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Abstract

Cardiac allograft vasculopathy (CAV) accounts for about 30% of all heart-transplant (HTx) patient 

deaths. For patients at high risk for CAV complications after HTx, therapy must be initiated early 

to be effective. Therefore, new phenotyping approaches are needed to identify such HTx patients 

at the earliest possible time. Coronary optical coherence tomography (OCT) images were acquired 

from 50 HTx patients 1 and 12 months after HTx. Quantitative analysis of coronary wall 

morphology used LOGISMOS segmentation strategy to simultaneously identify three wall-layer 

surfaces for the entire pullback length in 3D: luminal, outer intimal, and outer medial surfaces. To 

quantify changes of coronary wall morphology between 1 and 12 months after HTx, the two 

pullbacks were mutually co-registered. Validation of layer thickness measurements showed high 

accuracy of performed layer analyses with layer thickness measures correlating well with 

manually-defined independent standard (Rautomated
2 =0.93, y=1.0x − 6.2μm), average intimal

+medial thickness errors were 4.98±31.24 μm, comparable with inter-observer variability.

Quantitative indices of coronary wall morphology 1 month and 12 months after HTx showed 

significant local as well as regional changes associated with CAV progression. Some of the newly 

available fully-3D baseline indices (intimal layer brightness, medial layer brightness, medial 

thickness, intimal+medial thickness) were associated with CAV-related progression of intimal 

thickness showing promise of identifying patients subjected to rapid intimal thickening at 12 

months after HTx from OCT-image data obtained just 1 month after HTx. Our approach allows 

quantification of location-specific alterations of coronary wall morphology over time and is 
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sensitive even to very small changes of wall layer thicknesses that occur in patients following heart 

transplant.
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Cardiac allograft vasculopathy (CAV); optical coherence tomography (OCT); LOGISMOS; CAV 
progression; CAV prediction

1. Introduction

Cardiac allograft vasculopathy (CAV) represents the leading cause of late morbidity and 

mortality in heart transplant (HTx) recipients (Chih et al., 2016; Wever-Pinzon et al., 2014). 

Overall, CAV accounts for about 30% of all HTx patient deaths. For patients at high risk for 

CAV complications after HTx, therapy must be initiated early to be effective. Once CAV 

causes allograft dysfunction, the only long-term therapeutic solution is a re-transplantation. 

Therefore, development of a methodology for quantitative detection of early CAV 

progression, sufficiently sensitive to initially small changes of the intimal and medial layers 

and offering high measurement accuracy is of utmost importance. We report a highly 

automated approach to quantitative analysis of coronary optical coherence tomography 

(OCT) images in HTx patients, yielding accurate quantitative analysis of coronary wall layer 

properties.

Historically, a number of successful coronary imaging approaches reached full clinical-care 

acceptance, starting with selective X-ray coronary angiography that allowed visualization of 

coronary vessel lumen and coronary stenoses in clinical setting (Sones and Shirey, 1962). 

While coronary angiography can only image the coronary lumen, intravascular ultrasound 

(IVUS) imaging brought 3-D wall imaging to routine clinical care in the late 1980’s (Bom 

and Lancee, 1972). While clinical use is almost entirely limited to simultaneous 

visualization of the axial pullback at a selected angle together with displaying cross-

sectional 2D wall locations, geometrically correct representation of IVUS data can be 

obtained by data fusion of 2-plane coronary angiography and IVUS (Wahle et al., 1999b,a; 

Slager et al., 2000; Wahle et al., 2006; Chandran et al., 2006; Stone et al., 2007; Zhang et al., 

2015). Intracoronary OCT is the most recent tomographic imaging modality (Huang et al., 

1991) that is transforming routine clinical care for patients with cardiovascular diseases. 

Intracoronary OCT is in many ways similar to IVUS while offering much better resolution 

(but much lower penetration depth). As a result, vascular wall layers close to the lumen can 

be visualized in never-before available detail, allowing, e.g., quantification of intimal or 

medial layer thicknesses.

Several methods have recently been reported to analyze coronary OCT images. Lumen and 

intima-media border were segmented using edge detection and dynamic programming with 

an ellipse shape fit in (Olender et al., 2017). Its performance was affected by segmentation 

sensitivity to large intensity variations of similar tissues in OCT. In (Zahnd et al., 2017), 

intima, media and adventitia layers were identified and assessed in healthy coronary wall 

regions by utilizing gradient-based dynamic programming, with healthy and diseased 

regions automatically distinguished by adaptive boosting with feature selection. Both of 
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these methods targeted OCT image analysis in atherosclerotic cardiovascular disease, which 

exhibits substantially different characteristics of the wall appearance in OCT images 

compared to CAV. Recently, an HTx OCT study was reported that characterized 

morphological changes in coronary artery due to CAV development (Clemmensen et al., 

2017, 2018). The analysis was performed on discrete OCT frames or using relatively short 

segments (not along the entire length of the available OCT pullbacks) and the clinical 

conclusions invariably relied in part on expert-assessed qualitative analysis or only-local 

quantitative measurements. Due to the diffuse and progressive character of CAV disease and 

its effect on coronary wall morphology, extending the analysis from isolated segments to the 

full available length of the coronary wall coverage is an important next step. In the process, 

relying on automatically generated quantitative indices of coronary wall morphology, tissue 

characterization, and changes thereof must be accomplished to overcome the tedious and 

irreproducible character of the manual and qualitative analyses. Our work reported here is 

addressing this very issue.

The reported method provides a diagnostic support for a notion that the earliest changes of 

coronary wall morphology combined with relevant biomarkers are likely indicators of 

clinically significant CAV development in the future (Starling et al., 2016). Presence of 

severe intimal thickening has been repeatedly shown indicative of cardiac events in CAV 

(Mehra et al., 1995; Tsutsui et al., 2001). However, limitations of the employed IVUS 

imaging did not allow reliable detection of small early changes of the intimal layer and the 

previous analysis methods relied on single-location measurements thus not supporting fully 

3D analyses of longer vessel segments. Our method uses OCT imaging that offers much 

higher image resolution, clearly depicts even the thinnest intimal layers in undiseased or 

minimally diseased coronary arteries following HTx, and when combined with novel 

accurate quantitative 3D image analysis, allows highly sensitive assessment of coronary wall 

changes (Chen et al., 2017; Pazdernik et al., 2017a,b; Clemmensen et al., 2017; Woo et al., 

2015).

The main novel contributions of the reported research are the development and validation of 

the first highly automated, inherently three-dimensional, accurate, and efficient method for 

multi-layer segmentation of coronary OCT in heart transplant patients including OCT–OCT 

image pullback registration; introduction of novel quantitative indices reflecting CAV status 

and CAV progression; demonstrating applicability of these quantitative indices to describe 

early changes of coronary wall morphology globally, regionally, and locally; and assessing 

their promise to predict future CAV progression in HTx patients.

2. Methods

Quantitative analysis of coronary wall morphology depicted by intravascular OCT uses our 

previously reported LOGISMOS segmentation strategy (Li et al., 2006; Yin et al., 2010) that 

was further developed for coronary OCT. In HTx patients, three wall-layer surfaces are 

segmented simultaneously for the entire pullback length in 3D: lumen, outer intimal (inner 

medial) surface, and outer medial surface. Since changes of coronary morphology between 1 

and 12 months are of importance in HTx patients, an additional step of 1-month/12-month 

pullback registration is necessary.
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2.1. LOGISMOS Segmentation

The LOGISMOS (Layered Optimal Graph-based Image Segmentation for Multiple Objects 

and Surfaces) segmentation approach was introduced in 2006 (Li et al., 2006) and has been 

continuously developed and improved ever since (Yin et al., 2010; Sun et al., 2013; Oguz 

and Sonka, 2014; Sonka and Abramoff, 2016; Kashyap et al., 2018). Its brief description is 

provided here for completeness. LOGISMOS is a general approach for optimally 

segmenting multiple surfaces that mutually interact within individual objects and/or between 

objects. The problem is modeled by a complex multi-layered graph in which solution-related 

costs are associated with individual graph nodes. When constructing a graph for 

segmentation of multiple cylindrical surfaces as is the case of coronary wall imaged by OCT, 

the graph construction follows the polar co-ordinate system. Columns oriented along the 

OCT beam direction are used with angular in-frame separation of θp, their lengths 

correspond to the region of interest in the OCT image. Intra-surface and inter-surface 

relationships are represented by context-specific graph arcs. Smoothness of the resulting 

surfaces can be controlled by smoothness constraint parameters between adjacent columns 

(Δa) and across adjacent frames (Δb). Additionally, a-priori information about maximum or 

minimum anatomical thicknesses of individual layers can be incorporated in the graph 

construction – the surface separation constraints. A single graph holding all relationships 

and surface cost elements is constructed, in which the segmentation of all desired surfaces is 

performed simultaneously in a single optimization process. The LOGISMOS method 

employed in this work is fundamentally 3D, surfaces are segmented utilizing inter-frame 3D 

context rather than being built from independently segmented 2D contours.

For each target surface, a cost function is designed to assign each node in the graph (node-

spacing along the column of 10 μm) a cost value that indicates the unlikeliness of the surface 

passing through the voxel. Because each target surface passes through each column of nodes 

exactly once (along OCT beam direction in Fig. 1a), the objective of the multi-surface 

segmentation is to find the set of surfaces that have the globally minimal total cost and are 

subject to smoothness and separation constraints derived from prior knowledge. Following 

this automated step, the resulting optimized graph state (called residual graph) is kept in 

memory for the purposes of the subsequent Just-Enough Interaction (JEI) step.

2.2. Efficiently Improving LOGISMOS Segmentation Results via Expert Guidance – Just 
Enough Interaction

Our JEI approach (Sun et al., 2013) starts with an initial automated LOGISMOS 

segmentation (Section 2.1). The user guidance for JEI functionality is achieved by expert-

visual inspection of the segmentation result in 3D, identification of local or regional 

segmentation inaccuracies, and drawing correction line(s) by placing a set of points on the 

image to indicate approximate locations through which a specific segmentation surface 

should pass (Fig. 1b,c,d). The user feedback embedded in the correction line is incorporated 

into the algorithm by modifying cost values associated with graph node locations around the 

correction line, and then modifying capacities of corresponding terminal edges in the 

underlying residual graph (Kohli and Torr, 2007). The cost modification will make the 

expert-suggested locations more attractive to the underlying graph optimization process than 

was the case before. Since the suggested modifications are regional and not global, re-
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optimization is very fast and is completed in milliseconds. This allows real-time response to 

the operator and provides a good interactive use experience. Importantly, the obtained results 

still guarantee solution optimality with respect to the employed (JEI-modified) cost function 

and satisfy the desired surface smoothness and separation constraints.

2.3. Coronary OCT Segmentation

Using the LOGISMOS approach described above, layer segmentation in coronary OCT 

consists of the following main steps, all of which are performed in 3D.

1. Preprocessing: To remove OCT imaging catheter ring and decrease OCT-image 

noise, the OCT catheter was masked out (always the same size, always in the 

center of the image frame); 2D denoising median and mean filters were applied 

in 3×3 neighborhoods of each image-frame pixel.

2. Single-surface segmentation of the coronary lumen, determination of luminal 

centerline.

3. Simultaneous 3-surface segmentation yielding luminal, outer intimal, and outer 

medial surfaces (segmenting intimal and medial layers).

4. Identification of angular exclusion regions for each frame (angular wedges in 

which layers are not visible, Section 2.4).

5. Expert inspection of the automated segmentation results followed by the 

minimally-interactive JEI step to correct any local segmentation inaccuracies if 

present (Fig. 1).

As a result of these steps, layer thicknesses can be measured for each location of the 

coronary wall and used for calculation of wall-morphology description indices that are 

presented in Section 3.6. To measure morphological changes between 1-month and 12-

month scans for HTx patients, the two OCT image pullbacks must be mutually registered as 

described in Section 2.5.

2.4. Deep-Learning-Based Exclusion Regions

Frequently, portions of the OCT-imaged wall are not analyzable due to e.g., guidewire 

shadow, the increased intimal layer thickness of which prevents OCT image formation due 

to limited OCT penetration, blood artifacts, etc. Such wall portions must be excluded from 

analysis. Note that only angular regions of the wall are excluded, not entire OCT image 

frames. Exclusion regions are automatically determined by transfer learning using ImageNet 

network (Sermanet et al., 2013; Sharif-Razavian et al., 2014) after feeding new datasets 

derived from our OCT images. For each cross-sectional frame, angular range of exhibiting 

or not exhibiting a layered wall appearance was determined by an expert cardiologist. After 

lumen segmentation, lumen-centered 60° wedge patches with 2.2 mm radius (2.0 mm tissue 

penetration starting at the lumen border and 0.2 mm lumen offset) were extracted from each 

frame and were labeled by majority vote using all local expert labels within the wedge using 

1-degree partitioning. This information was used for training the deep-learning network. To 

achieve high learning efficiency, 36 overlapping 60° wedge patches (10° offset) were 

identified for each cross-sectional OCT frame. These angular patches were warped and 
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resized to square image patches of 227 × 227 pixels required by network input. The weights 

of our network were initialized from an ImageNet pre-trained model using Caffe framework 

(Jia et al., 2014) and further fine-tuned by continuing the backpropagation with all available 

training-set patches. The resulting label was derived for each 1-degree partitioning of the 

wall on each analyzed OCT frame using a weighted-majority vote favoring central patches 

among all involved wedge patches.

2.5. 1-Month – 12-month Pullback Registration

Mutual registration of 1-month and 12-month post-HTx OCT image pullbacks with respect 

to location and orientation of corresponding OCT frames builds on expert-identification of at 

least 3 matching landmark pairs such as bifurcations, microvessels, etc. visible in both 

pullbacks (Fig. 2). The matching frame locations and orientations are computer-determined 

via joint axial and rotational linear interpolation of all OCT images positioned between each 

pair of the matching landmarks. Linear extrapolation based on two closest landmarks is used 

proximally or distally outside of the landmark pairs. Since this process relies on expert 

identification of matching landmarks, correctness of the obtained registrations were visually 

assessed by a second expert observer who was allowed to recompute/improve the 

registration by correcting existing or defining additional pairs of matching landmarks until 

full satisfaction.

3. Experimental Methods

3.1. Image Data

Heart transplant subjects were recruited from the Transplant Center at IKEM, Prague, Czech 

Republic and the Center for Cardiovascular and Transplantation Surgery, Brno, Czech 

Republic, registered as clinical trial NCT02503566. Between October 2014 and December 

2015, 50 subjects were enrolled. All HTx recipients ≥18 years of age were deemed eligible 

for inclusion in the study provided they were able and willing to give their informed consent. 

Exclusion criteria included renal insufficiency ≥stage IV (Glomerular filtration 30 ml/min), 

unfavorable post-transplant clinical conditions such as episodes of severe rejection or 

nosocomial sepsis with prolonged antibiotic treatment during the first month, ongoing need 

for circulatory support using a ventricular assist device, and acute allograft failure. Coronary 

arteries of these 50 heart-transplant patients were OCT-imaged 1 month and 12 months after 

HTx (Ilumien Optis intracoronary OCT system – Dragonfly Optis, St. Jude Medical, St. 

Paul, MN). Coronary imaging was preferably performed in the left anterior descending 

artery (LAD), if that was not possible, another coronary vessel was imaged. Overall, 

proximal segments of 40 LAD, 6 left circumflex artery (LCx), and 4 right coronary artery 

(RCA) segments were imaged. Data were exported as DICOM images with no overlays or 

markers included. The OCT analysis of the available 100 OCT pullbacks (540 frames/

pullback, 54,000 OCT frames in total, frame-spacing of 0.1 mm, in-frame resolution of ~10 

μm/pixel) focused on 3D segmentation of the intimal and medial layers and on quantitative 

3D assessment of layer thicknesses. Out of these, 43,873 frames contained OCT image data 

with at least a portion of the coronary wall visualized (e.g., OCT frames inside of the 

guiding catheter were excluded). No image frames were excluded from analysis after 

baseline-follow-up co-registration.
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All 100 pullbacks (50 1-month–12-month pairs) were used for assessment of coronary 

morphology and its changes. In the 50 analyzed HTx pullback pairs, the median (IQR) 

angular range in which layered structure was visible and thus analyzable was 250 degrees 

(180–351) when all 54,000 OCT frames from all registered pullbacks were evaluated.

3.2. Independent Standard – Coronary Wall Segmentation

The independent standard of coronary wall layer segmentation was obtained by averaging 

manual tracings provided by two expert observers (MP and ZG). In each pullback OCT 

dataset, about 10 randomly selected image frames were independently traced by the two 

observers who were allowed to edit the traced borders until full satisfaction. The intimal-

medial, and outer-medial border were manually traced by each expert observer in 394 

frames from 38 pullbacks. The observers were blind to each other’s tracings and also blind 

to the results of the automated segmentation. Each pair of tracings was averaged to form the 

independent standard, which was subsequently used in the validation process. As such, the 

independent standard was available for all 394 frames and allowed point-based and frame-

based validation. The lumen surface is well-defined in OCT images, its segmentation is far 

less difficult, and therefore a smaller validation dataset of 135 frames from 6 pullbacks was 

used to validate the luminal segmentations, again averaging tracings from two experts to 

form the independent standard.

3.3. Parameters of the LOGISMOS Method

The OCT image segmentation method described in Section 2 used the following parameters:

• Initial lumen segmentation: For each OCT frame, there were np = 120 columns at 

equal column intervals of θp = 3°, column length was equal to the A-scan length, 

intra-frame smoothness constraints was Δa = 6 nodes, inter-frame smoothness 

constraints Δb = 5 nodes.

• Final 3-surface segmentation: The graph was constructed with the same per-

frame column density. The column length was 2.2 mm (based on limited OCT 

tissue penetration depth of about 2.0 mm plus 0.2 mm of columns located inside 

of the pre-segmented lumen surface), intra- and inter-frame smoothness 

constraints were Δa = 2 nodes, Δb = 2 nodes, respectively. Pixel spacing (~10 

μm) was used as in-column node spacing. The minimal layer thickness parameter 

was 0.02 mm for all layers, the maximum layer thickness for intima was 0.80 

mm, for media was 0.20 mm.

Surface costs used in the 3-surface LOGISMOS segmentation were computed as directional 

2D Sobel edge detector magnitudes after smoothing.

3.4. Validation, Independent Standard – Exclusion Regions

Five-fold cross-validation procedure was used to determine performance of our deep 

network for automated determination of wall-exclusion regions. The training/testing process 

was based on 43,873 frames from all available 100 pullbacks (50 1-month/12-month pairs), 

the regions with visible layered wall appearance (angular segments in each frame) were 

manually identified by expert cardiologist and served as the independent standard. The entire 
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patient cohort was randomly divided in 5 groups. The leave-20%-out approach repeatedly 

utilized 4 groups for training and the remaining group for testing and performance 

assessment. Training-testing processes were repeated 5 times by using each of the five 

groups as testing data in each run. Each run determined whether or not the computer-

determined exclusion regions agreed with the independent standard. The overall 

classification correctness was computed from a confusion matrix. Additionally, the 394 

frames of 38 pullbacks, in which manual identification of exclusion regions was performed 

by two experts (Section 3.2), were used to derive inter-observer variability of manual 

identification of exclusion regions and that was compared with the performance of the deep 

learning classification correctness.

3.5. Validation of Layer Segmentation

Correctness of all quantitative indices of coronary wall morphology listed in Section 3.6 is 

directly dependent on the correctness of the layer-based segmentation. Signed and unsigned 

surface positioning errors of the automated and JEI segmentations are reported as mean ± 

standard deviation in μm. Surface positioning errors were defined as the shortest in-frame 

distances between computer-determined surfaces and the independent standard. Similarly, 

local intimal and medial thickness errors were determined as the difference between 

corresponding thickness measurements derived from the independent standard and from 

computer/JEI analyses. Inter-observer variability of each of the above-listed assessment 

indices was determined from the independent standard defined by two expert observers 

(Section 3.2) and compared with errors of the computer analysis.

3.6. Quantitative Indices of Coronary Morphology, Visualization of Results

The following indices of coronary wall morphology were measured to demonstrate wall-

layer-quantification ability.

• Measured at each point of the wall of each pullback and available as local, 

regional, or global averages/standard deviations, minima, maxima:

1. Layer-specific thickness (intimal, medial, combined intimal plus medial 

– I+M)

2. Intimal-to-medial thickness ratio (IMratio)

3. Normalized intimal thickness

4. Intimal surface roughness

5. Layer-specific brightness (intimal, medial)

6. Histograms of intimal, medial, I+M thickness

• Measured as progression/regression describing differences between pairs of 

timepoints (1- and 12-months after HTx in our case), available as local, regional, 

or global averages/standard deviations, minima, maxima:

7. Intimal, medial, I+M thickening

8. Normalized intimal thickness change
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9. Intimal surface roughness changes

10. Histograms of intimal, medial, I+M thickening

Normalized intimal thickness was determined as average intimal thickness 

divided by lumen area. Surface roughness index reflects the variability of a 

specific wall-layer surface. For example, the lumen-intima surface roughness was 

computed as the arithmetic mean of peak regional distances between the thin-

plate spline fitted to the luminal surface and the individual lumen surface points. 

Image intensity was normalized to minimize effects of the possibly eccentric 

catheter position by considering the light traveling distance through the lumen 

and incident angle with respect to the vessel wall following the approach 

presented in (Liu et al., 2016). Note that each of the above indices was only 

measured outside of the exclusion regions of the coronary wall (Section 2.4).

• Feature Carpets: Any of the above-listed indices assessing morphology or 

progression/regression can be visualized as unwrapped luminal surfaces (called 

feature carpets) with location-mapped color-coded values giving additional 

insight by providing spatial context (Fig. 3). Additional feature-carpet based 

measures can be derived from spatial feature analysis, e.g., inhomogeneity of 

local/regional indices (allowing to distinguish between diffuse and focal disease, 

as well as quantification of the focality extent), size distribution of specific 

features on the luminal wall, etc. Using the feature carpets, a variety of regional 

and global indices can be designed.

3.7. Assessment and Prediction of CAV Progression

Progression of CAV was assessed by comparison of the above-listed local, regional, and 

global quantitative indices of coronary wall morphology between 1 and 12 months. 

Statistical significance of measurement differences was determined to identify those indices 

that do and do not exhibit changes during the first year after HTx. Ability to predict CAV-

related changes of intimal thickness ΔIT at 12 months solely from the 1-month vessel wall 

morphology indices was examined.

3.8. Analysis Time

To determine the analysis-time requirements associated with OCT segmentation, the 

following operations were timed and reported as mean±standard deviation in seconds: Time 

required for the automated segmentation step yielding complete multi-layer segmentation; 

time required for the JEI stage including visual review of segmentation results and 

placement of interaction points; and computer response time.

3.9. Statistical Analysis

Discrete variables are reported as n (%) and continuous variables as mean (±stdev) or 

median (and interquartile range IQR), as appropriate. Global patient-level changes of the 

measured morphological features were investigated using Mann-Whitney U test. Whenever 

multiple segments were analyzed per vessel, generalized linear mixed models with patient as 

random effect were employed to investigate the differences between 1-month and 12-month 
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regional measurements. The assessment of the power of 1-month quantitative indices to 

predict morphological changes of intimal thickness 12 months after HTx employ correlation 

tests when assessed globally and mixed-effect analysis when determined regionally. 

Correlation coefficient R and associated slope β are reported. Since multiple pairwise tests 

were performed, Bonferroni correction was applied to reduce the chances of obtaining type I 

errors. Probability level p<0.05 determined statistical significance. All statistical tests were 

conducted in R (R Core Team, 2016).

4. Results

4.1. Validation of Coronary Wall Morphology

The analysis performance of the wall morphology layer segmentation was assessed in the 

validation sets described in Section 3.2. All validation datasets were segmented using the 

described fully-automated framework and also using the optional JEI refinement. Fig. 4 

shows an example of the wall segmentation and allows visual comparison with the 

independent standard. The signed and unsigned surface positioning errors of the obtained 

wall layer segmentations are given in Table 1. The subpixel signed positioning errors (pixel 

size ~10 μm) attest to a small bias of surface detection. Statistical analysis showed that when 

mean errors were considered, the automated and JEI approaches provided results that were 

not distinguishable from those obtained by manual tracing.

When assessing the accuracy of layer thickness measurements, regression analysis showed 

excellent correlation between frame-based intimal+medial thicknesses derived from the 

independent standard, automated segmentation, and after JEI analysis (Rautomated
2 =0.93, 

y=1.0x − 6.2μm; RJEI
2 =0.96, y=1.0x −6.3μm). The average intimal+medial thickness errors 

for the automated and JEI approaches were 4.98±31.24 μm and 5.38±28.54 μm. Inter-

observer variability of manual tracing by two observers was 6.76±10.61 μm. The intimal

+medial thickness errors of our automated and JEI analyses were statistically 

indistinguishable from the reproducibility of manual tracing.

As expected, the JEI stage showed its benefits when maximum errors of local intimal

+medial thickness were considered. The JEI approach provided lower maximum errors than 

the automated approach at near-statistical significance (55.47±56.66 μm compared to 

63.71±66.09 μm, p=0.06). In comparison, the inter-observer variability of maximum 

thickness errors was 58.33±28.97 μm.

4.2. Validation of Exclusion Regions

The performance of the automated definition of exclusion regions was assessed in the 

validation sets described in Section 3.4. The accuracy of the automated method was 81.2% 

which is comparable with inter-observer variability of 83.2%. when the same task was 

performed by two experts.
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4.3. Analysis Time

Automated segmentation of a single 540-frame long OCT pullback required 91.0±19.4 

seconds. The JEI step required 16 interactive edits per OCT pullback on average, which 

required 473±289 seconds per pullback, out of which 471±282 seconds was the human 

interaction time (observation+operation) and 1.5±6.3 seconds was the JEI-associated 

computation time. Automated definition of exclusion regions needed less than 1 minute per 

pullback. In addition to morphologic analyses, registration of each OCT pullback 1-month–

12-month pair had 7.2 corresponding landmarks manually identified, which required about 

15 minutes of expert-registration effort per pullback pair.

4.4. Assessment of CAV Progression: 1M–12M Comparisons

Comparison of quantitative indices of coronary wall morphology 1 month and 12 months 

after HTx is given in Table 2. The table shows significant changes of several well-

established indices associated with CAV progression like decrease in luminal size and 

increase in intimal thickness as well as of a number of previously unavailable indices like 

intimal or medial surface roughness.

Table 3 gives absolute and relative differences of regional maximal and minimal 

measurements (in 3 mm long adjacent vessel segments), thus focusing on most pronounced 

regional changes of vessel wall morphology. Many of these indices show significant changes 

between 1-month and 12-month time points. Changes in both the established and novel 

indices have been observed and quantified.

Changes in distribution (histograms) of local/regional (3 mm long vessel segments) intimal 

thickness; local/regional IMratio, and distribution of local/regional ΔIT and ΔIMratio are 

shown in Figs. 5, 6. They clearly show a notable increase of thicker intimal presence – 

globally, locally, and regionally.

4.5. CAV Morphological Predictive Factors

To study the promise of quantitative indices of wall morphology at 1 month to serve as 

predictors of CAV risk at 12 months, we used data from 1 month after HTx to statistically 

assess their global/regional associations with CAV progression (ΔIT). Global analysis has 

shown that several quantitative baseline indices measured just 1 month after HTx are 

statistically significantly associated with indicators of CAV progression during the first 12 

months after HTx. The following baseline global indices can be considered strong predictors 

of CAV progression during the first year: normalized OCT intimal and medial brightness 

(R=−0.367, p=0.009 and R=−0.368, p=0.009, respectively). Regional analysis associating 

ΔIT with 1-month morphological features revealed that baseline regional indices of medial 

thickness and intimal+medial thickness showed statistical significance (β=0.26, p=0.028; 

β=0.12, p=0.041).

5. Discussion

Discussion focuses on the following aspects of our work: 1) OCT multi-layer segmentation 

and co-registration of 1-month and 12-month OCT images, 2) segmentation sensitivity to 
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parameter selection, 3) assessment of small wall changes over time leading to prediction of 

CAV development from 1-month OCT images, 4) limitations of performed research, and 5) 

novelty of comprehensive quantitative 3D analysis and future contribution of resulting 

indices to quantitative studies of CAV development.

Intracoronary OCT imaging offers unprecedented resolution clearly depicting the intimal 

and medial layers of the coronary wall. At the same time, its depth of tissue penetration is 

limited to 2 mm and the wall is not imaged in the presence of light-beam obstructing fluid in 

the lumen, including residual blood. Similarly, plaque-related changes of the intimal layer 

may not allow the intima or media to be visualized and thus layer thicknesses to be correctly 

measured. Our approach was to exclude such areas of the OCT-imaged wall from analysis. 

Alternatively, these exclusion areas may be independently analyzed, visual analysis of such 

wall regions was reported in (Clemmensen et al., 2017). Another aspect of our OCT image 

analysis approach is a point-to-point registration of coronary wall locations imaged at two 

different time points – 1 and 12 months after HTx in our case. This co-registration relied on 

visual assessment of corresponding landmarks that were subsequently used for computerized 

registration. While we have previously reported fully automated IVUS-IVUS pullback 

registration (Zhang et al., 2015), automated OCT–OCT pullback registration is substantially 

more difficult in HTx for at least three reasons. The first is the limited penetration of OCT 

that does not allow to rely on outer-wall structures to be used for OCT image appearance 

matching; the second is the minimal presence of focal wall disease that would be 

consistently present at the two OCT pullback images; and the third is the fact that OCT 

image pullbacks are not EKG gated. As a result, employing expert-cardiologist knowledge 

was needed, yielding the required accuracy of the co-registration step.

Most parameters given in Section 3.3 are dictated by the characteristics of OCT imaging and 

should not be considered free parameters of the image segmentation method: node spacing 

was directly associated with the in-frame pixel size of OCT images (~10 μm) to facilitate 

sub-pixel accuracy; pre-segmentation column length equaled the A-scan length in OCT 

images to cover the complete scanned region; final-segmentation column lengths coincided 

with the OCT beam penetration depth; the minimal and maximal values of wall layer 

thicknesses were determined from a priori knowledge of coronary wall morphology in 

healthy and CAV coronaries and knowledge of OCT imaging beam penetration depth; and 

np = 120 and θp = 3° reflected that the contour of a given layer on each frame was defined 

by 120 points residing at uniform 3° angle increments circumferentially thus guaranteeing 

highly-detailed and more-than sufficient level of layer-surface shape detail. The only 

parameters to which the performance of our method may be sensitive are the smoothness 

constraints utilized in the final segmentation. Coronary layer segmentation must allow for 

in-frame (Δa) and frame-to-frame (Δb) surface variability. Results reported in the paper are 

based on smoothness constraints of Δa = 2, Δb = 2, which were initially determined by 

parameter optimization in a small dataset of 5 pullbacks and subsequently applied to all 100 

pullbacks analyzed in the reported work. When considering the sensitivity analysis design, 

smoothness constraint of 1 was not deemed appropriate as it would have resulted in surfaces 

that would not reflect the coronary wall layer anatomy and would substantially limit the 

capability of subsequent JEI editing. Smoothness values of 2, 3 and 4 were used for 

sensitivity testing to assess the influence of smoothness parameter selection on accuracy of 
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automated multi-layer OCT segmentation. Compared to original Δa = 2, Δb = 2 constraints, 

when smoothness constraints were changed to Δa = 2, Δb = 3 or Δa = 3, Δb = 2, slightly 

larger signed and unsigned errors were observed while maintaining sub-pixel segmentation 

accuracy and overall segmentation performance statistically indistinguishable from inter-

observer variability (p=NS). For larger values of the smoothness parameters, segmentation 

errors surpassed the pixel size of OCT images and were significantly larger than inter-

observer variability (p<0.05). The segmentation errors associated with these larger values of 

smoothness parameters were mainly caused by outside-adventitia micro-vessels that 

exhibited stronger gradient costs than the intima-media layers. These errors were avoided 

when using the smaller smoothness constraints that better reflected frame-to-frame 

continuity and layer-specific context.

The outcome of our automated layer segmentation, the efficient JEI correction of any local/

regional inaccuracies of the automated segmentation, the ability to achieve co-registration of 

coronary wall locations between 1-month and 12-month OCT pullbacks, and resulting 

quantitative analysis of coronary wall morphology and its location-specific changes over 

time yielded novel insight in coronary layer behavior after HTx. We have shown that some 

of the newly designed baseline indices (intimal layer brightness, medial layer brightness, 

medial thickness, intimal+medial thickness) were associated with CAV-related progression 

of intimal thickness. When indices of coronary layer morphology are further combined with 

patient- and donor-associated biomarkers, some of them (cellular rejection, aldosteron, 

creatinin, diabetes, medication), all measured at baseline only, further increase the likelihood 

of predicting rapid intimal thickening at 12 months. These preliminary results show promise 

of identifying patients subjected to rapid intimal thickening at 12 months after HTx from 

OCT-image and biomarker-data obtained just 1 month after HTx.

This study was not free of several limitations. Our analysis excluded areas of the wall that 

did not exhibit multi-layer structure. The lack of multi-layer visualization on OCT may be 

due to imaging artifacts or may be caused by limited OCT penetration due to focal 

atherosclerotic disease. While not a focus of the presented work, the currently excluded wall 

areas will receive attention of our future research. Another concern is the size of the 

analyzed cohort. A result of substantial recruiting effort, our studied group of 50 patients is 

already relatively large considering the available sizes of post-HTx cohorts and we have 

clearly demonstrated our ability to accurately quantify coronary wall layer parameters in 3D. 

At the same time, larger cohort is needed to increase predictive power of our work and we 

are actively recruiting additional patients.

To the best of our knowledge, the novelty of the presented approach – in comparison to all 

previously published approaches Olender et al. (2017); Zahnd et al. (2017); Clemmensen et 

al. (2017, 2018) – is its fully 3D character, both with respect to utilizing frame-to-frame 

image data context during the segmentation (rather than analyzing each 2D OCT frame 

independently), its simultaneous multi-surface segmentation, the ability to efficiently 

employ the Just-Enough Interaction strategy in 3D, its overall computational efficiency, the 

resulting fully 3D analysis of the complete length of the OCT pullback (rather than 

analyzing a small subset of available OCT frames), and the analysis of longitudinal data 

after axial and angular registration. Perhaps most importantly, the barrage of novel never-
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before available quantitative indices now allows to begin studies of the effect and 

consequences that local/regional/global indices of coronary morphology, biomarkers, donor 

information, genetic data, etc. have on CAV development. This forward-looking aspect of 

our work is perhaps the most exciting part of the presented research.

6. Conclusion

We have reported, validated, and demonstrated performance of – to the best of our 

knowledge – the first fully 3D coronary OCT wall layer analysis approach that facilitates 

computation of local, regional, and/or global indices of coronary wall morphology. This 

approach allows quantification of location-specific alterations of coronary wall morphology 

over time and is sensitive even to very small changes of wall layer thicknesses that occur in 

patients following heart transplant. As a result, studies of CAV progression in co-registered 

locations of the entire imaged coronary wall are now possible, which may facilitate 

prediction of patient-specific CAV risk and consequent administration of relevant patient-

specific treatment at the earliest possible time.
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Highlights

• The first fully 3D multi-layer coronary wall OCT analysis approach is 

reported.

• Location-specific changes of coronary wall morphology over time are 

quantified.

• Association of wall morphology indices with vasculopathy progression 

demonstrated.
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Figure 1: 
Automated OCT segmentation followed by JEI yielding clinically acceptable 3D 

segmentation of coronary wall layers. (a) Original cross-sectional and axial views of a 3D 

OCT dataset. (b) Automated 3-surface 3D LOGISMOS approach shows a regional 

segmentation inaccuracy (arrows) with lumen in red, outer intima in green and outer media 

in orange. (c) JEI interactions shown in turquoise color provide a suggested position for the 

outer media (orange) surface in the axial view. (d) Multi-surface 3D segmentation is re-

optimized every time a set of correction points is provided – the few identified points shown 
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completely corrected the inaccuracy in 3D. Note that all JEI modifications are optional such 

that the full segmentation workflow can be completed either without any interaction (fully 

automated) or using human expertise to guide the segmentation via JEI when needed. 

Important to realize is that the experts interact with the algorithm, they never directly retrace 

the borders in the image.
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Figure 2: 
OCT–OCT registration process results in axial and orientation match between individual 

locations of two independent OCT pullbacks depicting the same coronary vessel segment. 

White vertical lines present matching landmarks. Corresponding frames in 12-month 

pullback are determined and properly rotated to achieve locational registration.
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Figure 3: 
Feature carpets of intimal thickness (IT) and thickening. Mutually registered intimal 

thickness at 1 and 12 months (M), and their differences shown color coded on an axially 

unwrapped vessel wall. Shadowed areas represent non-measurable exclusion regions caused 

by guidewire shadow, residual blood, intimal layer thickness exceeding OCT penetration 

depth, etc. Rightmost chart in each panel shows frame-based IT progression, blue straight 

line shows a linear fit of frame-based IT progression along the co-registered vessel portion.
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Figure 4: 
OCT segmentation. (a) Original OCT image (one frame of a 540-frame long pullback). (b) 

Expert-defined independent standard. (c) Result of the automated multi-layer segmentation 

with automatically-determined exclusion region (12 to 4 o’clock).
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Figure 5: 
Distribution of local and regional (3 mm long vessel segments) intimal thickness across the 

cohort at 1-month and 12-month (80,600 local and 13 regional measurements per pullback 

on average; e.g., histograms in panels (a) and (c) are based on over 4 million locally co-

registered measurements). (a) Histograms of local IT. (b) Histograms of regional IT. (c) 

Histogram of local ΔIT. (d) Histogram of regional ΔIT. Note the clear indication of intimal 

thickening between 1M and 12M, both locally and regionally.
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Figure 6: 
Distribution of local and regional (3 mm long vessel segments) intimal thickness across the 

cohort at 1-month and 12-month (80,600 local and 13 regional measurements per pullback 

on average). (a) Histograms of local IMratio. (b) Histograms of regional IMratio. (c) 

Histogram of local ΔIMratio. (d) Histogram of regional ΔIMratio. Note the clear indication of 

increased IMratio between 1M and 12M, both locally and regionally.
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Table 1:

Mean signed and unsigned errors of multi-layer HTx coronary wall segmentation in comparison with the 

independent standard in μm.

ERRORS (μm) Signed Lumen Signed Outer intima Signed Outer media Unsigned Lumen Unsigned Outer intima Unsigned Outer media

Automated vs. Manual 0.57±1.82 1.22±30.41 6.45±33.88 2.37±1.84 13.61±27.22 16.43±30.32

Automated+JEI vs. Manual 0.51±1.73 1.26±31.78 7.26±33.43 2.14±1.71 13.75±28.68 15.63±30.43

Manual_1 vs. Manual_2 1.59±1.09 3.92±17.63 7.41±18.16 3.15±0.84 13.45±12.06 14.74±12.94
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Table 2:

Comparison of global (patient-level) coronary wall properties between 1-month and 12-month post HTx. 

Advanced_IT is defined as IT>120μm, threshold identified to give the strongest quantitative differences 

between 1-month and 12-month measurements. Statistically significant differences shown in bold, p-values 

reported after Bonferroni correction.

1-month 12-month Difference p-value

Lumen Area (mm2) 8.6±2.5 7.6±2.3 −1.0±1.6 0.039

Intimal thickness (μm) 103.0±31.8 129.6±41.7 26.5±25.9 0.001

Medial thickness (μm) 81.3±19.4 81.5±18.6 0.2±11.1 0.966

Intimal+Medial thickness (μm) 184.3±47.4 211.0±56.5 26.7±33.2 0.012

Normalized Intimal thickness (μm/mm2) 13.9±7.0 19.6±9.8 5.7±7.3 0.001

IMratio 1.4±0.3 1.7±0.4 0.3±0.3 <0.001

Intimal roughness 0.36±0.10 0.42±0.10 0.06±0.15 0.002

Medial roughness 0.37±0.10 0.43±0.09 0.06±0.13 0.004

Intimal brightness 40.4±13.8 38.1±12.7 −2.3±17.7 0.392

Medial brightness 40.4±14.1 38.4±13.5 −2.0±18.6 0.461

Intimal-to-Medial brightness ratio 1.04±0.05 1.04±0.05 0.01±0.07 0.587

Advanced_IT (%) 25.1%±20.1% 43.1%±26.1% 18.0%±17.4% <0.001

Absolute area of Advanced_IT (mm2) 43.9±37.7 71.3±48.1 27.4±27.2 0.002

Largest area of Advanced_IT (mm2) 27.9±36.3 53.1±48.1 25.2±34.4 0.004
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Table 3:

Comparison of regional minima/maxima of quantitative indices of coronary wall properties between 1 month 

and 12 months post HTx measurements (in co-registered 3 mm long segments). Mixed effect analysis 

employed, statistically significant differences shown in bold.

1-month 12-month Difference Difference(%) 1M vs. 12M (p)

Intimal thickness MIN 47.8±26.2 55.2±35.8 7.4±22.8 17.1%±49.7% 0.002

Intimal thickness MAX 231.5±78.0 282.3±104.6 50.9±83.8 26.6%±44.3% <0.001

Medial thickness MIN 33.2±15.1 32.2±15.2 −1.0±14.7 3.8%±44.8% 1.000

Medial thickness MAX 150.2±30.9 161.3±31.0 11.1±31.6 10.2%±25.3% <0.001

Intimal+Medial thickness MIN 109.9±51.1 123.0±61.3 13.1±40.9 17.1%±50.2% 0.007

Intimal+Medial thickness MAX 323.4±88.2 374.6±115.1 51.2±88.9 18.2%±30.3% <0.001

Normalized Intimal thickness MIN 9.5±5.8 17.4±13.7 7.9±12.2 95.2%±123.1% <0.001

Normalized Intimal thickness MAX 20.5±21.4 25.2±23.3 4.7±15.0 34.4%±76.0% 0.004

IMratio MIN 0.46±0.20 0.50±0.27 0.03±0.21 13.3%±57.2% 0.338

IMratio MAX 5.57±3.08 7.15±4.05 1.58±4.16 50.3%±99.2% <0.001

Intimal roughness MIN 0.11±0.10 0.20±0.21 0.10±0.16 116.9%±153.4% <0.001

Intimal roughness MAX 0.89±0.57 0.57±0.58 −0.31±0.68 −25.3%±60.1% <0.001

Medial roughness MIN 0.11±0.10 0.21±0.22 0.10±0.18 111.0%±153.3% <0.001

Medial roughness MAX 0.90±0.56 0.59±0.62 −0.32±0.69 −25.5%±56.5% <0.001
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