peak 

amplitudes (Marzbanrad et al., 2014b), and combining Support Vector Machine (SVM) with 

HMM (hybrid SVM-HMM) to classify the 1D-DUS features as valve motion events 

(Marzbanrad et al., 2014d; Ganapathiraju et al., 2000). Since HMM is based on probability 

models, a probabilistic output of SVM was obtained using Platt’s method to provide the 

posterior probability of classifying the sample, i.e. P(class|input) (Platt et al., 1999). The 

transition probability from HMM and the emission probability distribution estimated from 

the output of the Platt’s SVM through the Bayes’ rule, were used to estimate the sequence of 

events using Viterbi algorithm (Marzbanrad et al., 2014d).

One of the challenges of valve motion detection is the nonstationarity of the 1D-DUS signal 

and its variable pattern, observed for both inter and intra subjects/recordings, which 

primarily depends on the orientation of the fetal heart to the transducer (as shown in figure 

4). For example, the peak corresponding to aortic valve opening could be smaller or larger 

than the peak representing the mitral closure over a single or across multiple recordings. 

Therefore instead of using a common training set for all existing patterns of the 1D-DUS, a 

cluster-based method was proposed (Marzbanrad et al., 2014a). The study found six 

different patterns for the 1D-DUS high frequency component which were actually variable 

on a beat to beat basis and found to be different for the early to late gestation. After 

clustering the signals, the hybrid SVM-HMM was trained for each cluster separately. To 

identify the events, each beat-to-beat interval of signal was first matched to the clusters to 

which it had the minimum Euclidean distance. Then the sequence of events which were 

attributed to the peaks of the signal, were identified by the Viterbi algorithm using the 

trained SVM-HMM specific to the corresponding cluster. Applying this method resulted in a 

higher average precision and recall (pr: 83.4% and re: 84.2%), compared to the hybrid 

SVM-HMM without clustering (pr: 79.0% and re: 79.8%) and HMM approach (pr: 77.4% 

and re: 77.9%) (Marzbanrad, 2015; Marzbanrad et al., 2014a).

6.3.3. Valve motion detection without fECG reference—Simultaneously recorded 

fECG has been a crucial component of the automated valve motion identification methods 

for segmentation into cardiac cycles, since the features (timings) are calculated with respect 

to the R-peaks (Marzbanrad et al., 2014d,a). However simultaneous recording of abdominal 
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ECG with DUS signal and separation of fECG from a noisy mixture of maternal ECG and 

other interfering signals and artifacts add extra costs and complications. An automated valve 

motion detection method without using fECG was investigated to address those issues 

(Marzbanrad et al., 2014e). This method used the first IMF (high frequency) of 1D-DUS 

decomposition as linked to valve motions and the fourth IMF (low frequency) related to the 

cardiac wall motions. The latter were used for segmentation into cardiac cycles as a 

substitute for fECG R-waves. The mitral and aortic valve motion events were automatically 

identified by hybrid SVM-HMM and the results were compared to the method with fECG as 

reference. The calculated fetal ICT (mitral closing to Aorta opening) with this method was 

in agreement with the average ICT measured by the method with fECG reference 

(Marzbanrad et al., 2014d), with correlation coefficient: r = 0.9 and bias = 0.5 msec, while 

95% limits of agreement were −2.7 to 3.7 msec). However larger differences were found for 

beat to beat measurements with and without using fECG (6.1 ± 3.8 msec). A more accurate 

beatby-beat estimation of valve movements, could be achieved using improved segmentation 

methods.

6.4. Doppler velocimetry for fetoplacental circulation

Doppler assessment of umbilical artery involves the use of continuous or pulsed wave 

Doppler to determine arterial flow in a segment of umbilical cord, which is identified using 

(2D) B-mode ultrasound. The pattern of the waveform is then evaluated mostly through the 

ratio of Systolic/Diastolic (S/D) and the resistance index, based on quantifying the end 

diastolic velocity relative to the peak systolic velocity. The presence of diastolic flow has a 

higher impact than S/D value, e.g. the absence or reversed end diastolic flow is associated 

with increased incident of perinatal morbidity and mortality and 80% and 46% risk of 

hypoxia and acidosis, respectively (Westergaard et al., 2001; Karsdorp et al., 1994; 

Nicolaides et al., 1988). Using Doppler velocimetry is recommended in pregnancies 

complicated by hypertension and IUGR (Alfirevic & Neilson, 2009).

Thuring et al., have recently shown in a series of studies that objective analysis of the 

Doppler sound spectrum based on measures relevant to human auditory perception can 

provide a more sensitive indicator of changes in the umbilical artery blood flow than the 

traditional waveform analysis (Thuring et al., 2015, 2014, 2013). The DUS auditory 

measures were defined by the frequency band where the spectral energy had dropped 15 dB 

from its maximum level. It was then evaluated before and after two doses of 12 mg 

Betamethasone, where the audio measure reflected the changes more sensitively than the 

traditional waveform-based pulsatility index (PI) (Thuring et al., 2014).

7. Application of 1D-DUS in pathological conditions

The main application of 1D-DUS is FHR monitoring, which is common practice in 

developed countries, most often during or prior to labor. It is principally aimed at accurate 

identification of fetal metabolic acidemia and hypoxia with risk of deterioration, and to plan 

for expedited or immediate delivery (Nageotte, 2015). FHR monitoring is also used 

antenatally, particularly for progressive health monitoring of the IUGR fetus and to detect 

fetal health risks (Kouskouti et al., 2017; Murray, 2017).
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7.1. Perinatal hypoxia

Hypoxia and resulting ischemia (tissue damage) leading to HIE, occurs in one to three per 

1000 live full-term births, 15–20% of which leads to neonatal death, with an additional 25% 

leading to severe and permanent neuropsychological consequences (Graham et al., 2008; Lai 

& Yang, 2010; Vannucci & Perlman, 1997). Prenatal factors associated with increased risk 

of hypoxia include maternal smoking, severe preeclampsia and birth defects, while 

intrapartum factors include fetal tachycardia and late decelerations, maternal fever, 

chorioamnionitis and primary cesarean section (Ogunyemi et al., 2016). CTG has been often 

used as a promising method for identification of perinatal hypoxia in clinical practice and 

research. As outlined in table 1, its availability is still limited in low-resource-settings. It is 

important to note that the studies reviewed in this section were conducted on different 

databases with various type and number of cases and over different stages ranging from 

several hours before and during labor. Without a unified common database, the performance 

of these methods cannot be appropriately compared.

The heart rate of a normally oxygenated fetus after 32 weeks of gestation has episodes of 

accelerations at least every 60–80 min (i.e. reactivity), associated with fetal movements. In 

case of progressive hypoxia, decelerations will occur before the absence of accelerations. 

Significant hypoxia results in a decrease in fetal cerebral blood flow, which changes the 

sympathetic and parasympathetic control of the fetal heart, leading to low FHR or a 

deceleration. However, most of the deceleration patterns are not associated with any 

significant hypoxia or acidosis (Nageotte, 2015). There are certain clinical markers 

including: late deceleration with minimum occurring more than 30 seconds after uterine 

contraction peak and delayed return to the baseline, variable decelerations, loss of variability 

and elevation of the FHR baseline, sustained bradycardia and the sinusoidal FHR traces 

(Nageotte, 2015). These characteristics categorize the tracings in category III associated 

with abnormal and indicative of hypoxic risk, according to the threetiered classification of 

FHR, introduced by the American College of Obstetricians and Gynecologists (ACOG), the 

Eunice Kennedy Shriver National Institute of Child Health and Human Development, and 

the Society for Maternal-Fetal Medicine (American College of Obstetricians and 

Gynecologists, 2010). In this classification category I is attributed to normal tracings not 

associated with fetal asphyxia, with a baseline FHR of 110–160, moderate variability, no late 

or variable decelerations. Category II includes bradycardia with variability, tachycardia, 

minimal variability, no variability with no recurrent decelerations, marked variability, 

absence of induced accelerations even after fetal stimulation, recurrent variable decelerations 

with minimal or moderate baseline variability, prolonged decelerations lasting more than 

two minutes, but less than ten minutes, recurrent late decelerations with moderate variability, 

variable decelerations with other characteristics such as slow return to baseline, overshooting 

the baseline, or shoulders (Hooper & Elsamadicy, 2014; American College of Obstetricians 

and Gynecologists, 2010).

Visual inspection of FHR patterns for manual detection of hypoxia is of low specificity and 

subject to intra- and inter-observer variability (Hamilton & Warrick, 2013). A recent study 

found algorithm-assisted FHR interpretation potentially improving the management of 

category II FHR for prevention of neonatal metabolic acidemia, however, only around half 

Marzbanrad et al. Page 16

Physiol Meas. Author manuscript; available in PMC 2019 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the infants born with metabolic acidemia could be potentially identified and have delivery 

expedited, even under ideal circumstances (Clark et al., 2016). Automated methods have 

been proposed to detect hypoxia through its effect on the autonomic regulation which can be 

characterized by FHRV features (Chudáček et al., 2011; Van Laar et al., 2008; Dong et al., 
2014). These contributing features include temporal features and spectral power at different 

bands of FHRV (Georgoulas et al., 2006b), statistical parameters such as standard deviation 

of RR-intervals (Boardman et al., 2002), nonlinear features including Lempel-Ziv 

complexity (LZC), and Higuchi fractal dimension (HFD) (Chudáček et al., 2011; Spilka et 
al., 2012). It has been shown that SVM with temporal and spectral features can identify the 

neonatal risk of metabolic acidosis following fetal hypoxia, with specificity of 85% and 

sensitivity of 70% (Georgoulas et al., 2006b).

The relationship between the uterine pressure (UP) and the FHR also provides crucial 

information to assess contraction-deceleration timing (Warrick et al., 2012). A system-

identification approach was also proposed which modeled the spectral power of FHRV and 

UP in an input-output system and the features from the model was used for classification by 

SVM, resulted in 50% sensitivity and 7.5% false positives (Warrick et al., 2010). The non-

stationary features have shown outperforming stationary spectral features (Dong et al., 
2014). Taking into account the nonstationarity of FHRV signals, wavelet analysis of FHRV 

(Salamalekis et al., 2002; Georgoulas et al., 2006a), EMD (Krupa et al., 2009) and 

classification based on the normalized compression distance (NCD) related to Kolmogorov 

Complexity and mutual information have been also proposed to detect hypoxia (Santiago-

Mozos et al., 2013). The latter resulted in 92% sensitivity and 85% specificity (Santiago-

Mozos et al., 2013).

Other promising approaches were based on time-frequency measures (Dong et al., 2014), 

including quadratic time-frequency distributions (TFDs), estimating the instantaneous 

frequency (IF) and corresponding instantaneous amplitude (IA) (Boashash et al., 2013; 

Dong et al., 2014). Dong et al., used IF and IA components of HRV signal components and 

matrix decomposition of the time-frequency distributions through singular value 

decomposition and nonnegative matrix factorization as features. Classification by SVM 

resulted in 93.3% and 98.3%, sensitivity and specificity, respectively (Dong et al., 2014). 

However it is important to note that the aforementioned studies were conducted on different 

databases with various type and number of cases and over different stages ranging from 

several hours before and during labor. Without a unified common database, the performance 

of these methods cannot be appropriately compared.

Despite a lack of evidence on benefit of the antenatal CTG, it is often performed where the 

fetus is at-risk due to antepartum haemorrhage, preeclampsia, preterm premature rupture of 

the membranes and unexplained prematurity (Murray, 2017). There are certain pathological 

traces which are associated with significant fetal morbidity and necessitates further 

assessment of the umbilical and middle cerebral arteries, or the Ductus venosus if delivery is 

not to be undertaken (Murray, 2017). These traces show recurrent decelerations, either 

spontaneous or following mild uterine activity on an otherwise unreactive trace, a 

bradycardia, or, in the absence of the ability to test Doppler indices, the trace that is 

unreactive for over 120 min. (Murray, 2017).
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As described in section 6.3.2, 1D-DUS can also provide more information beyond the FHR 

and its variability, such as systolic and diastolic time intervals, based on valve motion 

timings, which can be potentially useful in characterizing hypoxia. For example, PEP 

shortens with acute hypoxemia, while becoming prolonged during sustained and severe 

hypoxemia (Organ et al., 1980; Mensah-Brown et al., 2010). A study on lamb fetuses found 

a highly significant negative correlation between ICT and maximum first derivative of the 

left ventricular pressure waveform, under the hypoxemia condition (Satoh et al., 2007).

7.2. Fetal development and IUGR

7.2.1. Gestational age estimation—Gestational Age (GA) estimation is essential for 

antenatal diagnosis, monitoring fetal growth and detecting IUGR, predicting the delivery 

date, management of pre-term and post-term pregnancies, and can ultimately prevent fetal 

and neonatal mortality (Bhutta et al., 2014; Chauhan et al., 2014; Alexander et al., 1996; 

Taipale & Hiilesmaa, 2001). It has been traditionally estimated based on the Last Menstrual 

Period (LMP), which is the most affordable method but subject to human errors and 

biologically associated errors (Dietz et al., 2007; Lynch & Zhang, 2007; Mahendru et al., 
2016). A more accurate and reliable growth assessment is through obstetric ultrasound 

imaging, which is clinically established as the gold standard (Papageorghiou et al., 2014; 

Lynch & Zhang, 2007). Various physical measurements are used for this purpose including 

Biparietal Diameter (BPD) and Crown-Rump Length (CRL)(Papageorghiou et al., 2014; 

Dietz et al., 2007; Lynch & Zhang, 2007). However, they are affected by genetic variations, 

fetal sex and inherent variability in the fetal growth process, pathological conditions, 

unsuitable positioning of the fetus and the quality of the images, as well as operator and 

technical errors (Kullinger et al., 2016; Lynch & Zhang, 2007; Callen, 2011; Hunter, 2009). 

Moreover its use is limited in low income countries due to the high cost of the equipment 

and a lack of trained healthcare professionals (McClure et al., 2014; Wang et al., 2011).

An alternative method of GA estimation is through FHR (Tetschke et al., 2016; Hoyer et al., 
2013; Cha et al., 2001), which can be measured with affordable devices and less prior skill 

(Stroux et al., 2014; Tezuka et al., 1998). Unlike ultrasound imaging techniques which are 

based on the physical development, FHR provides a marker for neuro-physiological 

development of the fetus, reflecting the ANS control of the cardiovascular system. Various 

linear, nonlinear time-domain, frequency-domain and complexity measures of FHRV were 

found related to fetal development (Tetschke et al., 2016; Schneider et al., 2006; Hoyer et 
al., 2013; Van Leeuwen et al., 2003; Hoyer et al., 2009; Wallwitz et al., 2012). Linear time 

domain FHRV measures such as SDNN (standard deviation from normal-to-normal beats) 

and RMSSD (root mean square of successive differences) and also complexity of the FHR 

increase with advancing gestation (Hoyer et al., 2009). They indicate an increase in 

sympathetically-mediated control of the FHR with fetal maturation, improving predictability 

of stable FHR patterns (Hoyer et al., 2009). Van Leeuwen et al. reported changes in the 

power spectra of FHRV with fetal development and emerging behavioral states during 

pregnancy (Van Leeuwen et al., 2003). Schneider et al. introduces AIF (Autonomic 

Information Flow), which is a complexity measure of the information transfer in the 

underlying physiological system, such as the ANS and found it increasing with gestational 

age (Schneider et al., 2006). However, the fetal maturation process is complex and non-
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linear, particularly with developing fetal behavioral states (Schneider et al., 2008; Tetschke 

et al., 2016; Hoyer et al., 2017). For example, active awake neuro-behavioral state stimulates 

sympathetic activation, increasing mean fHR, affecting sympatho-vagal balance and 

reducing FHR complexity (Schneider et al., 2008; Hoyer et al., 2017).

While in most of the earlier studies fetal development was modeled by linear characteristic 

curves using univariate regression models, recent works focus on complex multivariate and 

non-linear analysis of FHR which can better characterize the complex FHR patterns (Hoyer 

et al., 2013; Tetschke et al., 2016; Hoyer et al., 2017). Hoyer et al. has proposed a Fetal 

Autonomic Brain Age Score (FABAS) which leverages the FHR patterns in a multivariate 

analysis using fMCG recordings (Hoyer et al., 2013). This score was shown to reflect 

increasing fluctuation range, complexity, and pattern formation based on skewness, power 

spectral VLF (very low frequency 0.02–0.08 Hz)to LF (low frequency 0.08–0.2 Hz) ratio, 

generalized multiscale entropy and pNN5. Hoyer et al. also suggested the use of FABAS to 

detect growth-retarded fetuses (based on 11 IUGR cases). The fetuses were selected to be in 

active sleep state by three independent clinicians (Hoyer et al., 2013), while this criteria is 

difficult to implement in practice. Following the development of FABAS, the authors 

recently proposed a random forest approach to model the fetal maturation for a more 

accurate prediction of GA than other linear, multivariate regression approaches (Tetschke et 
al., 2016). These methods however use fMCG and fECG (not available in LMICs, see table 

1) for accurate measurement of FHRV parameters since it requires high temporal resolution 

of FHR (to the beat-to-beat level) which may not be achieved by CTG. The relationship 

between CTG and fMCG or fECG-based FHRV is still an important issue to be investigated, 

although they are generally consistent when calculated over oneminute windows (Jezewski 

et al., 2017). FHR patterns are also influenced by many other factors, arrhythmias, and even 

by the maternal psychological and physiological conditions, particularly in mid- and late-

gestation (Marzbanrad et al., 2015b; Ivanov et al., 2009; Mantel et al., 1991; Monk et al., 
2000).

As discussed in the previous section, 1D-DUS can provide additional information beyond 

the FHR, about the mechanical activity of the fetal heart. Fetal cardiac valve intervals 

derived from 1D-DUS were recently found as alternative measures of fetal development 

(Marzbanrad et al., 2016, 2017). An automated method was proposed to assess the fetal 

physiological development using the component intervals between fetal cardiac valve 

timings and the Q-wave of fECG. These intervals were estimated automatically from 1D-

DUS and noninvasive fECG and used to model the fetal development in a stepwise 

regression process. The estimated GA was validated against the gold standard gestational 

age identified by CRL (Marzbanrad et al., 2017). The valve interval-based method was 

found to be comparable to CRL method (with average error of 2.7 weeks), outperforming 

the model based on FHRV, also less affected by arrhythmias such as tachycardia and 

bradycardia compared to FHRV (Marzbanrad et al., 2017).

7.2.2. IUGR detection—One of the main implications of assessing fetal development is 

in early detection of IUGR. Several studies used FHR to detect IUGR, as summarized in 

table 4. As shown in the table, these studies were based on various (closed access) databases, 

which limited direct comparison of the techniques. One of the time domain FHR features 
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used for this purpose is short-term variability (STV) which has been found to be lower in 

IUGR cases (Schneider et al., 2006; Fanelli et al., 2013) and used in predicting the delivery 

time (Dawes et al., 1992b; Ferrario et al., 2009b). Other timedomain FHRV measures 

include mean and baseline FHR (Ferrario et al., 2007, 2009a,b; Buscicchio et al., 2010), 

Long-term Irregularity (LTI) (Ferrario et al., 2007; Fanelli et al., 2013; Ferrario et al., 2009a) 

and Interval Index (II) (Ferrario et al., 2007; Fanelli et al., 2013; Ferrario et al., 2009a,b). 

Using fMCG, Schneider et al. (Schneider et al., 2006) found SDNN and RMSSD both 

significantly lower in IUGR population (39 cases) than controls (29 cases). The method is 

however expensive and not available in LMICs (table 1). Ferrario et al. also analyzed the 

frequency domain features of FHR based on CTG, but did not find them different for IUGR 

cases (Ferrario et al., 2007, 2009a,b). However, Anastasiadis et al. used fMCG and found LF 

and HF to be discriminative (Anastasiadis et al., 2003), and Schneider et al. reported 

significantly lower total power (TP) and LF/HF for IUGR cases compared to control 

(Schneider et al., 2006).

Several studies used complexity measures such as entropy measures as potential markers for 

IUGR (Ferrario et al., 2006, 2009b). Ferrario et al. used Multiscale Entropy (MSE) and LZC 

based on CTG recordings to differentiate IUGR cases from healthy small for gestational age 

fetuses (Ferrario et al., 2006). They later found SampEn and Approximate Entropy (ApEn) 

not discriminative, using the same data (Ferrario et al., 2007, 2009a). The maximum 

Lyapunov exponent (MLE) as an estimate of predictability of a dynamic system, was 

reported to be significantly lower for IUGR cases than control (Kikuchi et al., 2006). The 

authors also showed Detrend Fluctuation Analysis (DFA) can be used to separate IUGR 

cases from normal controls (Kikuchi et al., 2008). It was further supported by Ferrario et al., 

who found significantly higher DFA values of long-term scaling exponents for IUGR cases 

(Ferrario et al., 2009b).

Several studies leveraged the use of a signal processing technique called Phase-Rectified 

Signal Averaging (PRSA), which characterize the cardiac acceleration and deceleration 

capacity (Bauer et al., 2006). The Averaged Acceleration Capacity (AAC) and Average 

Deceleration Capacity (ADC) were used as IUGR markers (Lobmaier et al., 2012; Huhn et 
al., 2011; Graatsma et al., 2012), while Fanelli et al., also computed the acceleration and 

deceleration phase-rectified slope (APRS and DPRS) compared to both AAC and ADC 

(Fanelli et al., 2013). These studies reported at least one of the PRSA based markers useful 

in discriminating IUGR cases from control, while slightly outperforming STV. There was 

however a disagreement in details about which of the three markers were the best 

performing. Fanelli et al., found only APRS (p = 1.12e-9) and DPRS (p = 9.57e-12) to be 

discriminative while both AAC (p = 0.2) and ADC (p = 0.06) failed to distinguish IUGR 

from control (Fanelli et al., 2013).

While the CTG-based studies on IUGR are limited by the use of small databases (as 

summarized in table 4), Stroux et al. recently used a dataset of CTG recordings from 1163 

IUGR and 1163 controls for IUGR classification, which is the largest on its kind (Stroux et 
al., 2017; Stroux & Clifford, 2016). Using STV, Long Term Variability (LTV) as features, 

they classified IUGR cases by LR (Stroux & Clifford, 2016). The achieved sensitivity (Se) 

and specificity (Sp) in a population of 23 to 34 weeks gestation were Se:63% and Sp:81% 
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for LTV, Se:63% and Sp:78% for STV and Se:67% and Sp:70% for AAC. It was different 

for the population with 35 to 42 weeks gestation, where Se:55% and Sp:70% for LTV, Se:

63% and 60% for STV, and Se:52% and Sp:74% for AAC were obtained, showing that the 

method was most effective when used before 34 gestation weeks (Stroux & Clifford, 2016). 

The author also proposed to use the behavioral state dependent CTG metrics for IUGR 

classification, considering that active and quiet sleep states are associated with high and low 

HRV, respectively (Stroux et al., 2017; Stroux & Clifford, 2016). The included features were 

based on LTV and STV metrics, averaged over episodes with high or low variability, the 

total number and average duration of high and low variability episodes, the number of 

minutes in high or low variability, the onset of the first high variability episode, and the 

gestational age estimated at time of recording (Stroux et al., 2017). A lower percentage of 

high variability (active sleep) was reported for IUGR compared to the normal population, in 

particular before 35 gestational weeks, possibly due to delayed or compromised sleep state. 

The FHR variability features were more discriminative earlier in gestation (before 35 weeks) 

for both male and female fetuses. The LTV in active sleep was superior to STV (AUC of 

72% vs. 71%) and the most predictive measure was the number of minutes in high variation 

per hour (AUC of 75%). The model combining multiple features including gestational age, 

long-term and short-term variability in high variation episodes, the average duration in high 

variation and the number of high episodes in the trace improved the discriminative 

performance to 76% on the test set for 23–34 weeks of gestation (Stroux et al., 2017).

Overall, FHRV markers with trace characteristics and additional surrogate information on 

sleep states can contribute to the detection of early-onset IUGR; while not that suitable for 

classifying late-onset IUGR (Stroux et al., 2017; Stroux & Clifford, 2016). While this large 

scale study was limited to the population of UK residents largely consisting of caucasian 

subjects, and the data were collected in a hospital setting, it provided good evidence that 

IUGR screening is indeed possible with low-cost FHR monitoring systems, which could be 

applied in LMICs. Such an approach could be further improved, using signal quality 

assessment (discussed in section 5), improving the temporal resolution of the FHR derived 

from 1D-DUS and using additional features such as fetal cardiac valve intervals 

(Marzbanrad et al., 2017).

7.3. Fetal arrhythmias and heart anomalies

Approximately 10 to 20% of referrals to fetal cardiologists are due to fetal arrhythmias 

(Wacker-Gussmann et al., 2014). Although they affect a small percentage (0.6–2.0%) of 

pregnancies, certain types of arrhythmias account for a high morbidity and mortality, 

contributing to 3–10% of fetal demise, unexplained fetal hydrops, and prematurities (Crotti 

et al., 2013; Wacker-Gussmann et al., 2014). They are usually identified as presenting an 

abnormal fetal heart rate or rhythm during fetal Doppler-based auscultation at routine 

antenatal assessment (Hornberger & Sahn, 2007). For example, fetal bradycardia is 

characterized by sustained FHR<110 bpm over at least 10 minutes. Gestational age should 

also be considered and persistent heart rates below the third percentile of FHR for GA may 

be a marker for significant conduction disease (Wacker-Gussmann et al., 2014; Hornberger 

& Sahn, 2007). Fetal tachycardia is defined as sustained FHR>160 bpm, with some types 

typically showing as high as 200 bpm. Fetal hydrops, premature delivery, and perinatal 
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morbidity and mortality can be associated with tachycardias (Wacker-Gussmann et al., 
2014). However a recent study showed relatively low inter-observer agreement in 

interpretation based on CTG (by six clinicians), as tachycardia and bradycardia were 

detected with agreement proportion of 0.56 and 0.49, respectively (Rei et al., 2016).

Most lethal fetal cardiac rhythm disturbances are due to depolarization and repolarization 

abnormalities occurring with normal and regular rhythm (WackerGussmann et al., 2014). 

Currently, diagnosis of arrhythmias relies on fetal echocardiographic modalities such as M-

mode and pulsed Doppler (Strasburger & Wakai, 2010). However they cannot provide the 

cardiac time interval waveforms, such as P wave, QRS duration, QT interval. In some types 

of arrhythmias, such as blocked atrial bigeminy, atrial flutter (AF), and long QT syndrom, 

the mechanical rhythm does not accurately reflect the electrical rhythm (Wiggins et al., 
2013; Crotti et al., 2013; Wacker-Gussmann et al., 2014). In fact in some of the most serious 

electrophysiological abnormalities, the sinus rhythm is present with normal heart rate or 

rhythm, which cannot be detected without fMCG or fECG. Nevertheless, some arrhythmias 

still cause persistent FHR alteration from the normal range for gestation (Wacker-Gussmann 

et al., 2014).

Recent advances in identification of fetal cardiac valve motion from 1D-DUS can provide 

additional markers beyond the FHR, to detect fetal cardiac anomalies (Marzbanrad et al., 
2014c; Marzbanrad, 2015). Particularly in conjunction with fECG, valve motion intervals 

can provide electromechanical features to assess the fetal heart function. One of these 

intervals is the myocardial performance index (MPI : (ICT + IRT)/V ET) which can 

characterize the systolic and diastolic function of the fetal heart (Tei, 1995) (figure 5). 

Recently K-index ((ICT + IRT)/V ET) has been also proposed and shown as a better marker 

for various CHD types (Khandoker et al., 2016, 2017). Evaluated for 8 cases with 

conduction pathway abnormalities, 6 structural anomalies, versus 57 control cases, the 

conventional MPI did not show any significant change from conductive CHD to structural 

CHD fetuses, while K-index showed significantly lower values for structural CHD cases 

compared to conductive CHD and normal cases (Khandoker et al., 2017). However, 

conduction-based CHD cases were found to be within the confidence interval of normal K-

index (Khandoker et al., 2017). A pilot study on assessment of fetal physiological 

development using cardiac valve intervals demonstrated distinctive effect of certain 

structural and conductive cardiac abnormalities, on deviation of the estimated physiological 

age from the ultrasound imaging-based gestational age (Marzbanrad et al., 2017). Overall, a 

combination of fECG with 1D-DUS, can provide a better characterization of conductive, 

mechanical or electromechanical abnormalities of the fetal heart. This requires further 

improvements in extraction of fECG morphological information and cardiac valve motion 

identification from these two modalities.

8. Summary of current challenges and future directions

This review concludes with five notable issues, and possible solutions to push the field 

forward and enable the full utilization of a low-cost signal that is routinely recorded during 

pregnancy, the world over.
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• Fetal cardiac 1D-Doppler has been used for CTG in clinical practice for decades 

as an affordable technique for the assessment of fetal wellbeing. However, as 

discussed in section 4, devices have been limited to black-box proprietary 

products, without providing documentation of techniques, or any access to raw 

data for further development and improvement. Building a database open to 

researchers and providing open-source algorithms are particularly crucial, since 

the current application of 1D-DUS in electronic FHR has been found to be 

largely ineffective in reducing perinatal morbidity and mortality (Alfirevic et al., 
2013; Steer, 2008). Substantial public gold standard databases are required and 

should particularly include raw Doppler signals. Such databases would ideally 

also contain simultaneous fECG, fMCG or echocardiography recordings and 

multiple expert annotations on onset and offset of relevant features in the signals. 

Other clinical information such as gestational age during recording and at birth, 

neonatal outcome Apgar score, maternal health data (e.g. smoking status, blood 

pressure, medications, drug usage, family history, etc.), and demographics would 

also be helpful for developing accurate and generalizable clinical decision 

support systems. Such databases are required for development and comparison of 

different signal processing techniques for extraction of fetal vital parameters and 

classification of abnormalities.

• Considering the noisy and non-stationary nature of 1D-DUS signal, it is essential 

to evaluate the signal quality before extraction of fetal vital parameters. As 

discussed in section 5, development of real-time signal quality feedback might 

also assist the operator with acquisition of reliable data through a real-time 

feedback system. This has not been sufficiently studied until recently 

(Marzbanrad et al., 2015a; Stroux & Clifford, 2016; Valderrama et al., 2017) and 

requires further development of signal quality metrics. It not only requires raw 

Doppler signals, but also quality annotation or benchmarking with another 

approved modality.

• Most of the current methods for estimation of FHR from 1D-DUS are based on 

conventional autocorrelation techniques (see section 6.2.1), which only provide 

averaged FHR with limited accuracy and temporal resolution. Moreover, this 

approach is not well documented, being the main approach in proprietary 

systems, therefore inhibiting reproducibility. As detailed in section 6.2.2, recent 

advances have shown that FHR estimation from 1D-DUS can approximate the 

beat-to-beat resolution observed in the fECG (Jezewski et al., 2017). Further 

development of signal processing approaches is likely to improve the temporal 

resolution of FHR analysis, enabling measurement of detailed fetal HRV 

parameters and assessment of sympathetic and parasympathetic function and 

development of the fetal ANS.

• Simultaneous acquisition of 1D-DUS and abdominal ECG recordings has shown 

to be promising for enabling more accurate extraction of fECG from the 

abdominal mixture (Sato et al., 2007). Furthermore, additional features beyond 

the FHR can be extracted from 1D-DUS, such as fetal cardiac valve opening and 

closing (Marzbanrad et al., 2013a, 2014a), as reviewed in section 6.3.2. Recent 

Marzbanrad et al. Page 23

Physiol Meas. Author manuscript; available in PMC 2019 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies showed the feasibility of estimating fetal cardiac valve intervals and their 

effectiveness in assessing the fetal development and wellbeing (Marzbanrad et 
al., 2017; Khandoker et al., 2017). This could be further pursued, using 

simultaneous fetal echocardiography and precise expert annotation of valve 

motion events. Combining Doppler and fECG modalities also enables 

assessment of electrical, mechanical and electromechanical activity of the fetal 

heart, to better characterize structural and conductive abnormalities, as discussed 

in section 7.3. Considering the challenges in CTG interpretation and relatively 

low inter-observer agreement (Kwon & Park, 2016), developing automated 

decision support systems is also recommended for future developments. Fusion 

of multiple modalities, and extraction and integration of information should be 

explored to develop better predictive markers.

• Finally, despite the extensive use of 1D-DUS in CTG, its characteristics and 

patterns have not been well studied. Future research can focus on modeling the 

1DDUS signals, to better explain variable signal patterns. The models should 

ideally simulate possible fetal orientation with respect to the ultrasound probe, 

fetal movement and maturation process, as well as pathological conditions. 

Modeling and simulation of 1D-DUS signals can also facilitate development and 

improvement of extracting fetal cardiac parameters such as FHR and valve 

motion intervals.
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Figure 1: 
The anatomic structure of the fetal heart is illustrated. Note the existence of the foramen 

ovale, which bypasses the lungs and moves blood from the right atrium of the heart to the 

left atrium. The foramen ovale closes in most newborns around 30 minutes after the first 

breaths, however, conditions such as patent foramen ovale, observable through echo-

cardiography, can persist into adulthood (Sadler, 2004). Adapted from (Marzbanrad, 2015) 

under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
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Figure 2: 
The ECG tracing corresponding to the electrical and mechanical events in a cardiac cycle is 

illustrated. Image was downloaded for free at https://openstax.org/details/books/anatomy-

and-physiology and modified under the Creative Commons Attribution 4.0 International 

License (CC BY 4.0) (OpenStaxCollege, 2015).

Marzbanrad et al. Page 37

Physiol Meas. Author manuscript; available in PMC 2019 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://openstax.org/details/books/anatomy-and-physiology
https://openstax.org/details/books/anatomy-and-physiology


Figure 3: 
If the 1D-DUS transducer is placed on the maternal abdomen and directed towards the fetal 

heart, movement of cardiac walls and valves can be captured. It emits ultrasound waves with 

frequency fo and receives the reflected signal with frequency fR, where the reflected wave 

has a different frequency due to the Doppler shift. The shift in frequency depends on the 

velocity V, direction and angle of the movement with respect to the ultrasound beam, θ, and 

the speed of sound in soft tissue, c, as detailed in equation 1. Licensed under the Creative 

Commons Attribution 4.0 International (CC BY 4.0).
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Figure 4: 
The 1D-DUS spectrogram is shown with simultaneous fECG for different time windows of a 

30-minute recording. Figures (a)-(d) show the variability of the 1D-DUS even on a beat-to-

beat basis, mainly due to fetal movements and changes in fetal heart-transducer orientation. 

In window (a), atrial contraction (Atc) is predominant, while mitral opening (Mo) and 

closing (Mc) are detectable in window (b), different from window (c) where aorta opening 

(Ao) and closing (Ac) are visible and none of the cardiac events are captured in window (d). 

The figures are annotated manually based on the spectro-temporal patterns and timings using 
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fECG R-peaks as reference. The source data including 1D-DUS (AngelSounds JPD-100S 

with ultrasound frequency of 3.3 MHz) and noninvasive fECG were recorded at University 

Hospital of Leipzig in Germany and made available under an open access license.
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Figure 5: 
An illustrative example of fetal cardiac intervals: Systolic Time Interval (STI), 

Electromechanical Delay Time (EDT), Isovolumic Contraction Time(ICT), Pre-Ejection 

Period (PEP), Ventricular Ejection Time (VET), Diastolic Time Interval (DTI), Isovolumic 

Relaxation Time (IRT), Ventricular Filling Time (VFT). The image is adapted from 

(Marzbanrad et al., 2017), and licensed under Creative Commons Attribution 4.0 

International (CC BY 4.0).
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Table 1:

Summary of available methods for non-invasive fetal monitoring, their affordability, training burden and 

availability in LMICs.

Methods Equipment cost Training burden Availability in LMIC Gestational age

1D-DUS (hand-held) Low Low (Stroux et al., 
2016)

Available ⪆ 20 weeks (Peters et al., 
2001)

1D-DUS (Car-diotocogrpahy) High Moderate Limited During Labor

Echocardiography High High Limited ⪆ 11 weeks* (Gembruch et al., 
2000)

Non-invasive fECG Low Moderate Limited, under development ⪆ 18 weeks with dip from 28th 
to 37th weeks (Sameni & 
Clifford, 2010)

FMCG High High Unavailable ⪆ 18 weeks (Mosher et al., 
1997)

Phonocardiography Low Low Limited, under development 
(noise prone)

≥30 weeks (Kov´acs et al., 
2011)

*
According to a study by Gembruch et al., on 136 normal singleton fetuses, the heart four-chamber view and great arteries can be adequately 

visualized in 44% of the fetuses at 10 weeks of gestation, in 75% at 11 weeks of gestation, in 93% at 12 weeks of gestation and in 100% of the 
fetuses at 1317 weeks of gestation. Before 14 weeks of gestation transvaginal sonography is superior to the transabdominal sonography, while after 
14 weeks of gestation transabdominal sonography can accurately demonstrate the heart structure (Gembruch et al., 2000).
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Table 2:

Summary of the substantial CTG databases used in the literature is presented in chronological order, which 

however do not include raw 1D-DUS data.

Study Access Subjects Site Application

Stroux et al. (2017); 
Stroux & Clifford 
(2016)

closed 1163 IUGR and 1163 control cases 
at 23–42 weeks of gestation

Oxford, UK FHR analysis markers for the detection 
of early IUGR

Georgieva et al. (2017) closed 22,790 women in labor, ≥36 weeks 
of gestation

Oxford, UK Using CTG and clinical features to 
automatically identify the fetuses at risk 
of intrapartum hypoxia.

(Warrick & Hamilton, 
2014)

closed Intrapartum recordings from 5320 
normal cases, 10 cases with neonatal 
depression and 99 with metabolic 
Acidosis

United States discrimination of normal and at-risk 
populations from fetal HRV.

(Chudáček et al., 
2014)

open 552 intrapartum CTG selected from 
9164 cases, ≥37 weeks of Gestation

Brno, Czech Republic Providing an open-access CTG database 
for research on intrapartum CTG signal 
processing and analysis.
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Table 3:

Summary of the 1D-DUS databases used in the literature in the past 20 years is presented in chronological 

order. All databases are closed access.

Study Device Subjects Site Application

Valderrama et al. 
(2018); Stroux & 
Clifford (2016)

Angel-Sounds 
JPD100s hand-held, 
frequency of 3.3 
MHz

146 fetuses, GA: 2nd and 
3rd trimester

Rural Guatemala improving the quality of point of 
care diagnostics in LMICs.

Valderrama et al. 
(2017); Stroux & 
Clifford (2016)

Angel-Sounds hand-
held JPD100s, 
frequency of 3.3 
MHz

17 fetuses, GA: 20 to 40 
weeks

Oxford, UK signal quality assessment and 
improving FHR mon-itoring

Marzbanrad et al. 
(2017, 2014a,a)

Corometrics 5700 
Ultrasound 
transducer, frequency 
of 1.15 MHz

57 healthy fetuses and 30 
cases with fetal arrhythmia 
or heart anomalies 
between 16 to 41 weeks

Sendai, Japan Signal quality assessment, fetal 
heart valve movement detection 
and assessing fetal development

Wróbel et al. (2014) not specified 11 recordings, GA: 26 to 
41 weeks

Katowice, Poland fetal movement detection

Lee et al. (2009b) FD2-P hand-held, 
frequency of 2 MHz

Synthetic and limited fetal 
recordings (numbers not 
speci-fied)

Mount Lawley, Australia Improving FHR monitoring

Yumoto et al. 
(2005); Satoh et al 
(2007)

FD-390 Hand Held, 
frequency of 2.5 
MHz

12 fetal lambs, GA: 128 to 
135 days

Kyushu, Japan measurement of isovolumetric 
contraction time (ICT)

Kupka et al. (2004) fetal monitor 
MT430, frequency of 
2 MHz

12 antepartum and 3 
intrapartum recordings

Poland fetal heart valve movement detec- 
tion

Koga et al. (2003) continuous-wave 
ultrasound 
transducer, frequency 
of 2.5 MHz

116 normal fetuses, 
between 20 and 40 weeks 
of gestation, with 8 
longitudinal 
measurements > 3 times in 
pregnancy 2nd half and 55 
potentially compromised 
fetuses

Western Sydney, Australia Assessment of isovolumetric 
contraction time (ICT)

Shakespeare et al. 
(2001)

Sonicaid (modified), 
frequency of 1.5 
MHz

21 patients (22 recordings) Nottingham, UK Fetal heart valve movement 
detection
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Table 4:

Summary of the literature on identification of IUGR fetuses using FHR parameters is presented in 

chronological order. Fetal magenetocardiogram (fMCG) and electrocardiogram (fECG) studies have been 

included as well as 1D-DUS for comparison.

Study Modality Method Database Main findings

Stroux et al. 
(2017); Stroux & 
Clifford (2016)

1D-DUS/ CTG Multiparameter behavioral state 
dependent metrics: LTV and STV 
averaged over high or low variability 
episodes, no. and average duration of 
high and low variability episodes, 
no. of minutes in high or low 
variability, onset of the first high 
variability episode, and estimated 
GA

1163 IUGR and 1163 
control cases at 23–42 
weeks of gestation

LTV in active sleep was 
superior to STV (AUC of 72% 
vs. 71%). The number of 
minutes in high variation per 
hour (AUC of 75%) was the 
most predictive. The combined 
model improved the 
performance to 76%.

Magenes et al. 
(2014)

1D-DUS/CTG multivariate: time domain (Rcov, 
STV, LTV), regu- larity/complexity 
(ApEn, Lempel Ziv, SE) and PRSA 
(APRS, DPRS)

60 IUGR at 32.27 ± 2.79 
weeks and 60 control cases 
at 34.78 ± 0.53 weeks of 
gestation

LR performed on ApEn, LTI, 
LZC and RCO achieved 92.5% 
accuracy of IUGR detection, 
with 93% sensitivity and 91.5% 
Specificity

Gon¸calves et al. 
(2013)

1D-DUS/CTG Linear and entropy methods: mean 
FHR, LF, HF and MF, LF/(MF+HF) 
ApEn, SampEn, MSE.

15 severe IUGR fetuses at 
28–37 gestation weeks and 
18 controls at 29–38 
gestation weeks

significantly lower mFHR was 
only evident in IUGR males and 
lower entropy in IUGR females. 
Lower LF/(MF+HF) for IUGR 
females but not for males. 
Better detection of IUGR for 
male fetuses.

Hoyer et al. 
(2013)

fMCG FABAS: a multivariate model 
including: amplitude, skewness, 
generalized MSE, pNN5 and 
VLF/LF

428 normal (113 quiet sleep, 
286 active sleep, 29 active 
awake), and 19 IUGR cases, 
at 21- 40 gestation weeks

Classification of quiet and 
active sleep states (93.1%) and 
reduced fABAS for 11 IUGR 
fetuses preselected in active 
sleep.

Fanelli et al. 
(2013)

1D-DUS/CTG PRSA, DPRS depending on the 
slope sign of the PRSA curve.

61 IUGR and 61 control 
cases at 3435 weeks of 
gesta- tion

better discrimination by APRS 
(AUC=0.823) and DPRS 
(AUC=0.837) than STV 
(AUC=0.816). Significantly 
different STV, Delta, LTV, for 
IUGR.

Lobmaier et al. 
(2012)

1D-DUS/CTG AAC to assess the dynamic capacity 
of the fetal ANS, and STV

39 IUGR and 43 control 
cases, at 2638 weeks of 
gesta- tion

AAC differentiates better than 
STV, with higher AUC (97% vs. 
85%), PPV (90% vs. 77%) and 
NPV (90% vs. 81%)

Graatsma et al. 
(2012)

fECG STV, AAC, ADC using PRSA 30 small for GA, at 27–36 
weeks and 90 control 
fetuses, 2140 gestation 
weeks

In small fetuses, both AAC and 
ADC z-scores were lower than 
the STV z-scores.

Huhn et al. 
(2011)

1D-DUS/CTG Transformed PRSA, AAC 74 IUGR and 161 normal 
cases at 2836 gestation 
weeks

Lower AAC and STV for 
IUGR. AUC of 81.4% for AAC 
and 70.5% for STV.

Buscicchio et al. 
(2010)

1D-DUS/CTG baseline FHR, no. of small and large 
accelerations, no. of decelerations, 
duration of high and low variation in 
minutes, LTV, STV, no. of fetal 
movements per hour

100 gestational diabetes 
cases on diet therapy and 
100 on insulin therapy, 100 
gestational hypertention, 
100 IUGR, 100 premature 
rupture of membranes, 100 
controls, all 35–36 gestation 
weeks

Baseline FHR, the duration of 
episodes of low variation and 
STV were significantly higher 
in all abnormal cases than in 
controls; significantly reduced 
fetal movement for IUGR, 
hypertention and premature 
rupture of membranes.

Ferrario et al. 
(2009b)

1D-DUS/CTG time domain and frequency domain 
FHRV, and complexity parameters: 
ApEn, SampEn, MSE, LZC, DFA

25 recordings from 6 IUGR 
cases, at 28–34 weeks, 4 
subjects (13 recordings) 
with altered fluximetric 
indices

IUGR cases without fluximetry 
alterations, had reduced HRV 
amplitude and regularity, lower 
spectral components and 
complexity.
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Ferrario et al. 
(2006, 2009a)

1D-DUS/CTG LZC and MSE with k-mean cluster 
analysis

23 severe IUGR, 19 non-
severe IUGR and 17 control 
fetuses, at 27 to 34 weeks of 
gestation

LZC and MSE are significantly 
different for severe IUGR vs. 
non-sever and control 
(Se=77.8% and Ac=82.4%).

Kikuchi et al. 
(2008)

1D-DUS/CTG DFA 68 IUGR fetuses, at 24 to 40 
weeks, and 119 control 
fetuses at 22 to 41 weeks of 
gestation

α2 exponent values of IUGR 
were significantly higher than 
control

Serra et al. 
(2008)

1D-DUS/CTG STV 257 IUGR cases within 24 
hours of delivery (26–42 
weeks)

Decreasing STV was correlated 
with earlier deliveries and 
worse postnatal outcome.

Ferrario et al. 
(2007)

1D-DUS/CTG Time and frequency domain FHRV, 
LZC, ApEn, SampEn

23 severe IUGR, 19 non-
severe IUGR and 17 control 
fetuses, at 27 to 34 weeks of 
gestation

Only LZC, DELTA and STV 
were discriminative, no 
improvement by adding ApEn 
and SampEn

Schneider et al. 
(2006)

fMCG linear and nonlinear FHRV 
parameters

36 IUGR and 29 control 
fetuses, at 28 to 39 weeks of 
gestation

Significantly lower SDNN, 
RMSSD, TP and LF/HF for 
IUGR

Kikuchi et al. 
(2006)

1D-DUS/ CTG Nonlinear FHRV: attractor 
reconstruction, largest Lyapunov 
exponents and correlation dimension

69 IUGR fetuses, at 24 to 40 
weeks, and 119 control 
fetuses at 22 to 41 weeks of 
gestation

Decreased variability, less 
chaotic FHR dynamics and 
decreased complexity for 
IUGR.

Anastasiadis et 
al. (2003)

fMCG chaotic and periodic heart rate 
dynamics

11 IUGR and 19 control 
fetuses at 34 to 37 weeks of 
gestation

Significantly lower correlation 
dimension and higher LF, HF 
powers for IUGR.
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