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ABSTRACT Using Kinect sensors to monitor and provide feedback to patients performing interven-
tion or rehabilitation exercises is an upcoming trend in healthcare. However, the joint positions measured
by the Kinect sensor are often unreliable, especially for joints that are occluded by other parts of the body.
Also, users’ motion sequences differ significantly even when doing the same exercise and are not temporally
aligned, making the evaluation of the correctness of their movement challenging. This paper aims to develop
a Kinect-based intervention system, which can guide the users to perform the exercises more effectively.
To circumvent the unreliability of the Kinect measurements, we developed a denoising algorithm using a
Gaussian Process regression model. We simultaneously capture the joint positions using both a Kinect sensor
and a motion capture (MOCAP) system during a training stage and train a Gaussian process regression model
to map the noisy Kinect measurements to the more accurate MOCAP measurements. For the sequences
alignment issue, we develop a gradient-weighted dynamic time warping approach that can automatically
recognize the endpoints of different subsequences from the original user’s motion sequence, and furthermore
temporally align the subsequences frommultiple actors. During a live exercise session, the system applies the
same alignment algorithm to a live-captured Kinect sequence to divide it into subsequences, and furthermore
compare each subsequence with its corresponding reference subsequence, and generates feedback to the user
based on the comparison results. Our results show that the denoised Kinect measurements by the proposed
denoising algorithm are more accurate than several benchmark methods and the proposed temporal alignment
approach can precisely detect the end of each subsequence in an exercise with very small amount of delay.
These methods have been integrated into a prototype system for guiding patients with risks for breast-cancer
related lymphedema to perform a set of lymphatic exercises. The system can provide relevant feedback to
the patient performing an exercise in real time.

INDEX TERMS Dynamic time warping, Intervention system, denoising of Kinect measurements, Gaussian
process regression.

I. INTRODUCTION
Having patients performing prescribed exercises is an impor-
tant clinical intervention for many health conditions such as
chronic pain management, post-surgery rehab, and physical
therapy after a sports injury. Using sensor-based systems to
automatically track patients’ movements during their exer-
cises and to provide instant feedback to the patients regarding
the ‘‘correctness’’ of their movements holds great promise in

reducing the cost for such interventions and increasing their
effectiveness.

Generally, a gold standard for motion sensing is the
so-called Motion Capture (MOCAP) system. It consists of
multiple cameras positioned in a specially designed room
to capture the 3D positions of reflective markers put on
an actor’s clothing. Such a system can track human action
accurately but it is not a practical solution for clinical use
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since users have to wear tight suits with markers and such
systems are very expensive [1].

Compared with the expensive motion capture system,
the Kinect sensor by Microsoft [2] (or similar sensors such as
Realsense by Intel [3]) is more affordable and convenient to
most of the clinics or even in patients’ homes. Kinect contains
an RGB camera, an infrared sensor and infrared emitters,
which can be used to estimate the depth map of the imaged
scene. Kinect further provides an SDK that can estimate the
joint positions in the 3D domain. However, because Kinect
derives the 3D positions from a single view point, the esti-
mated positions of some joints are not accurate, when these
joints are occluded or partially occluded.

A number of works have been reported for stabilizing
joint tracking and improving pose reconstruction. Shum et al.
proposed an optimized data driven method to solve posture
reconstruction problem [4]. Here a posture is defined by
the 3D positions of all joints at any time. They first collect
user postures while the users are performing an exercise
during a training stage. Second, they remove similar postures
in the training dataset by thresholding the sum of squared
differences of each posture sample pair. Then they apply
Principle Component Analysis (PCA) on remaining postures
to reduce dimensions. Once Kinect captures a noisy posture,
the system first projects the captured postures to the PCA
bases, and then reconstructs a denoised posture from the
projection coefficients and their corresponding PCA bases.
The reconstruction results heavily depend on the training
database. Wei et al. formulated the denoising problem into a
Maximum A Posteriori (MAP) estimation problem based on
the Kinect depth image [5]. Although the proposed algorithm
can be implemented on a GPU in multithreading to accelerate
the speed, it needs to initialize the starting pose manually and
it sometimeswill be stuck at the local minimum,whichmakes
reconstruction fail. Liu et al. on the other hand, proposed
to use Gaussian process regression to reconstruct the body
joints [6]. They generate several Gaussian process models,
one for each joint and each model is generated by only con-
sidering the joint and its nearest neighborhood joints. Such an
approach cannot exploit the typical relations among all body
joints during a particular exercise. Also, the distance between
two connected joints in the denoised results is not guaran-
teed to follow the bone length constraint. Gaussian process
regression has also been employed for image super-resolution
successfully [7]. Tripathy et al. proposed to use Kalman filter
with a bone length constraint between every two connected
joints [8]. This algorithm can make the joints trajectories
smoother and preserve the joints’ kinematic characteristics.
However, because the algorithm considers one segment at a
time, it does not effectively exploit the relationship among
multiple joints during a human action.

To evaluate the performance of the user’s motion with a
reference motion derived from a training dataset from the
database, Alexiadis et al. [9] proposed to apply the maximum
cross correlation to find the offset between user’s motion
sequence and a ground truth sequence. Then, by applying

this offset to the user’s motion data, the two sequences are
aligned and their similarity can be calculated. However, this
method applies one shift to the whole sequence and can
not deal with the situation where users may have inconsis-
tent speed when performing different parts of an exercise.
Yurtman et al. [10] apply the dynamic time warping to detect
and identify accurate and inaccurate implementations of a
physical therapy exercise. However, this system requires the
user to attach wearable motion sensors, which is very expen-
sive and inconvenient for the user. Jeong et al. [11] proposed
a modified penalty-based dynamic time warping algorithm,
which considers the phase difference between the reference
sequence and the test sequence. Although this method is
robust to outliers, its computation cost is very high, as does
the original DTWmethod, which makes it unfeasible for real
time applications. Su et al. [12] proposed a Kinect-based
rehabilitation system by using the DTW and fuzzy logic. The
rehabilitation system can use the DTW algorithm to compare
the ‘‘in-home’’ and ‘‘in clinic’’ sequence. The system needs
to wait for the user to finish an entire exercise before starting
the evaluation, and hence is not capable of instantaneous
feedback. Wei et al. [13] consider a cloud based system,
where a user can download the exercise video from the cloud
database to the local device. Then, the user employs a Kinect
sensor to capture his/her motion data and upload the data back
to the cloud for a remote server to evaluate the correctness of
the exercise and provide feedback. They proposed a gesture-
based DTW algorithm to align the patient motion with a
reference motion. In their work, the exercise is relatively easy
and only focus on one joint, so the remote motion analysis
algorithm only needs to consider one joint. Our system is
developed to handle complicated exercises where multiple
joints need to be analyzed, both for temporal alignment and
for assessment of motion correctness.

The rest of the paper is organized as follows. In Sec. II,
we describe the proposed system. First, we briefly describe
how do we collect and preprocess our data. Then we present
the proposed clustered Gaussian process regression method
for motion sequence denoising. Next, we discuss the struc-
ture of the lymphatic exercises and explain how to generate
the reference subsequence. Finally, we discuss our low-
delay DTW algorithm for temporal alignment of the motion
sequence with a reference sequence. Section III presents the
overall system design, and presents the experimental results
and the overall system design. We conclude this paper in
Sec. IV. A preliminary version of Sec. II-A and Sec. II-B has
been reported in [1].

II. THE PROPOSED SYSTEM AND METHODS
In this work, in order to generate reference data both for
denoising of Kinect data, and for evaluating the correctness
of user motion, during a training stage, we first capture the
joint movement traces of different people performing the
same exercise by using a motion capture system and a Kinect
V2 sensor simultaneously. Second, we convert each captured
trace to a standardized domain to eliminate the bias due to
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FIGURE 1. Proposed system flowchart.

the different body sizes of the users. Using these standardized
data, we train a Gaussian process regressionmodel using both
the standardized MOCAP data and the standardized Kinect
data captured during the training stage. This model then can
be used to predict the unavailable MOCAP measurement
(consisting of 3D positions of all joints of interests) from
the Kinect measurement captured during an actual exercise
session.

To enable the comparison of a user’s motion sequence
(defined as the sequence of the 3D positions of target joints)
during an exercise with some ‘‘gold standard’’, we recognize
that each exercise can be divided into multiple subsequences
each corresponding to a portion of the exercise transitioning
from one pose to another. We develop a dynamic time warp-
ing approach that can automatically recognize the endpoints
of different subsequences, and furthermore temporally align
the subsequences from multiple actors. To generate a refer-
ence motion sequence for each exercise, an expert performed
each exercise several times during the training stage. The
recorded MOCAP sequences are divided into subsequences
and the corresponding subsequences are temporally aligned
and then averaged to yield the reference subsequence. During
a live exercise session, the system applies the same alignment
algorithm to a live-captured Kinect sequence to divide it into
subsequences, and furthermore compare each subsequence
with its corresponding reference subsequence, and generates
feedback to the user based on the comparison results. The
developed alignment algorithm allows us to detect whether a
user is performing each exercise correctly, while taking into
account the possible speed mismatch between the user and
the expert.

The proposed intervention system has two major parts,
as shown in Fig. 1. The first part is the training stage, during
which we use both a Kinect sensor and a motion capture
(MOCAP) system to capture the joint positions simultane-
ously and train a Gaussian Process regression model to map
the noisy Kinect measurements to the more accurateMOCAP
measurements. Also, we use the MOCAP data recorded from
an expert to generate the reference sequence for each exercise.

FIGURE 2. Data capture system set up [1]. (a) software interface of
MOCAP system, (b) a typical recording scenario.

The second part is for the live session when a patient (to be
referred to as a user) is performing the intervention exercises
and the Kinect sensor captures both an RGB video of the
user and the joint motion. The system has a display screen
(see Fig. 1) that shows an avatar performing a target exercise
and the live captured video of the user with an overlay of
the skeleton connecting the denoised joint positions. The
system will compare the captured motion sequence with the
reference sequence established during the training stage, and
provide instantaneous feedback to the user regarding the
improvement needed after processing each subsequence. The
system will also provide constructive feedback at the end
of an exercise. We have developed a prototype system for
the second part, which can operate in real time while a user
is performing an exercise.

A. MOTION DATA STANDARDIZATION AND DENOISING
1) DATA CAPTURE AND STANDARDIZATION
We employ a motion capture system called ‘‘Motive’’ with
14 cameras [14] to record 25 marker positions on the upper
body of a volunteer as shown in Fig. 2(b). At the same time,
we place a Kinect V2 sensor in the front of the volunteer
to capture the color image (resolution 1920x1080), depth
image (resolution 512x424) and joint positions simultane-
ously. The capture system is shown in Fig. 2. The number
of joints captured by MOCAP system differs from the joints
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FIGURE 3. Upper body skeletons [1]. (a) raw MOCAP sample and raw
Kinect sample. (b) standardized MOCAP sample and Kinect sample.

captured by Kinect sensor. To handle the problem, we convert
the MOCAP joint positions to Kinect-like joint positions
as described in [1] by referring the human Anthropometry
feature [15]. To circumvent the wide variations in the limb
lengths between different users, we first convert all Kinect
and MOCAP data into a standardized domain so that the
distance between every two connected joints is fixed at some
predefined length as shown in Fig. 3. More details about the
data standardization can be found in [1]. Note that the joint
position denoising and the temporal alignment and compari-
son with the reference sequence (Sec. II-C) are accomplished
in the standardized domain.

2) TRAINING AND TESTING DATA SETS
The The-Optimal-Lymph-FlowTM (TOLF) exercise is devel-
oped by Dr. Mei R. Fu and her research team. TOLF exercise
is a patient-centered exercise program focusing on lymphatic
health by promoting lymph flow [16]–[18]. Appendix A
provides details for the TOLF exercise. Currently, we only
focused on a subset of the TOLF exercises that require the
tracking of the upper body joints, which includes spine shoul-
der, left and right shoulders, left and right elbows and left and
right wrists.

It should be noted that large muscle exercises such as walk-
ing, dancing, Yoga, are also part of TOLF exercise program
but not part of current Kinect-based system due to the com-
plexities of the exercises. Yet, this Kinect system is an initial
step towards using Kinect or other similar sensors to deliver
and monitor large muscle exercises such as Yoga or specific
dance.

A total of 14 healthy volunteers were recruited among
students in NYU for motion data collection and their age

TABLE 1. Training and testing data set [1].

range are between 23 - 30. Each volunteer performed each
lymphatic exercise 3 to 7 times, while being recorded by a
Kinect sensor and the ‘‘Motive’’ MOCAP system simultane-
ously. The frame rate of the motion capture was 30 frames/sec
in both systems. After removing some corrupted recordings,
we have around 70 pairs of motion traces for each exercise,
each containing 400-900 samples. Each sample refers to the
measured positions of all joints of a user at a single sampling
time. These samples are divided into training samples and
testing samples for the purpose of training and testing the
Gaussian process regression model for denoising. The dis-
tributions of samples for different exercises are summarized
in Table 1. All healthy volunteers consent to publication of
material about them.

3) DENOISING USING GAUSSIAN PROCESS
REGRESSION MODEL
Let xt and yt represent the Kinect sample and the MOCAP
sample at time t separately. To denoise the Kinect data,
we train a Gaussian process regression (GPR) model that
maps the Kinect sample xt to the MOCAP sample yt . A dif-
ferent model is trained for each exercise with all the training
data for this exercise, where each training sample is a pair of
corresponding xt and yt . with all training samples [19].

Since the trained Gaussian regression model does
not always preserve the limb length between connected
joints, we apply the standardization method, described in
Sec. II-A.1, to the resulting joint positions, so that the distance
between every two connected joints follows the reference
length.

4) CLUSTERED GAUSSIAN PROCESSING
Once theGPRmodel is trained, we have the hyper-parameters
of the model. In the denoising stage, we only need to com-
pute between the input sample and each training sample.
Therefore, the computation time for denoising is linearly
increasing with the number of training samples. Our training
data consists of around 22000 samples for each exercise,
making the denoising process very slow. In order to reduce
the computation time, Cao et al. select a subset of training
samples following a chosen optimization criterion and form
a sparse Gaussian Process model [20]. Snelson et al. derive
the model with a set of pseudo input and other model param-
eters [21]. In this paper, we apply classical K-means method
to the training samples and separate the original data samples
intoQ different clusters. Then, we train the GPRmodel using
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TABLE 2. Average reconstruction error per joint by different denoising methods (in unit of cm) [1].

FIGURE 4. Computation time and error for different cluster numbers [1].
(a) average computation time per time sample, (b) error per joint.

a reduced training set containing only the cluster centroids.
The performance using this approach under different cluster
numbers is shown in Fig. 4. As expected, the regression error
(for exercise 4 in Table 2) decreases as the cluster number
increases. But we found that Q = 800 is a sweet spot, obtain-
ing a local minimum in the regression error, and yet having
a relatively short computation time. The computation time
here is measured when the algorithm runs on a Windows 7
computer with Intel i5-4570 CPU and 16GB RAM.

5) RELIABILITY
In order to train the GPR using only reliable data samples,
we define the reliability for each joint position. We consider
kinematic reliability, temporal reliability and tracking relia-
bility reported by Kinect, and combine them to evaluate the
overall reliability. Only if the reliability score of a joint is
larger than the threshold, this joint is considered reliable.
In the training stage, we only choose samples with all reliable

joints to train the Gaussian regression model. In the testing
stage, if a time sample contains any unreliable joint, this
sample will be denoised. More details about the definition
of joint reliability can be found in [1].

B. EXERCISE SEQUENCE DECOMPOSITION AND
REFERENCE SEQUENCE GENERATION
1) DECOMPOSITION OF A MOTION SEQUENCE
Usually, an exercise contains a series of movements. Here,
we define one exercise as a time sequence, and each time
sample is one static pose, defined by the 3D positions of all
7 joints which include left/right shoulders, left/right elbows,
left/right wrists and spine shoulder. There are lots of poses
in one exercise, but usually we will focus on certain key
poses. The original exercise can be decomposed into several
key poses and the transition between two key poses. We
define the transition from one key pose to the next key pose
as a subsequence. Furthermore, an exercise usually contains
several repetitions (REP) of the same set of ordered subse-
quences. For example, the exercise ‘‘horizontal pumping’’
in our TOLF exercise set as shown in Fig. 10(b), contains
four major subsequences, first is from ‘‘hands down’’ to
‘‘T-pose’’, second is from ‘‘T-pose’’ to ‘‘hands close to the
chest’’, the third subsequence is from ‘‘hands close to the
chest’’ to ‘‘T-pose’’ and the final one is from ‘‘T-pose’’ to
‘‘hands down’’. During the ‘‘horizontal pumping’’ exercise,
users do the first subsequence at the beginning. Then, they do
the subsequence 2 and subsequence 3 repeatedly four times.
This will be followed by subsequence 4, which finishes the
whole exercise.

2) REFERENCE SEQUENCE GENERATION
FOR EACH EXERCISE
For each exercise, we generate a reference sequence, which
consists of multiple subsequences and repetitions, and
each repetition further consists of multiple subsequences.
As described in Sec.II-A.2, we ask an expert to perform each
exercise several times and record the Kinect and MOCAP
motion traces for each exercise. There are around 400 -
900 time samples in each trace. We use the MOCAP data
to create the reference sequence. The raw MOCAP data in
one subsequence are shown as Fig. 5(a). In Fig. 5(a), all
subsequences are captured from the same expert, but each
subsequence has different length. This is because it is hard to
use the same speed every time when one does the exercise.
To deal with this problem, we need to normalize the raw
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FIGURE 5. Traces of the left wrist x-coordinate while users performing a subsequence in the ‘‘Horizontal Pumping’’ exercise. (a)
Standardized MOCAP traces; (b) Aligned traces by stretching all traces to the same length; (c) Aligned traces by aligning at two key
transition points.

FIGURE 6. The reference sequence and a user’s motion sequence of the x
coordinate of the left wrist during Exercise 4. Each‘‘sec’’ indicate a
subsequence.

MOCAP data to the same length before we average these data
to create a single reference. Although we can just interpolate
all the raw data to the same length, as shown in Fig. 5(b), they
are not aligned in where the transition occurs. To circumvent
this problem, we apply second order derivative to the raw data
and find two turning points.

According to these two turning points, we divide the sub-
sequence into three parts. We map each part to an assigned
length and then combine three parts together to get our nor-
malized subsequences as shown in Fig. 5(c). Finally, we use
the mean of the normalized subsequences from multiple
expert traces performing the same subsequence to generate
the reference sequence for this subsequence.

3) EVALUATION OF A USER’S MOVEMENT AGAINST THE
REFERENCE SEQUENCE
For each exercise, we predefine a series of subsequences
(see the example for the ‘‘horizontal pumping’’ exercise
given in Sec. II-B.1). When a user performs an exercise,
her joint motion sequence will be captured by the Kinect
sensor. Our system will denoise the user sequence and
compare the denoised sequence with the reference subse-
quences sequentially, to determine the endpoint of each
subsequence. The system will further analyze the differ-
ence between each identified user subsequence with the
corresponding reference subsequence, to determine what
feedback to provide to the user. More details will be discussed
in Sec.II-C.

FIGURE 7. Motion data of different users.

C. TEMPORAL ALIGNMENT USING LOW-DELAY DYNAMIC
TIME WARPING
1) HUMAN REACTION DELAY AND MOTION VARIABILITY
In our system, a user is supposed to follow the movement of
the avatar shown on the display during each exercise. Each
exercise typically consists of multiple repeats of the same
movement. Usually, at the beginning of an exercise, the user
may take a few seconds to understand what should she do
before starting to follow the avatar’s movement. Fig. 6 shows
the reference sequence and a user’s motion sequence during
the exercise. We can see that the user takes some reaction
time to figure out what kind of motion she needs to follow
in the beginning. After the user has learnt what to do in each
repeat, the user tends to spend less reaction time to do the
following subsequences. Also, once a user learns what to do,
she may do each repeat faster or slower than the avatar. From
Fig. 7 we can see that different users will perform the same
exercise or each subsequence with different speeds. We will
discuss how to deal with these problems in the following
subsections.

2) DYNAMIC TIME WARPING FOR MOTION SEQUENCES
Dynamic time warping (DTW) is a popular algorithm for
measuring the similarity between two temporal sequences,
which may vary in their temporal dynamics. DTW are
widely used in temporal sequence matching [22]–[27].
DTW measures the similarity between two given sequences
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by finding the optimal correspondence between sampling
points in the two sequences with certain restrictions. The
original DTW method was developed for aligning two
sequences of scalar variables (e.g. audio signal intensity).
Here, we extend it to align two sequences of vector variables
A = [a1, a2, . . . , aM ], and B = [b1, b2, . . . , bN ], where
ai and bi each represents the 3D positions of 7 joints at
time sample i. We define a M × N distance matrix with the
(m, n)-th entry being the Euclidean distance between am and
bn is, i.e., d(m, n) = ||am − bn||2. To find the best way to
map sequence A to sequence B, a continuous warping path is
found by minimizing the summation of the distance on the
path. The final DTW path is defined as P = [p1, p2, . . . , pq],
where max(M ,N ) ≤ q ≤ M + N − 1 and pk = (mk , nk )
indicates that amk is mapped to bnk in the path. The optimal
DTW distance is

S(M ,N ) =
∑

(i,j)∈path

d(i, j) (1)

Directly using the DTW on two sequences to evaluate their
similarity can be affected by the absolute difference in
the data amplitude of the two sequences. Following [13],
given two sequences A = [a1, a2, . . . , aM ] and B =

[b1, b2, . . . , bN ], we first find the difference c between the
two initial elements in sequence A and B, where c = a1− b1.
We then generate the normalized sequence B′ with
B′ = B + c. We will apply DTW to A and B’ to find the
optimal correspondence path, and use the resulting path to
align A and B.

3) DTW FOR SUB-SEQUENCE DETECTION AND ALIGNMENT
As introduced in Sec. II-B.1, each exercise can be divided into
multiple subsequences. It is better to give some feedback after
a user has just finished each subsequence, rather than after
the user has finished the entire exercise. Therefore, we need
to develop an algorithm that can automatically detect the
end of each subsequence soon after it is done, and further-
more align this subsequence with its corresponding reference
subsequence. We accomplish this goal by modifying the
original DTW to a subsequence-based DTW. Assume that
the reference motion sequence for this exercise contains K
subsequences and is denoted as A = [A1,A2, . . . ,AK ], with
Ak = [ak,1, ak,2, . . . , ak,Mk ] and the user’s motion sequence
for this exercise is B = [b1, b2, . . . , bN ]. To determine the
endpoint, q, of the first subsequence of the user, we com-
pute the DTW distance between each candidate subsequence
[b1, b2, . . . , bq](q = 2, 3 . . . ,N ) with the first subsequence
A1 = [a1,1, . . . , a1,M1 ] of the reference sequence and find q
that minimizes this distance, i.e.,

N1 = argmin
q

S(M1, q) (2)

Directly solving (2) means that the endpoint of the first
subsequence cannot be decided until we go through the entire
user sequence, which is very time consuming and prevent us
from giving instantaneous feedback to the user. To overcome

this problem, we propose a sequential decision approach. Let
the initial time when the recording of an exercise starts be
0. At time 0, the user’s sequence is B = [b0] and in sample
time 1 the user’s sequence is B = [b0, b1]. When the length
of B is larger than 2, we calculate the DTW distance between
A1 and the user’s current sequence. We keep capturing the
user sequence until a certain time t∗ + 1 when we find the
DTW distance S(M1, t∗) between A1 and sequence B =
[b0, b1, . . . , bt∗ ] reaches a minimum value at t∗. That is
S(M1, t∗) < S(M1, t∗ + 1) and S(M1, t∗) < S(M1, t∗ − 1).
To ensure the current point t∗ is not a poor local minimum
due to noise, we will keep comparing the DTW distance in
the following T frames( in this paper we set T as 15). If there
is no DTW distance less than the DTW distance at time
t∗, then we set time t∗ as an endpoint. Otherwise, we will
keep looking for the local minimum in the following time
points beyond the T frames. Then we reset the current time
to 0, and starts to compare the second subsequence A2 of
the reference sequence with the new samples of the user’s
sequence, to identify the endpoint of the second subsequence.

Ideally, the user should hold her pose in the starting and
ending point of each subsequence. However, sometimes the
user may slightly move the body during this pause period.
This ‘‘pause-move-pause’’ action may make the system to
falsely assume that the user has already finished the current
subsequence, and starts to look for the endpoint for the next
subsequence. To deal with this problem, the system will not
start a new DTW process for the next subsequence unless the
user’s motion is larger than a threshold. The user’s motion is
measured by the sum of the weighted joints pixel difference(
we set the threshold as 2000 in our current system).

4) SPEED UP OF DTW
The DTW algorithm’s complexity for subsequence k is
O(MkNk ), which is proportional to the length of the user’s
subsequence Nk . Therefore, the slower the user’s motion,
the more computation time the system will spend. To deal
with this problem and to accelerate the algorithm, we first
apply the DTW algorithm every L frames. That is we down-
sample both the reference subsequence and the user sequence
by a factor of L. In our work, we set L as 10. After the system
finds the initial endpoint at time t∗ following the approach
described in Sec. II-C.3 We will further check the time points
between t∗ − L to t∗ in the original sequences to find the
best endpoint. Instead of using the DTW distance to decide
on the optimal endpoint, we look for a mid point in the pause
period, which should have the least amount of joint motion.
We measure the joint motion by the weighted sum of the
temporal gradient magnitudes of the joint positions. That is,
we find the end time point using

t† = arg min
t∈(t∗L,t∗)

∑
i∈joints

wexercisen (i) ∗ ||bt,i−bt−1,i||2 (3)

We assign different weights to different joints based on the
characteristics of each exercise. We set the weighted value
of highly related joint as 9, related joint as 3 and no related
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TABLE 3. Reconstruction error (in unit of cm) for each joint by the method of Liu et al. [1].

FIGURE 8. The raw captured skeleton by Kinect (green) and the denoised
skeleton by the proposed method (red) overlaid on the RGB image [1].
(a) horizontal pumping exercise; (b) push down pumping exercise.

joint as 0, then normalize the sum of the weighted value
equal to 1.

5) DETECTION OF REPETITIONS AND ROBUSTNESS TO
REPETITION VARIABILITY
Usually, in an exercise, the user is told to do several repeti-
tions. For example, do ‘‘T-pose’’ to ‘‘ hand close to chest’’
and ‘‘ hand close to chest’’ to ‘‘T-pose’’ four times as shown
in Fig. 10(b). In reality, users sometimes may forget how
many repetitions they have already done, so they may do
more or less repetitions than the reference sequence, which
also can cause alignment error.We add a feature in the current
system, which let the system choose what are the possible
candidate subsequence after the current subsequence accord-
ing to the user’s motion input. For example, in Fig. 10(b),
when the user is in key pose 2 (end of subsequence 3), the user
can either do subsequence 2 again to go to key pose 3 or do
subsequence 4 to go to key pose 4. When the user finishes
subsequence 3, the systemwill compare the user’s subsequent
motion data with both reference subsequence 2 and refer-
ence subsequence 4, and find out the subsequence with the
minimal matching error. Furthermore, the system detects the
completion of one repetition upon the identification of subse-
quence 3 followed by subsequence 2. After the detection of
each repetition, the system will display a message regarding
how many more repetitions the user should do. At the end of
this exercise, the system will give a friendly message to the
user if the user did fewer or more repetitions.

III. RESULTS AND DISCUSSION
In this section, we first present themotion sequence denoising
results, and we then describe a prototype intervention system
that we have developed that integrates all the components
discussed in Sec. II.

A. EXPERIMENTAL RESULTS OF DENOISED
MOTION SEQUENCE
Fig. 8 shows the skeleton captured by Kinect originally and
the denoised skeleton using the proposed denoising method
(consisting of four steps: standardization, clustered Gaussian
Process regression, projection based on segment length con-
straint, inverse standardization). It is very clear to see that
when the hands are close to the chest (Fig. 8(a)), the Kinect
tracking result for the wrists can be very unreliable, even out-
side the human body. In Fig. 8(b), Kinect failed to accurately
detect the positions of both elbows and wrists. The pro-
posed method is able to correct these errors successfully.
As a benchmark for evaluation, we have implemented the
method described in [6] and applied it to our standardized
data. We compare the reconstruction error of the denoising
method of [6] and the proposed denoising method in Table 2.
The reconstruction error is defined as the average Euclidean
distance per joint between the Kinect-like convertedMOCAP
measured position (which we consider as the ground truth)
and the denoised position from the Kinect data. We report the
average error both over all test samples as well as over the
unreliable test samples. We can see that the proposed method
provides more accurate joint position estimation than [6].
Table 3 and Table 4 compares the reconstruction error in
each joint. For the left and right shoulder, because they are
never occluded and do not move much in the TOLF exercises,
the reconstruction error is extremely small. On the other hand,
the wrist joints have the largest error because when they are
very often close to the chest, Kinect has trouble separating
the wrists from the chest when observed from the front.

Fig. 9(a) shows the trajectory of the left wrist when a volun-
teer performs the horizontal pumping exercise. The volunteer
closes her hands in front of her chest as shown in the pink
ellipse region in the middle of the exercise. In this pose,
the wrists are very close to the chest and the Kinect sensor
cannot distinguish the difference in the depth of the wrists
and the chest. This self-occlusion causes the Kinect sensor
making the error in the estimated position of the wrists, which
makes the joints trace unstable as shown on the blue line.
The MOCAP position is shown on the orange line, which is

4100313 VOLUME 6, 2018



A.-T. Chiang et al.: Kinect-Based In-Home Exercise System for Lymphatic Health and Lymphedema Intervention

FIGURE 9. The raw captured joint trace by Kinect (green) and MOCAP
(yellow), and the denoised trace by the proposed method (red) and the
method of [6] (green) [1]. (a) The left wrist during the horizontal pumping
exercise. Same markers (in shape) on different joint traces correspond to
the same time, (b) The left elbow during the push down pumping exercise.

very smooth and can be treated as ground truth. Our denoised
result is shown on the red line, which is very close to the
ground truth and is relatively smooth compared with other
results. Fig. 9(b) shows the trajectory of the left elbow when
a volunteer is doing the push down pumping exercise. In this
exercise the elbow is not blocked by other body part, so the
trajectory is relatively smooth, but the Kinect estimated posi-
tion has a consistent shift from the ‘‘true’’ position. Compared
with the raw Kinect data and denoising result of method [6],
our proposed method can eliminate most of the errors in
the Kinect measurement and make the trajectory smooth and
close to the ground truth (the MOCAP data).

B. PROTOTYPE INTERVENTION SYSTEM
1) OVERALL SYSTEM DESIGN AND PRELIMINARY RESULTS
The various methods described in Sec. II, including motion
sequence processing (standardization followed by denois-
ing), temporal alignment, and for evaluating a denoised
sequence against a reference sequence, have been inte-
grated into a prototype system for guiding patients with
risks for breast-cancer related lymphedema to perform a
set of lymphatic exercises. All the processing steps can be
completed in real time at 30 frames per second, with a

FIGURE 10. The subsequences and repetitions in different exercises.
(a) Exercises 2: ‘‘‘over the head pumping’’.(b)Exercise 4: ‘‘horizontal
pumping’’.

FIGURE 11. Graphical Interface of the proposed system.

Windows 8 computer equipped with Intel i7-4720HQ CPU
and 12 GB RAM. The interface of the prototype system
is shown in Fig. 11. In this system interface, we provide
several important information, which can guide users to do
the exercises accurately. The user stands in front of a display
and a Kinect sensor. The exercise avatar will be displayed at
the upper right of the screen with both video and audio. The
audio instruction in the avatar can help users to understand
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TABLE 4. Reconstruction error (in unit of cm) for each joint by the proposed method [1].

FIGURE 12. Analysis results of breathing and hand status. In this figure,
green curve describes the change of depth value in user’s chest region,
where the largest depth difference is 3.5 cm in this case. Blue and red
curve represent the states of the left and right hand, respectively, where
the higher value corresponds to ‘‘close’’ and small value corresponds to
‘‘open’’. (a) A case when a user breathes deeply and has perfect
synchronization between the breathing state and the hand state. (b) A
case when a user does not perform perfectly.

what should they do. User’s own video is displayed below
the avatar video, with the denoised skeleton overlaid without
perceivable delay. The left part of the screen shows the text-
based feedback and instruction. For example, in the beginning
of the exercise ‘‘horizontal pumping’’, it shows ‘‘Open arms
to T-pose or close arms to chest’’ and then it displays ‘‘well
done’’, or some suggestion for improvement after a user
successfully finishes each subsequence. After the detection
of each completed repetition, it will show how many more
repetitions that the user has to do. At the end of the entire
exercise, based on the internal analysis results, a message of
compliment or suggestion for improvement will be displayed.
We will discuss more detail for each exercise in next section.

FIGURE 13. Internal Analysis for exercise ‘‘over the head pumping’’.

2) EXERCISE DETAILS AND DISCUSSION
So far, we have completed the algorithm designs for four exer-
cises in the The-Optimal-Lymph-FlowTM (TOLF) interven-
tion. Here we provide details about Exercise 2, called ‘‘over
the head pumping’’ as shown in Fig. 10(a). In this exercise,
the the user is told to raise their hands up and hold in that
position (subsequence 1). Then user needs to make four deep
breathings. The user should close her hands while breathing
in, and open hands while breathing out. The breathing detec-
tion is similar to the algorithm we use for the first exercise
and the hands open/close state is detected by using the SDK
of the Kinect sensor. After finishing 4 repetitions, the user
should put down her hands on the sides to finish the exercise
(subsequence 2). By analyzing the captured depth data and
the hands’ state data, the systemwill derive pertinent informa-
tion, including breathing frequency as shown in Fig. 12, and
whether the breathing is synchronized with the corresponding
hand state as shown in Fig. 13. If a user does not breathe deep
enough or forget to breathe during the exercise period, or if
the hand state is not synchronized properly with the breathing
state, the system will send out a friendly message to remind
the user to breathe in and out more deeply, or to close/open
the hands when breathing in/out. In this exercise, wrist joints
play an important role, so we assign high weights for the wrist
joints than for the other joints. Appendix B provides details
for the other three exercises.

IV. CONCLUSION
We have developed an exercise guidance system, which can
automatically detect whether a user is performing a set of
exercises properly, based on the depth and joint positions
captured by a Kinect sensor. The first main technical inno-
vation is a clustered Gaussian Process regression model for
denoising the Kinect joint measurements.Wemap joint traces
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TABLE 5. The-Optimal-Lymph-Flow (TOLF) exercise to promote lymph flow [16].

captured by both a Kinect sensor and a MOCAP system to
a standardized domain in order to circumvent the difficulty
caused by the high variance of the joint positions due to the
variety of human body sizes and learn the regression model
in this domain. To reduce the computation with the regression
model, we cluster all the training samples into a small number
of groups and use the cluster centroids as the reduced training
set. The second main contribution is a modified dynamic
time warping algorithm that can automatically detect the end

of each exercise subsequence while simultaneously align-
ing the detected subsequence with a reference subsequence.
This enables accurate evaluation of the user’s movement
against the reference sequence for each exercise subse-
quence and instantaneous feedbackwhile a user is performing
the exercise. Our experiments show that the proposed denois-
ing method can effectively correct the errors in Kinect mea-
surements due to self-occlusion, and performs better than a
benchmark system. The overall system can accurately align

VOLUME 6, 2018 4100313



A.-T. Chiang et al.: Kinect-Based In-Home Exercise System for Lymphatic Health and Lymphedema Intervention

FIGURE 14. The subsequences and repetitions in different exercises. (a) Exercise 1: ‘‘muscle-tightening deep
breathing’’. (b)Exercise 3: ‘‘push down pumping’’.

a user’s motion sequence with the reference sequence, and
evaluate the ‘‘correctness’’ of user’s movements in real time,
enabling instantaneous feedbacks to the user while the user is
performing an exercise. The Kinect-based system has poten-
tial to be used for similar health problems related to lymphatic
health as well as science, art and entertainment involving
body movements.
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APPENDIX
A. THE RATIONALE OF TOLF EXERCISE
TOLF exercise program was designed for breast cancer
patients to promote lymph flow for upper limbs and body.
The rationale for each TOLF exercise can be found in Table 5.
TOLF exercise program is consistent with the recommenda-
tions of the American Cancer Society [28] for breast cancer
patients regarding seeking help from health professionals
for exercise after breast cancer treatment. TOLF exercise
has been delivered to patients in-person with trained nurses.
The Kinect system will help nurses to deliver the TOLF exer-
cise accurately and help patients to perform TOLF exercise
at home with accuracy and motivation. The duration and

repetitions for each TOLF exercise can be personalized based
on patients’ ability and preference.

B. EXERCISE DETAILS AND DISCUSSION
The-Optimal-Lymph-FlowTM intervention consists of seven
exercises. So far, we have completed algorithm design for
four exercises. We have described Exercise 2 in Sec.III-B.2.
Here we provide details for the other three exercises. Exer-
cise 1 is called ‘‘muscle tightening deep breathing’’ as shown
in Fig. 14(a), where the user needs to tighten her bodymuscle,
raise her hands to the belly position (subsequence 1), stay
in this pose and make four deep breathings, and finally put
down her hands to finish the exercise (subsequence 2). In this
exercise, we mainly focus on whether the user performs deep
breathing appropriately in pose 2 (after detecting the end of
subsequence 1). This is accomplished by evaluating the depth
variation in the chest region. In the evaluation state, the sys-
tem automatically identifies a small region in the center of the
chest in the first frame according to the relative position of
two shoulders and spine-middle and finds the average depth
value in that region using the depth map generated by the
Kinect sensor. Then, for the following frames, the system
finds the difference between the mean depth value in the
chest region in the current frame and that in the first frame.
This difference is defined as the depth value for the current
frame. We draw the depth variation as a function of time (see
Fig. 12(a)), and find the local minimum (corresponding to
breath in) and maximum (corresponding to breath out). If the
depth difference between the local maximum andminimum is
less than a certain threshold, the system will send a reminder
to the patient to breathe deeper. In this exercise, all the joints
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share the same importance, so the weights for determining the
average gradient magnitude in Eq. 3 are the same.
Exercise 3 is called ‘‘push down pumping’’ as shown in

Fig. 14(b). First, the user should raise her hands as high as
possible with hands open (subsequence 1). Then, the user
should start breathing in with hand closed and at the same
time push down two elbows (subsequence 2), with each arm
forming a ‘‘V-shape’’ at the end of subsequence 2. After
staying for a while in this pose, the user should raise her hands
again to as high as possible while breathing out and open
hands (subsequence 3). The user repeats this four times and
finally puts down the hands (subsequence 4). In this exercise,
we mainly check whether the positions of wrists, elbows and
shoulders are in a straight line in pose 2, and whether the
positions of wrists, elbows and shoulders form a V-shape
rather than L-shape. The system analyzes the user’s perfor-
mance based on the detected positions of the wrists, elbows
and shoulders at the end of each subsequence and gives the
user appropriate feedback. In this exercise, wrists and elbows
are more important than other joints, so the weights for wrists
and elbows are higher than for other joints.

Exercise 4 is called ‘‘horizontal pumping’’, as shown in
Fig. 14(c). A user first raises her hands to the horizontal posi-
tion to form a ‘‘T-pose’’ with hands open (subsequence 1).
Then the user slightly bends her elbows to move her hands
to the chest region while closing her hands and breathing
in slowly (subsequence 2). Next, the user moves back to
the ‘‘T-pose’’ while opening the band and breath out (subse-
quence 3). After repeating subsequences 2 and 3 four times,
the user puts down her hands on the sides (subsequence 4) and
finishes this exercise. In this exercise, the system checks the
positions of wrists, elbows and shoulders form a horizontal
line during the ‘‘T-pose’’, and whether the hand close/open
state is correct. In this exercise, wrist positions are more
important than the elbow positions, which are more important
than other joints. Therefore, we assign the highest weights for
the wrists, and second highest weights for the elbows.
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