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ABSTRACT

The binding motifs of many transcription factors
(TFs) comprise a higher degree of complexity than
a single position weight matrix model permits. Addi-
tional complexity is typically taken into account ei-
ther as intra-motif dependencies via more sophis-
ticated probabilistic models or as heterogeneities
via multiple weight matrices. However, both orthogo-
nal approaches have limitations when learning from
in vivo data where binding sites of other factors in
close proximity can interfere with motif discovery for
the protein of interest. In this work, we demonstrate
how intra-motif complexity can, purely by analyzing
the statistical properties of a given set of TF-binding
sites, be distinguished from complexity arising from
an intermix with motifs of co-binding TFs or other
artifacts. In addition, we study the related question
whether intra-motif complexity is represented more
effectively by dependencies, heterogeneities or vari-
ants in between. Benchmarks demonstrate the effec-
tiveness of both methods for their respective tasks
and applications on motif discovery output from re-
cent tools detect and correct many undesirable arti-
facts. These results further suggest that the preva-
lence of intra-motif dependencies may have been
overestimated in previous studies on in vivo data and
should thus be reassessed.

INTRODUCTION

The interaction between DNA and transcription factors
(TFs) is one of the cornerstones of gene regulation. Bind-
ing of TFs to DNA can be either indirect, mediated by other
TFs or it can be a direct contact of a TF to specific DNA
elements called TF-binding sites (TFBS).

The standard model for describing the properties of bind-
ing sites for a particular TF, i.e. its sequence motif, is the po-
sition weight matrix (PWM) model (1,2), which allows an
intuitive visualization as a sequence logo (3). While it has
widely replaced earlier consensus-based approaches due to

a higher flexibility in handling mismatches, its complete in-
dependence assumptions among nucleotides appear rather
extreme, once one has chosen a probabilistic modeling ap-
proach.

The development of more complex alternatives has been
a research topic in computational biology for decades (4–8).
Progress in devising appropriate motif models and learning
algorithms has been accompanied with a lively discussion
concerning the prevalence of more complex features and
their usefulness for TF-binding prediction (9–11).

The rise of high-throughput technologies for measuring
protein–DNA interaction has spawned a renewed interest in
that topic in recent years. Chromatin-immunoprecipitation
followed by high-throughput sequencing (ChIP-seq) (12) al-
lows a high-resolution quantification of the in vivo binding
affinity of a TF to genomic regions, so the resulting data
are of particular interest for learning accurate motif mod-
els. Multiple recent studies have shown that models that take
into account intra-motif dependencies can be learned effec-
tively within de novo motif discovery from ChIP-seq data
and that they improve genome-wide prediction accuracy in
relation to a PWM for many, albeit not all, TFs (13–19).

An orthogonal approach to model TFBS complexity as-
sumes multiple PWM models (20–22). Here, intra-motif
complexity is expressed as heterogeneities as opposed to
dependencies, although both representations take into ac-
count similar features. For instance, the complexity of the
CTCF sequence motif has been described by both intra-
motif dependencies (23) and heterogeneities (20).

Figure 1 illustrates how intra-motif complexity can be
explained from different points of view: once through a
mixture of two PWMs learned by DIVERSITY (22), and
once through a dependency model learned by InMoDe (24).
Both tools employ a model selection step for finding either
the optimal number of PWMs or the optimal dependency
structure. However, to date there has been no attempt to
perform a model selection across both representations, so it
is yet unclear whether heterogeneities or dependencies are
the more appropriate view on TFBS complexity.

Irrespective of the chosen representation, reasons for
observed intra-motif complexity can be manifold. For in-
stance, DNA shape effects (25,26), optional contact of zinc
fingers (27) or variable-length spacers (28) have been ob-
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Figure 1. Intra-motif complexity can be explained by both heterogeneities
and dependencies. (A) Sequence logo of Foxa2 from the JASPAR data
base. (B) Two-component PWM mixture model learned by DIVERSITY
from the underlying 800 binding sites. (C) Dependency model learned by
InMoDe from the same data.

Figure 2. Complexity caused by intermixing binding sites from different
TFs (inter-motif heterogeneity). (A) Sequence logo of data set with binding
sites of Sox6 and Myb intermixed. (B) Original sequence motifs, seamlessly
recovered by DIVERSITY. (C) Dependency model learned by InMoDe.
Labels at y-axis are here omitted due to space constraints (see Figure 1C).

served, and all can be associated with TFBS complexity be-
yond what can be represented with a single PWM.

Another reason for complexity may arise when the data, a
model is derived from, contain binding sites of multiple TFs.
Figure 2 illustrates such a situation using a minimal exam-
ple of artificially intermixed binding sites of Sox6 and Myb.
The sequence logo of the intermixture (Figure 2A) is not
overly informative, but learning a mixture model recovers
the original sequence motifs (Figure 2B). However, a depen-
dency model can also be used to describe this ‘inter-motif
heterogeneity’ by modeling the two motifs through very dif-
ferent conditional probability distributions (Figure 2C).

One possible source of intermixtures is ChIP-seq data,
which contain not only binding sites of the TF of interest,
but also enriched motifs of non-targeted TFs (29). Attempt-
ing to learn dependency models from ChIP-seq data via de
novo motif discovery with the aim of inferring dependen-
cies along the lines of Figure 1 can easily combine bind-
ing motifs of different TFs into one model (16,17). This
effect is even more pronounced for TFs that do not bind
directly to DNA (30), where ChIP-seq peaks may thus not
contain a single dominating motif (31). Under these circum-
stances, dependency models may still perform well in e.g.
genome-wide prediction of approximate binding locations
(16,17), as they aggregate any over-represented or discrim-
inating features of ChIP-seq-positive regions. But whether

such models are an appropriate representation of the bind-
ing specificity of the TF(s) of interest remains questionable.

One might argue that for these reasons the view through
heterogeneities is to be preferred, as PWMs that represent
binding sites of different TFs are clearly separated. But since
there is no semantic attached to the learned PWMs, it re-
mains unclear whether they represent indeed co-occurring
binding sites of different TFs or actually encode intra-motif
heterogeneities. In the latter case, it is also unclear whether
mixtures of PWMs are, in comparison to dependency mod-
els, an effective representation of intra-motif complexity.

We thus face a dilemma: on the one hand, learning a com-
plex dependency model from in vivo data of TF–DNA in-
teraction may erroneously combine sequence motifs of dif-
ferent TFs into one motif. On the other hand, by learn-
ing multiple PWMs we cannot distinguish intra-motif from
inter-motif heterogeneity. In both cases, careful inspection
and manual annotation of the discovered motifs are needed,
which may be especially difficult when the found motifs are
not known in the literature.

In this article, we study this problem of computationally
disentangling TFBS complexity, not only concerning sta-
tistical efficiency, but also with respect to the underlying se-
mantics. For this purpose, we propose the tool Disentangler,
which consists of two methods that can be applied either in-
dependently or within a joint pipeline.

Intermixture detection (IMD) determines whether inter-
motif heterogeneity (Figure 2) occurs in a given TFBS data
set and clusters the binding sites accordingly. The key idea
is to exploit the empirical observation that inter-motif het-
erogeneities are typically stronger than intra-motif hetero-
geneities for defining an intermixture measure that quanti-
fies inter-motif heterogeneity.

Motif complexity analysis (MCA) determines whether
intra-motif complexity (Figure 1) for a particular TF is
modeled more effectively by heterogeneities, dependencies
or a combination thereof. Here, the key idea is that depen-
dency or heterogeneity can both model intra-motif com-
plexity, but they may require a very different number of pa-
rameters to take into account the same features. We employ
model selection principles for defining an intra-motif com-
plexity measure that allows to choose a model optimally
represents a data set, and to quantify differences to possi-
ble alternatives. Additionally, this measure can be used to
quantify the strength of effectively representable intra-motif
complexity and to compare different data sets accordingly.

In the case studies, we evaluate the effectiveness and lim-
itations of both methods for their respective tasks based on
benchmark data from JASPAR (26) and GTRD (32). For
demonstrating practical use, we then apply recent de novo
motif discovery tools (16,18,22,24) on ENCODE ChIP-seq
data (33) and analyze the output in terms of predicted bind-
ing sites with Disentangler. We find that learning depen-
dencies during motif discovery indeed overestimates intra-
motif complexity, but also observe that the underlying rea-
sons are more complex than the simple example in Figure 2
suggests. Different intermixture types can be identified and
be explained by different biological and computational ori-
gins. We also find that the orthogonal approach of estimat-
ing an optimal number of PWM-based motifs from ChIP-
seq data may underestimate intra-motif complexity.
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MATERIALS AND METHODS

First, we summarize the models and learning algorithm that
this work is based on and refer to Supplementary Section S1
for technical details. Afterward, we describe how these con-
cepts are used in IMD and MCA, the two main components
of Disentangler. Finally, we specify the data used in the case
studies.

Models and learning

A TFBS data set D consists of N sequences of fixed length
L over the alphabet A = {A,C,G,T}. They are assumed to
be pre-aligned in the same strand orientation without con-
taining gaps or ambiguous nucleotides.

A mixture model allows the sequences in D to be of dif-
ferent types, i.e to follow the distribution of one out of K
component models. We model the missing knowledge which
component each sequence is associated with as a latent vari-
able vector u of length N; each element assumes a value from
1 to K. Mixture models also include non-mixtures as a spe-
cial case with K = 1. We consider three different types of
mixture components, which substantially differ in their ex-
pressiveness and learning complexity.

First, we use the standard choice of a PWM model (1),
where learning solely consists of estimating its position-
specific marginal probability parameters.

Second, we take into account proximal dependency by an
dth-order inhomogeneous Markov model, equipped with
a Parsimonious Context Tree (PCT) (34) at each position.
This model is the core of the InMoDe tools (24), examples
are shown in Figures 1C and 2C. For this model, learning
additionally requires selecting PCTs at each position based
on the data for which we employ a sophisticated dynamic
programming algorithm (35).

Third, we model distal dependency through a Bayesian
network (36) with indegree limit d, equipped with a PCT for
each conditional distribution, hereby assuming that parent
variables are ordered according to their position in the se-
quence. This model generalizes variable-order Bayesian net-
works (7), which use traditional context trees (37) instead
of PCTs. It is the most expressive but also computationally
most demanding alternative. Learning additionally requires
selecting the optimal network structure based on learned
PCTs, for which we use Edmonds’ algorithm for d = 1 (38)
and dynamic programming (39) otherwise.

Given a mixture model with up to Kmax components of
possible variable structure, we need to simultaneously learn
both the optimal number of mixture components K̂ and the
optimal structures within each component. For this task,
we use the factorized asymptotic Bayesian (FAB) inference
(40), which assumes a variational distribution q over the la-
tent variables u so that structure and parameter learning be-
comes tractable given q. This algorithm starts with a ran-
dom initialization and then iteratively updates the set of
model parameters � and q. This approach is very similar to
the expectation–maximization algorithm (41), which it con-
tains as special case when all components have a fixed model
structure. FAB inference monotonically increases the score

F(D, q,�) = L(D, q,�) − D(�, N) − H(q), (1)

which consists of three conceptually different terms. L is a
weighted log-likelihood that measures the fit of the model to
the data under latent variable distribution q. D is a penalty
term for the number of model parameters in � in relation to
the sample size N, with more parameters yielding a higher
penalty. H is the entropy of q and penalizes the flexibil-
ity arising from fitting the latent variables of the mixture
model. In the special case of a K = 1, F reduces to the
Bayesian Information Criterion score (42). Otherwise it is a
lower bound to the Factorized Information Criterion (FIC),
which is itself an approximation of the marginal likelihood
of the entire mixture model (40). As such, it allows a com-
parison of single models of high complexity, mixtures of low
complexity models and variants in between.

Intermixture detection (IMD)

Every TFBS data set D can be formally viewed as an inter-
mixture of M ≥ 1 data sets D1, . . . , DM, where M = 1 repre-
sents the special case that D is intermixture-free. Using this
formalism, we call M the intermixture number of D, which
is typically unknown. The computational problem is to give
an estimate M̂ of M based on the statistical properties of D
and to cluster the data set into D1, . . . , DM̂ accordingly.

To solve this problem, we employ a recursive approach
that decides in every step whether a data set is intermixture-
free (M̂ = 1) or not. In a single step, we learn a mixture of
up to two PWM models from D using the FAB inference
described above. If the resulting score of a two-component
mixture model (Equation 1) is not greater than the score of
a single PWM model learned on D, we set K̂ = 1. Otherwise
K̂ = 2, which means that a mixture two PWM models rep-
resent the data more effectively than a single PWM model.
But that alone is not sufficient to decide upon presence or
absence of intermixture of binding sites from two TFs yet.

To make this decision, we quantify the difference among
the nucleotide distribution at the �th positions of the two
learned PWMs P1 and P2 by the Jenson–Shannon diver-
gence (43), defined by

JSD(P�
1 , P�

2 ) = H
(

2∑
i=1

1
2

P�
i

)
−

2∑
i=1

1
2
H(P�

i ), (2)

where H denotes the entropy in bits. Next, we compute an
weighted average over the L positions in the sequence, where
the weight w� = 2 − min(H(P�

1 ),H(P�
2 )) is the maximum of

the stack-height in the sequence logo of both PWMs at posi-
tion �. The purpose of the weighting is to ensure that adding
entirely uninformative positions to the flanks of the binding
sites preserves the average divergence among positions that
are informative in at least one component. We then define
the intermixture measure

�(D) =
{

0 if K̂(D) = 1∑L
�=1 w�JSD(P�

1 ,P�
2 )∑L

�=1 w�

if K̂(D) = 2,
(3)

which assumes values in (0,1). If �(D) ≤ T, we consider the
two PWMs similar enough to represent binding sites of a
single TF, so we call T the intermixture threshold. If not, we
cluster all sequences in D according to their log-probability
scores given P1 and P2 into new data sets D1 and D2 and
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Table 1. Dependency models and mixtures thereof that are used in MCA

Dependency Order Kmax = 1 2 3 4 5

None (PWM) – � � � � �
Proximal 1 � � �
Proximal 2 � � �
Proximal 3 �
Distal 1 � � �
Distal 2 �
Distal 3 �

discard D. We then recursively repeat the entire procedure
above for D1 and D2.

IMD terminates when for all data sets �(D) ≤ T. The es-
timate of the intermixture number is then given by the num-
ber of created data sets, i.e. M̂ = |D|.

Motif complexity analysis (MCA)

Given a data set D of aligned binding sites, the purpose of
MCA is to find an optimal representation, i.e. to select a
model among candidates that take into account dependen-
cies and/or heterogeneities.

Here, we select among mixtures of PWM models, mix-
tures of up to dth order proximal dependency models and
mixtures of up to dth order distal dependency models, al-
ways including the special case of Kmax = 1, and denote the
set of all tested model classes by M. In all practical studies
within the present work, M comprises the 17 model com-
binations displayed in Table 1. The software is not limited
to these candidates, but does allow higher Kmax and d, con-
strained only by available time and memory budget. Com-
paring entirely different types of generative models, such
as undirected graphical models or local structures other
than PCTs, is at least in principle possible with the present
methodology.

For each model m ∈ M, we run the FAB inference for
maximizing the score of Equation (1). It finds only a local
optimum of the target function, so multiple restarts with
different initializations are required for approximating the
global optimum. We use a global time limit of 3 h for each
model, which ensures that all non-mixture models can be
optimized exactly. We terminate a single restart of a mixture
model when either the difference in the target function is
smaller than 10−6 or the elapsed time amounts more than 1
h so that at least three restarts are executed within the global
time limit. We denote the optimal score obtained for model
m ∈ M on a data set D within the time limit by FICm(D).

Since the absolute scores depend on the number of data
points and sequence length, we evaluate the improvement
in percentage with respect to the baseline of a PWM model.
For each type of model, m ∈ M we compute for a data set
D the quantity

�m(D) = 100 ∗
(

FIC(D)PWM

FIC(D)m
− 1

)
, (4)

which we dub intra-motif complexity measure. Finally, we
select the model m̂ as the m ∈ M that maximizes �m(D) as
optimal model for data set D. Since the effects of sample
size and sequence length cancel out by taking the ratio of
FIC scores, �m(D) is comparable not only among different

models in M, but also among different data sets. It thus
quantifies the amount of intra-motif complexity in a data
set. We consider �(D) = �m̂(D) as intra-motif complexity
of D, and denote it simply by � if D is clear from context.

Data extraction

In the case studies, we use three types of data, each for a par-
ticular purpose. Here, we give a description in brief, more
details are provided in Supplementary Section S3.

JASPAR aligned binding sites. As ground truth for non-
intermixed TFBS, we pick all data sets from the JASPAR
2016 release (44) that have actual sequence data, as opposed
to sole weight matrices, available. From each data set, we ex-
tract the alignment proposed by the database, which is indi-
cated by upper-case letters in the sequence files. We further
process the data for removing artifacts. Afterward, we dis-
card all data sets that contain <100 sequences and finally
retain 158 data sets.

GTRD metaclusters. We use ChIP-seq metaclusters for
human and mouse from GTRD (32) as validation data for
motif models derived from JASPAR binding sites. Meta-
clusters aggregate multiple ChIP-seq experiments and eval-
uation pipelines, yielding a unique data set for each TF,
which is identified by its TFclass (45) ID. We associate TF-
class IDs with JASPAR IDs according to the TF name or
variants thereof. For each match, we extract the sequences
for the metacluster from the human/mouse genome and
treat them as positive data set. For each positive data set,
we generate control data by learning a second-order homo-
geneous Markov chain and sampling 100 000 sequences of
length L̄ from it, where L̄ is the mean sequence length in the
positive data set.

ENCODE ChIP-seq data. For motif discovery studies,
we use all data sets in the Uniform TFBS track of the
ENCODE project (33) as input data. The data sets dif-
fer in TF (antibody), cell line, treatment or producing lab,
but have been processed with a uniform pipeline, yielding
a ranked peak list with corresponding enrichment scores.
For each data set, we pick the top 5000 peaks and ex-
tract, for each peak, a 500-bp sequence fragment (250-bp
upstream/downstream from the peak center) the human
genome, version hg19. Construction of negative data fol-
lows the same procedure as for GTRD.

RESULTS

This section comprises two sets of case studies. First, bench-
mark studies systematically evaluate the performance of
both subtools of Disentangler based on pre-aligned TFBS
from different sources and ChIP-seq metaclusters from
GTRD. Second, application examples demonstrate how
Disentangler can be used in practice to process and refine
output from de novo motif discovery.

Benchmark studies

As a pilot study, we consider the simple task of finding the
optimal number of PWMs for each of the 158 JASPAR data
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Figure 3. Intermixture detection as binary classification. The task is to distinguish data sets containing binding sites of a single TF (M = 1) from those
where binding sites of two TFs are intermixed (M = 2). (A) Histograms of intermixture measure for both classes normalized by the number of members of
each class. (B) Classification performance with varying intermixture threshold according to ROC and PR curves. (C) Different aggregating performance
measures as function of the intermixture threshold. The optimal threshold is marked by vertical dashed line. (D) Example of a data set that IMD classifies
as intermixture, where the second component is a binding site that occurs within a transposable element and has thus been massively amplified in the
genome. (E) Dependence of the intermixture measure on the disparity of the sample sizes of the intermixed data sets. The legend indicates the total sample
size, distinguishing between small (N < 1000), medium and large (N > 10 000). (F) Example where the sample size disparity is so high that the sequence
logo of the intermixture is virtually identical to that the larger data set (Spi1). De-mixing then reveals only heterogeneities with the Spi1 motif instead of
recovering the two ground-truth PWMs. (G) Examples for data sets that are so similar that inter-motif heterogeneity appears as intra-motif heterogeneity.

sets. We compare the FIC-based learning approach of Dis-
entangler with two other tools that can be used to solve
this task, namely DIVERSITY (22) and NPLB (46); see
Supplementary Section S2 for details about all tools used
in the case studies. Results (Supplementary Section S4.1)
show that for the majority of data sets all three methods pre-
dict more than one PWM to be optimal. This observation
implies that selecting the optimal number of PWM mod-
els alone cannot accurately detect inter-motif heterogeneity
(Figure 2), as it cannot distinguish it from intra-motif com-
plexity (Figure 1).

Quality of intermixture measure. We use the 158 JASPAR
data sets and consider them to be ground truth for the pos-
itive class (single TF, no intermixture). In order to obtain
data for a negative class, i.e. intermixed sites of two binding
factors, we use the 47 data sets with L = 15 and construct
all possible 1081 pairwise intermixtures.

For each data set, we perform one iteration of IMD for
computing the intermixture measure (Equation 3). We plot
histograms of all obtained values for both classes, normal-
ized to enable a direct comparison despite the different class
sizes, in Figure 3A. The overlap among both histograms
occurs only in the tails of both distributions, suggesting a
promising classification potential of the intermixture mea-
sure.

For quantifying this potential, we next vary intermix-
ture threshold T, calculate the resulting Receiver Operating
Characteristic (ROC) curve and Precision Recall (PR) curve

(47) using PRROC (48) and display the results in Figure 3B.
The area under the ROC curve amounts 0.965, the area un-
der the PR curve 0.739, which shows that the intermixture
measure enables a satisfying classification.

For assessing the classification performance for a partic-
ular T, we use Matthews’ correlation coefficient (49) due to
the imbalance among the class sizes in the present study, but
also compute F1-score and accuracy for comparison (Fig-
ure 3C). All three performance measures report T = 0.19 to
be optimal, and for all of them the performance varies only
slightly in the interval (0.15, 0.30). This coincides with the
separation among the histograms in Figure 3C, so choosing
T is robust.

Reasons for misclassification. With T = 0.19 we correctly
classify 154 of 158 data sets as intermixture-free, yielding a
true positive rate (TPR) of 97.5%. For GATA1::TAL1, we
obtain � = 0.331, which is the highest value in the positive
class and thus justifies inspection in detail (Figure 3D).

We find that the first mixture component, representing
87.8% of the sequences in the original data set, resembles
the original PWM. The remaining 12.2% sequences fol-
low a very different distribution with almost completely
conserved nucleotides at all positions, which extends be-
yond the motif boundaries in the sequences, from which
the 18-mer was extracted. Running RepeatMasker (http:
//www.repeatmasker.org) on the entire 118-bp long se-
quences available in JASPAR classifies 99.97% of them as
long terminal repeat (ERV class II). One binding site for

http://www.repeatmasker.org
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GATA1::TAL1 appears to be massively amplified in the
genome due to location within a transposable element, a
mechanism that is known, e.g. for E2F in plants (50).

In the negative class, intermixture is ground truth by con-
struction. Yet, 77 of 1081 data sets yield � ≤ 0.19, amount-
ing to a false positive rate (FPR) of ∼7.1%. There are at
least two causes, which may also intertwine.

First, the data sets with vary in size by several orders of
magnitude from as little as 102 up to nearly 106. As a conse-
quence, some intermixtures have a large imbalance among
the number of binding sites from each ground-truth data
set. All intermixtures with a sample size disparity of more
than 100:1 yield � < 0.1 (Figure 3E), so contamination be-
low 1% frequency cannot be reliably detected by IMD. We
illustrate the reason for misclassification in Figure 3F using
the most imbalanced example of intermixing Spi1 (63 715
sequences) with Mad (102 sequences). The statistics of the
intermixture is dominated by Spi1, and de-mixing yields
rather heterogeneities among these sites instead of discov-
ering the few intermixed Mad sequences.

Second, there are a few intermixtures in which both origi-
nal PWMs are very similar, as illustrated in Figure 3G by the
example of TFAP2A and TFAP2C (� = 0.032). However,
since both TFs belong to the AP-2 family, of which all mem-
bers contain a conserved helix-span-helix DNA binding do-
main, they may actually recognize the same motif (51).

Arbitrary intermixture number. For ground truth M > 2,
systematically studying all possible intermixtures becomes
intractable due to the sheer number of combinations. We
thus employ a sampling-based approach by randomly pick-
ing M data sets out of a pool of candidates. The pool com-
prises once 47 data sets with L = 15 and once 48 data sets
with L = 11 and we use the ground-truth intermixture num-
bers M ∈ (2, 3, 4, 5, 6). For each L and M, we repeat the pro-
cedure R = 1000 times, so the total number of constructed
data sets amounts 104. For each constructed data set, we
run IMD using T = 0.19 until termination and compare the
predicted intermixture number M̂ with the ground truth M
(Figure 4).

IMD finds the correct intermixture number in the major-
ity of cases. The error rate gradually increases with ground
truth intermixture number, since intermixing more data sets
increases the probability of a data set pair with either a high
sample size disparity or a very similar binding motif. How-
ever, predictions that deviate from the ground truth by more
than one are rare. IMD performs for the L = 11 pool even
better than for L = 15, which can be explained by a larger
average sample size (Figure 4). Larger samples are generally
an advantage in statistical learning, but here they also entail
less extreme sample size disparities.

Distribution of intra-motif complexity. For benchmarking
MCA, we first compute �m(D) of Equation (4), where D
varies over the 158 JASPAR data sets and model m varies
among the alternatives in Table 1, and show the resulting
distribution in Supplementary Section S4.2.

Mixtures of PWM models are a poor representation of
intra-motif complexity on average, albeit there are cases,
such as motifs with a conserved core of three nucleotides
or more, where they outperform proximal dependence. Dis-

Figure 4. Benchmark for fully recursive IMD using artificial intermixtures
constructed by randomly sampling from one out of two data set pools that
differ in sequence length. (A) Predicted intermixture numbers in relation
to ground truth. Area of circles corresponds to fraction of predictions.
Numbers show the percentage of entirely correct predictions. (B) Sample
size distribution for data set pools, the intermixtures are constructed from.
Symbol × indicates the mean. The L = 11 pool contains larger data sets
on average, which partially explains the better performance of IMD.

tal dependency captures the same features often in a more
effective way and increases, compared to proximal depen-
dence, intra-motif complexity by ∼33% on average.

One data set in detail. The TF with the highest intra-
motif complexity for the optimal model is DUX4, which
is known to bind variations of a tandem TAAT consensus,
with TAATCTAATCA yielding the highest affinity (52). Its
JASPAR-extracted binding sites contain three highly con-
served nucleotides at positions 3, 8 and 9 (Figure 5A), so
only the remaining eight positions are relevant from statis-
tical point of view. First-order proximal dependency (Fig-
ure 5B) cannot model any correlations across these con-
served positions, so it yields only �m = 5.77. In contrast,
third-order distal dependency (visualization in Supplemen-
tary Section S4.3) achieves �m = 20.05. For DUX4, a five-
component mixture model (Figure 5C) is, in contrast to the
general trend, a competitive alternative with �m = 18.39.
Since the number of low-conserved sequence positions is
fairly small, even a few PWMs can express most of the intra-
motif complexity.

Next, we investigate the capability of the different learned
DUX4 models to predict in vivo binding by classifying
39 554 sequences in the corresponding GTRD data set as
bound by the TF or not. To this end, we compute binding
site probabilities in the control data in order to choose a
classification threshold that yields one false positive per 100
sequences. We predict binding sites in the sequences in the
positive data set and consider a sequence as bound when it
contains at least one hit. Figure 5D shows a scatter plot of
the classification performance in terms of the TPR against
the intra-motif complexity measure. The correlation among
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Figure 5. Complexity analysis using the example of DUX4. (A) PWM model. (B) First-order proximal dependency model. (C) Five-component PWM
mixture model. (D) Complexity measure of all learned models in relation to the TPR on ChIP-seq data (with FPR = 0.01). (E) Correlation of intra-motif
complexity measure with classification on independent ChIP-seq metaclusters from GTRD for all data sets for human and mouse.

both quantities (Pearson r = 0.961, Spearman ρ = 0.939) is
surprisingly high, given that the two types of data are based
on different experiments and processing pipelines.

Large-scale benchmark. We now repeat this analysis with
all data sets from human and mouse that have an associated
data set in GTRD (Figure 5E) and observe a positive cor-
relation between intra-motif complexity and sensitivity in
the majority of cases. Non-significance occurs for data sets
where differences among models according to MCA are
small. Significantly negative correlation may indicate dis-
agreement of the two data sources with respect to the bind-
ing motif or overfitting effects. Overall, the intra-motif com-
plexity measure is a good, albeit not perfect, indicator for
the capability of different motif models to predict TF bind-
ing to DNA in vivo.

Different ground truth data. For further validation, we re-
peat the benchmarks with binding extracted from the Swiss-
Regulon database (53) as ground truth (Supplementary Sec-
tion S4.4). The performance of IMD for recognizing arbi-
trary intermixture numbers is widely identical to that ob-
served in Figure 4, which underpins that T = 0.19 is indeed
a robust choice. In contrast to JASPAR data, data sets ex-
tracted from SwissRegulon contain much less intra-motif
dependencies on average, which makes the MCA bench-
mark less informative due to a high number of insignificant
correlations.

Stability of optimal solutions. The studies from the pre-
vious sections benchmark the performance of IMD and
MCA across a large number of data sets. To study the stabil-
ity of the solutions for individual cases, we employ a boot-
strapping approach for some key data sets and find that
both methods are generally stable across resamples (Sup-
plementary Section S4.8).

Application examples

We next study the practical application of Disentangler for
processing and refining de novo motif discovery output ob-
tained from different tools that model either dependencies
or heterogeneities explicitly.

Figure 6. Intermixture detection on binding sites predicted by de novo mo-
tif discovery with various tools (legend). (A) Motif discovery taking into
account intra-motif dependencies. (B) Motif discovery based on the PWM
model. (C) Intra-motif complexity measure for Slim-Dimont predicted
binding sites. Symbol × indicates the mean. Top and middle distribution
correspond to intermixture-free and intermixed data sets, respectively. The
bottom distribution represents data sets that are obtained as output from
IMD for data sets classified as intermixture.

Intermixtures produced by motif discovery. We perform de
novo motif discovery in 690 ENCODE ChIP-seq data sets
with three recent tools that focus on learning intra-motif
dependencies, namely InMoDe (24), Slim-Dimont (16) and
BaMM-motif (18), which output not only the learned motif,
but also the underlying binding sites (Supplementary Sec-
tion S2). For each tool we run motif discovery twice, once
with default parameters, which takes into account intra-
motif dependencies, and once with constraining the motif
model to a PWM. After extracting the binding sites for each
learned primary motif, we apply IMD for computing the in-
termixture number, and summarize the results in Figure 6.

When taking into account intra-motif dependencies dur-
ing motif discovery, all three tools make predictions that
show intermixture, albeit the magnitude differs among them
considerably. Using a PWM as motif model avoids this al-
most entirely, which demonstrates that learning dependen-
cies within de novo motif discovery is indeed a source of in-
termixtures.
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Figure 7. Different types of intermixtures: (A) Clearly distinguishable motifs of two different TFs. (B) Primary motif intermixed with seemingly nonfunc-
tional sequences. (C) Elongated motif as part of transposable element. In each panel, the leftmost sequence logo shows the prediction by Slim-Dimont,
whereas the other two sequence logos correspond to the IMD-clusters. � and � show intermixture measure and intra-motif complexity measure of the
data sets.

For further analysis, we now focus on the intermixed data
sets produced by Slim-Dimont, since it is the most conserva-
tive tool, yielding only 30% intermixtures. For all predicted
sets of binding sites, we perform MCA and plot the distri-
bution of the intra-motif complexity measure, hereby dis-
tinguishing intermixed from intermixture-free cases (Fig-
ure 6C). For M̂ = 1 the distribution is in the range of that
on JASPAR data sets (cf. Supplementary Section S4.2),
whereas data sets that are classified as intermixed show a
much higher intra-motif complexity.

Running MCA on the clusters produced by IMD for the
data sets with M̂ > 1, we find that the resulting intra-motif
complexity is now substantially reduced, the distribution re-
sembles the M̂ = 1 group. MCA thus provides quantitative
evidence that modeling dependencies during motif discov-
ery can overestimate intra-motif complexity considerably
and that IMD can be used to effectively recover from ar-
tifacts.

Different intermixture types. The sequence logos for all M̂
clusters for each of the 171 data sets with M̂ ∈ (2, 3) are
given in Supplementary Section S4.5. We observe that inter-
mixtures are of different types that can be explained by dif-
ferent biological and/or computational origins (Figure 7).

For c-fos, the intermixture consists of binding sites of
two substantially different motifs that are easily recognized
as such (Figure 7A). The first cluster follows the motif of
NF-Y and the second cluster that of AP-1. Both motifs are
known to be enriched in c-fos target regions (54). Such typ-
ical intermixtures that resemble the toy example of Figure 2
amount ∼50% of all cases with M̂ = 2. Another example
is ELK1, which shows an intermixture with SRF that can
be explained by direct interaction of both TFs (55). A third
example is CHD2, which is assumed not to bind directly to
DNA (56). Here, we find almost equally many binding sites
that either follow either the NF-Y motif or the TCTCGC-
GAGA consensus (57).

In ∼10 cases, the primary motif of interest is intermixed
with sequences that appear to be non-functional back-
ground. One example is SRF (Figure 7B), where ∼75.8% of
binding sites correspond to the MADS-box CC(A/T)6GG
motif (58). The remaining 24.2% strongly deviate from it,
without resembling a binding motif of a different TF. Low-
affinity binding of SRF to these sequences cannot be ex-
cluded entirely by in silico analysis, but it seems more likely
that this intermixture is a computational artifact.

Figure 8. Predictive performance of models learned from intermixture
(IM) and both IMD clusters for c-fos (Figure 7A) on four cell lines.

Figure 7C visually resembles Figure 3D, and for TFIIIC
the origin is similar indeed. The 15-bp consensus sequence
of the second component occurs as exact match in 279 of
1858 original ChIP-seq positive sequences. However, not a
single match remains after applying RepeatMasker to these
sequences, which classifies 37.8% of them as interspersed re-
peat, the vast majority (26.87%) as SINEs of the Alu-type.
Binding of TFIIIC to SINEs is known and associated with
function (59), so the second component cannot be treated
as artifact. However, the amplification of a particular k-mer
through transposable elements affects the intra-motif com-
plexity considerably.

Intermixtures are not only of these three types, but there
are some additional variants, such as intermixed reverse
complementary sequences or gapped motifs (Supplemen-
tary Section S4.6). Moreover, all intermixture types dis-
cussed so far pertain to cases with estimated intermixture
number M̂ = 2. For M̂ > 2, we often observe a combination
of different types, such as two conserved motifs according
to type A that are additionally intermixed with background
sequences according to type B.

Intermixtures in different cell lines. The sequence logos in
Figure 7A represent three sets of binding sites: one inter-
mixture obtained as output from applying Slim-Dimont on
c-fos ChIP-seq data, and two clusters of binding sites pro-
duced by applying IMD to the first set of sites. For each of
these three data sets, we next compare the predictive perfor-
mance on the top-5000 peaks within different cell lines, once
based on a PWM model and once based on an optimal de-
pendency model according to MCA. The performance mea-
sure is, in analogy to the MCA-benchmark, the TPR under
an FPR of 0.01 on control data. The results are shown in
Figure 8.
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Figure 9. Disentangler applied on output from DIVERSITY. (A) Two dominating PWM-based CTCF motifs found by DIVERSITY are classified by
IMD as single motif. (B) For YY1, DIVERSITY predicts five PWM motifs that all contain an ATGGC/GCCAT consensus. The underlying binding sites can
be merged only after correcting for different shifts and strand orientation. They are then classified by IMD as belonging to a single motif. (C) Prediction
performance on ENCODE ChIP-seq data from different cell lines. The performance measure is the true positive rate, i.e. fraction of top-5000 ChIP-seq
positive sequences with at least one hit, under a false positive rate of 0.01 on control data. Both plots compare the optimal models according to MCA
(top), optimal number of PWM mixture model according to DIVERSITY (middle), and baseline PWM model (bottom).

For Hela-S3 the perceived gain by taking into account
intra-motif dependencies is high, whereas it is substantially
reduced when evaluating both clusters individually. Since
this is the cell line where the intermixture originates from,
this observation confirms expectations. In other cell lines,
such as K562, the difference can be even more pronounced,
but its magnitude also depends depends on the distribution
of hits for the two separate motifs. For GM12878, the top-
5000 peaks contain very little hits of the TGACTCA-motif
(cluster 1), which dominates the mononucleotide statistics
of the intermixture, leading to a massive improvement in
TPR via the dependency model. For HUVEC the top-5000
peaks contain almost no CCAAT, so the intermixture pre-
dicts in vivo binding with less accuracy than the first cluster
alone.

Heterogeneities or dependencies? In a final study, we ap-
ply Disentangler to motif discovery output that consists of
multiple PWMs and the corresponding binding sites. Here,
we do not expect intermixtures, but that the number of mo-
tifs may be overestimated at the expense of intra-motif com-
plexity.

To test this hypothesis, we use DIVERSITY (22) to pre-
dict the optimal number and width of modes (PWM mod-
els) de novo from ENCODE ChIP-seq data. We here focus
on data sets for CTCF and YY1, which did not show any
intermixture in the previous study and can thus be expected
to contain one primary motif. This section summarizes the
key findings, whereas Supplementary Section S4.7 contains
all results in detail.

For CTCF, nine PWMs are optimal according to DI-
VERSITY, but seven of them are minor motifs of low fre-
quency. More than 85% of all sequences correspond to ei-
ther mode 5 or mode 6 (Figure 9A), which are both a variant
of the known CTCF motif (60). Since both PWMs are here
present in the same shift and strand orientation, we simply
merge the underlying binding sites and apply IMD, obtain-
ing the verdict that all binding sites are bound by the same
TF (� = 0.079). MCA selects third-order distal dependency

as best motif representation (�m = 4.47), whereas the two-
component PWM mixture receives only �m = 1.67. To val-
idate this model selection and to measure possible overfit-
ting effects, we evaluate the predictive performance of in vivo
binding on 52 different cell lines (Figure 9C), and find that
the distal dependency model performs indeed substantially
better on average, albeit at the price of a higher variance.

For YY1, the application of Disentangler is a bit less
straightforward. Here, ten PWMs are optimal according to
DIVERSITY, and five of them contain the ATGGC consen-
sus sequence that is typical for the YY1 motif (61). To fur-
ther complicate matters, these five PWMs are of different
length, shift and strand orientation. Hence, we first put all
five motifs (and the corresponding binding sites) in the same
shift and strand orientation using the ATGGC consensus as
common anchor point, and pad empty left and right flanks
with ambiguous nucleotides (Figure 9B). Merging the five
data sets and applying IMD predicts also in this case that
all binding sites are recognized by the same TF (� = 0.13).
According MCA, a three-component mixture of first-order
distal dependence models is optimal (�m = 3.04) for the
merged data set, whereas a five-component PWM mixture
yields �m = 2.76. The predictive performance of in vivo
binding (Figure 9C) confirms this assessment.

Learning multiple PWMs from ChIP-seq data by meth-
ods such as DIVERSITY has the undeniable advantage that
complexity is taken into account without producing inter-
mixtures, i.e. unrealistic models of direct TF–DNA inter-
action. The results from this section demonstrate that this
comes at the cost of a possibly poor representation of intra-
motif complexity. Disentangler can substantially improve
on that by identifying PWMs that represent variants of the
same motif and subsequently finding a motif representation
better than a PWM–mixture.

DISCUSSION

This work was primarily motivated by the observation that
two recent orthogonal approaches for de novo motif discov-
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ery from ChIP-seq data can both produce unwanted arti-
facts, which originate from their model assumptions. Learn-
ing complex motif models by taking into account intra-
motif dependencies is prone to combining the binding pref-
erences of multiple TFs into one motif. Learning multiple
PWM models avoids this problem but it may yield a subop-
timal representation of intra-motif complexity.

To address these issues, we propose Disentangler, a
method for analyzing aligned TFBS with two different
subtools: IMD checks whether a set of binding sites is an
intermixture of binding sites from multiple TFs and clus-
ters the sequences accordingly. MCA decides whether the
intra-motif complexity is better explained by proximal de-
pendencies, distal dependencies, mixtures of PWMs or vari-
ants in between. While both subtools can be used inde-
pendently, one obvious pipeline first runs IMD on a set of
TFBS, and subsequently applies MCA on every obtained
cluster. This pipeline essentially returns a hierarchical view
on TFBS complexity, where the first layer represents inter-
motif and the second layer intra-motif complexity.

Benchmark studies with TFBS data sets from JAS-
PAR and further validation with data from SwissRegulon
demonstrate that IMD is capable of distinguishing these
data sets from artificially constructed intermixtures with
high accuracy. This may appear surprising at first glance,
as it implies that intra-motif heterogeneities are generally
weaker than inter-motif heterogeneities. One may speculate
that this is not a mere coincidence, but a rather biophysical
necessity for retaining a sufficiently high specificity of TF
binding.

Although Disentangler as a whole is not a traditional mo-
tif discovery tool, IMD does operate de novo in the sense
that it does not require lookup in databases for literature
motifs or entirely different types of experimental data to
decide upon intermixture. As a consequence, IMD can not
only detect binding sites from different TFs, but also atypi-
cal intermixtures of various types.

One noteworthy type comprises binding sites that were
massively amplified as part of transposable elements. While
such sites can remain functional (50), it is not obvious
whether they should be used for learning a motif model.
This decision may depend on the notion of sequence mo-
tif, for which at least two interpretations are possible. It can
be viewed as a distribution over the occurrence frequency
of its functional binding sites in the genome. From such a
perspective, often implicitly taken by motif discovery algo-
rithms, it is correct to include these k-mers with the given
frequency. But a sequence motif can also be viewed to repre-
sent the binding affinity of the TF of interest, an interpreta-
tion closer to what is measured by in vitro experiments (62).
Since occurrence frequency does not necessarily correlate
with binding affinity, downweighting or entirely excluding
such k-mers appears to be correct.

MCA quantifies the performance of a motif model by
computing an intra-motif complexity measure based on
aligned TFBS. While the performance of different models
is partially data set specific, a few general conclusions can
be drawn. Mixtures of PWMs are insufficient to represent

TFBS complexity in the general case, but also proximal de-
pendency is not sufficient, as it cannot take into account
correlations among distant nucleotides by definition.

The best representation is given by distal dependency
models, but not without cost. Finding a globally optimal
model structure beyond order one is time consuming, so
higher order distal dependency is hard to learn within an it-
erative motif discovery algorithm. In addition, visualization
of the learned model is more complicated than in the case of
a PWM–mixture with only a handful of components. Pro-
vided a direct visualization of the learned model is of impor-
tance, it boils down to a trade-off between higher statistical
efficiency and easier human perception. While MCA allows
to quantify the former, the latter is an intrinsically subjec-
tive matter.

Disentangler can be used to refine predictions from com-
plex motif discovery algorithms that either learn dependen-
cies among nucleotides or learn multiple PWMs. However,
processing output of the former is technically simpler as it
requires only a single run of the pipeline. For the latter, can-
didate PWMs and the corresponding sets of binding sites
must be manually selected and aligned before IMD can be
applied. If a fully automatic approach is desired, all possi-
ble pairs of PWMs, and for each of them all combinations
of shifts and strand orientation need to be tested. From
this perspective, it is thus less cumbersome to perform ini-
tial motif discovery with a dependency model rather than
searching for many PWMs.

The performance of motif models has often been as-
sessed by their capability of in vivo prediction of TF bind-
ing (16,23), but this evaluation method may be flawed. This
is admittedly a philosophical question and related to the
precise definition of the term ‘transcription factor bind-
ing site’. Often it refers to the k-mer that matches the se-
quence motif and that is found at the exact location of di-
rect protein–DNA interaction. However, sometimes it can
also refer to approximate binding location up to a certain
resolution (63), a notion more in line with a wet-lab experi-
ment. When performing motif discovery on ChIP-seq data,
we essentially learn a model that is meant to contain in-
formation about the former but use data that is based on
the latter. While that alone is not critical yet, a disturbing
problem arises from the use of an evaluation method that is
also based on the second notion. Since both are influenced
by the intermixture problem, errors during learning are not
punished but rather rewarded by the evaluation method.

As a consequence, the prevalence intra-motif complexity
has––at least to some degree––been overestimated in pre-
vious studies and should be reassessed. Devising a better
evaluation method for motif models that avoids aforemen-
tioned problem is certainly a challenging topic for future
research. In the meantime, Disentangler can be used to in-
spect motif discovery output before the performance of the
learned model is assessed. Another obvious alternative is
to augment existing motif discovery algorithms with an in-
ternal intermixture detection step that is called at certain
iteration steps during the search. It hardly constitutes addi-
tional computational burden, since IMD is a fast procedure
that requires only seconds to minutes rather than hours in
the typical case.
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DATA AVAILABILITY

Disentangler is implemented in Java using the open source
library Jstacs (64). Supplementary Section S5 contains a
brief description of features and user interfaces. Runnable
.jar-files, source code, and further documentation are avail-
able from http://www.jstacs.de/index.php/Disentangler.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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parcimonieux: sélection de modele et estimation. In Proceedings of
Journées Ouvertes Biologie Informatique Mathématique (JOBIM).
Montreal.

35. Eggeling,R. and Koivisto,M. (2016) Pruning rules for learning
parsimonious context trees. In: Ihler,A and Janzing,D (eds).
Proceedings of the 32nd Conference on Uncertainty in Artificial
Intelligence (UAI). AUAI Press, Corvallis, pp. 152–161.

36. Heckerman,G., Geiger,D. and Chickering,D. (1995) Learning
Bayesian networks: The combination of knowledge and statistical
data. Mach. Learn., 20, 197–243.

http://www.jstacs.de/index.php/Disentangler
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gky683#supplementary-data


e121 Nucleic Acids Research, 2018, Vol. 46, No. 20 PAGE 12 OF 12

37. Rissanen,J. (1983) A universal data compression system. IEEE Trans.
Inform. Theory, 29, 656–664.

38. Edmonds,J. (1967) Optimum branchings. J. Res. Nat. Bur. Stand.,
71B, 233–240.
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