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Abstract
Mucins are heavily glycosylated proteins that play critical roles in the pathogenesis of tumour malignancies. Pancreatic
ductal adenocarcinoma (PDAC) is characterised by the aberrant expression of mucins. However, the role of mucin (MUC)
20 in PDAC remains unclear. PDAC is usually surrounded by a dense fibrotic stroma consisting of an extracellular matrix
and pancreatic stellate cells (PSCs). The stroma creates a nutrient-deprived, hypoxic, and acidic microenvironment, and
promotes the malignant behaviours of PDAC cells. In this study, immunohistochemical staining demonstrated that high
MUC20 expression correlated with poor progression-free survival and high local recurrence rate of PDAC patients (n= 61).
The expression of MUC20 was induced by serum deprivation, hypoxia, and acidic pH in PDAC cells. MUC20 knockdown
with siRNA decreased cell viability, as well as migration and invasion induced by PSCs in HPAC and HPAF-II cells. In
intraperitoneal, subcutaneous, and orthotopic injection models, MUC20 knockdown decreased tumour growth in
immunodeficient mice. Phospho-RTK array and western blot analysis indicated that MUC20 knockdown decreased
HGF-mediated phosphorylation of MET in PDAC cells. Moreover, HGF-induced malignant phenotypes could be
suppressed by MUC20 knockdown. Co-immunoprecipitation revealed the physical association of MUC20 and MET. These
findings suggest that MUC20 knockdown suppresses the malignant phenotypes of PDAC cells at least partially through the
inhibition of the HGF/MET pathway and that MUC20 could act as a potential therapeutic target.

Introduction

Pancreatic cancer is the ninth most common cancer in the
western world, with a high mortality rate that ranks it as the

fourth leading cause of cancer-related death [1]. Most cases
of pancreatic cancer (>95%) are pancreatic ductal adeno-
carcinoma (PDAC) [2]. Since PDAC is usually resistant to
chemotherapy and radiotherapy, the only potentially curative
treatment for PDAC is surgical resection. However, <20% of
patients are eligible for surgery, because most cases are at an
advanced stage at the time of diagnosis [3]. Even though
patients are eligible for surgery, 70–85% will experience
disease recurrence after surgery. The consequence is an
overall 5-year survival rate of PDAC patients that has
remained <7% for 30 years [4, 5]. This disappointing sur-
vival rate highlights the urgency of understanding the
molecular mechanisms of pancreatic cancer progression.

With the advance of knowledge and technique, cancer
treatments have improved and better curative outcomes
have been realised for many types of cancers, including
melanoma, lung, and colorectal cancer [6]. Unfortunately,
the same success has not been realised for PDAC. Several
lines of evidence have provided insights into the influences
of the microenvironment on the chemoresistance and
radioresistance of cancer cells [7]. PDAC bulks are usually
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surrounded by thick fibrotic stroma, also called desmopla-
sia, which comprises up to 80% of the tumour mass [8]. The
thick stroma plays a critical role in protecting PDAC cells
from recent therapies and creates a nutrient-deprived,
hypoxic, and acidic microenvironment. In addition, it is
increasingly understood that the desmoplastic portion plays
an active role in carcinogenesis, progression, metastasis,
and immunosuppression [9]. The cellular portion of the
desmoplastic stroma is considered to originate from pan-
creatic stellate cells (PSCs) normally located in the peri-
acinar space. PSCs can be stimulated by alcohol, cytokines,
and growth factors [10]. However, clearing desmoplastic
stroma and PSCs leads to more aggressive cancers in animal
models [11, 12]. Further knowledge of tumour-stromal
interactions will help to develop novel therapeutic approa-
ches and lead to new treatment strategies for PDAC
patients, rather than the pure depletion approach.

Mucins are heavily glycosylated proteins. PDAC is
characterized by the aberrant expression of both trans-
membrane and secretory mucins. The abnormal expressions
of MUC4, MUC5AC, MUC5B, MUC13, MUC15,
MUC16, and MUC17 are associated with disease progres-
sion in the pancreatic malignant precursor, pancreatic
intraepithelial neoplasia (PanIN), and subsequent metastasis
[13–18]. MUC1, MUC4, MUC5AC, and MUC16 have
been associated with the progression, poor prognosis, and
chemo-resistance of human pancreatic cancer. Moreover,
mucins have been explored as candidates for cancer vac-
cines [19, 20] and therapeutic targets [21, 22]. MUC1-based
therapies are now in clinical trial [23]. Although MUC20
has been reported to play important roles in endometrial and
ovarian cancers [24, 25] and modulate the MET signalling
cascade in IgA nephropathy [26, 27], the function and
expression of MUC20 in PDAC remain unclear.

Results

MUC20 is overexpressed in PDAC and MUC20 high
expression correlates with poor survival and high
local recurrence rate

Scrutiny of the Oncomine database determined that both the
Pei Pancreas and Badea Pancreas feature higher MUC20
mRNA expression in pancreatic carcinoma tissue compared
with normal pancreas tissue (P < 0.01, Fig. 1a). In addition,
TCGA RNA-seq data revealed that high MUC20 mRNA
expression correlated with poor survival (P= 0.0284, Fig.
1b). Immunohistochemistry (IHC) revealed the weak
expression of MUC20 in pancreatic ductal cells in non-
tumour regions. In contrast, MUC20 was expressed on the
apical surface and cytoplasm of adenocarcinoma cells
(Supplementary Fig. S1). The IHC of tissue microarray

confirmed that MUC20 was overexpressed in pancreatic
tumours compared with the adjacent non-tumour tissue
(P < 0.05, Fig. 1c–e). Next, we analysed MUC20 expres-
sion using IHC in PDAC and correlated the expression with
clinicopathologic characteristics and the prognosis of
patients. The IHC score of MUC20 was the product of the
staining intensity (0–3) (Fig. 1f) multiplied by positive area
(1–3). Chi-square statistics showed that high MUC20
expression correlated with high local recurrence rate
(Table 1). Moreover, Kaplan–Meier survival curves indi-
cated that MUC20 high expression (scores 6–9) correlated
with poor progression-free survival (P= 0.0217, Fig. 1g).
Taken together, the data indicate that MUC20 is over-
expressed in PDAC at mRNA and protein levels compared
with normal pancreas, and that the higher expression of
MUC20 is associated with poorer prognosis.

MUC20 knockdown inhibits 10% foetal bovine
serum (FBS)-induced pancreatic cancer cell viability,
but not induced migration and invasion

Real-time RT-PCR (Fig. 2a) and western blot analysis (Fig.
2b) revealed variations in the expression levels of MUC20 in
the seven PDAC cell lines. MUC20 was knocked down in
HPAC and HPAF-II cells, which express higher MUC20,
using two independent small interfering (si)RNAs (Fig. 2c).
To assess the effects of MUC20 on PDAC cells, 10% FBS-
induced viability, migration, and invasion of PDAC cells
were analysed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT), Transwell migration, and
Matrigel invasion assays, respectively. MUC20 knockdown
significantly suppressed viability in both HPAC and HPAF-II
cells (Fig. 2d). However, no significant changes in migration
and invasion were observed (Fig. 2e). These results suggest
that MUC20 knockdown inhibits 10% FBS-induced viability,
but not migration and invasion, in PDAC cells.

MUC20 knockdown suppresses PDAC tumour
growth in immunodeficient mice

To investigate the effect of MUC20 on PDAC tumour
growth, HPAC and HPAF-II cells were xenografted in
immunodeficient mice. The stable knockdown of MUC20
with short hairpin (sh)RNA in HPAC and HPAF-II cells
was confirmed by western blotting, and viability was ana-
lysed using the MTT assay (Fig. 3a). After four weeks of
intraperitoneal injection, tumours were present in the
abdominal cavity. MUC20 knockdown tumours were
smaller and weighed less than control tumours for both
HPAC (P= 0.0244) and HPAF-II cells (P= 0.0233) (Fig.
3b). In the subcutaneous injection model, MUC20 knock-
down decreased the sizes and weights of HPAF-II tumour
cells compared with the control group in NOD/SCID mice
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(P= 0.0082, Fig. 3c). Moreover, MUC20 knockdown
decreased tumour formation after four weeks of orthotopic
injection with HPAF-II cells in NOD/SCID mice. Immu-
nohistochemistry confirmed that the higher MUC20

expression was observed in excised control tumour than that
in MUC20 knockdown tumour (P= 0.00178, Fig. 3d).
These findings suggest that MUC20 knockdown inhibits
PDAC tumour growth in immunodeficient mice.
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MUC20 is up-regulated in the serum-deprived,
hypoxic, and acidic microenvironment

Since the microenvironment plays a critical role in PDAC
progression, we examined whether MUC20 expression
could be modulated by microenvironmental factors includ-
ing serum-deprivation, hypoxia, and acidic pH. PDAC cells
were treated with these factors for 24 h and then MUC20
expression was analysed by western blotting. MUC20 was
upregulated by serum-deprivation (Fig. 4a), hypoxia (Fig.
4b), and acidic pH (Fig. 4c) in CFPAC-1, Capan-2, HPAC,
and HPAF-II cells. A low concentration (1%) of FBS was
sufficient to induce MUC20 expression (Supplementary
Fig. S2). Interestingly, the mRNA level of MUC20 was
upregulated by serum deprivation in HPAC and HPAF-II
cells (Supplementary Fig. S3A). Serum deprivation
increased the activity of phospho-c-Jun N-terminal kinase
(p-JNK), but not p-p38 (Supplementary Fig. S3B). Inhibi-
tion of p-JNK activity using SP600125 could suppress
MUC20 expression induced by serum deprivation (Sup-
plementary Fig. S3C), suggesting that the p-JNK signalling
pathway is involved in the MUC20 induction by serum
deprivation. These results suggest that MUC20 expression
can be induced by tumour microenvironmental factors in
PDAC cells, which include CFPAC-1, Capan-2, HPAC,
and HPAF-II cell lines.

MUC20 knockdown inhibits migration and invasion
of PDAC cells co-cultured with PSCs

PDAC is characterized by its dense surrounding connective
tissue resulting in the stromal barrier. This dense stromal
barrier may be one of the possible leading causes of the

nutrient-deprived, hypoxic, and acidic microenvironment in
PDAC. Given that PSCs are the main cellular source of the
dense stroma of PDAC, we were interested in the commu-
nication between PSCs and PDAC cells. We co-cultured
PDAC cells with PSCs in Dulbecco’s modified Eagle’s
medium (DMEM)-F12 containing 1% FBS and then per-
formed Transwell migration and Matrigel invasion assays.
MUC20 knockdown significantly decreased migration and
invasion induced by PSC co-culture in both HPAC and
HPAF-II cells (Fig. 5a). Next, we cultured PSCs in DMEM-
F12 containing 1% FBS for 24 h and then collected the
conditioned medium to trigger PDAC cell migration and
invasion. MUC20 knockdown significantly suppressed
migration and invasion induced by the PSC-conditioned
medium in both HPAC and HPAF-II cells (Fig. 5b).

Table 1 Association between MUC20 expression with clinicopathologic
characteristics of PDAC

Characteristics MUC20
expression (na)

P valueb

Low High

Age (years) 0.548

≤60 7 9

>60 15 30

Gender 0.173

Male 17 23

Female 5 16

Differentiated grades 0.342

Better 19 29

Poor 3 10

Lymph node metastasis 0.416

No 11 14

Yes 11 25

Distant metastasis 0.588

No 9 13

Yes 13 26

AJCC stages 0.251

Early stagec 10 12

Late stage 12 27

Local recurrence 0.026*

No 9 6

Yes 13 33

Adjuvant therapy 0.426

No 14 20

Yes 8 19

anumber of case
bChi-square test
cearly stage indicates AJCC stage IB and IIA; late stage indicates
ATCC stage IIB, III, and IV
*P < 0.05

Fig. 1 MUC20 is overexpressed in PDAC and MUC20 high expres-
sion correlates with poor survival. a MUC20 mRNA levels in Badea
Pancreas and Pei Pancreas from the Oncomine database. b Correlation
between MUC20 mRNA expression level and pancreatic cancer
patient survival generated by the Cancer Genome Atlas (TCGA).
MUC20 low (FPKM ≤ 6) and high (FPKM > 6) expression group
contained 54 and 122 patient samples, respectively. c Representative
images showing MUC20 overexpression in pancreatic tumour tissues
compared with the adjacent non-tumour tissue by immunohis-
tochemistry (IHC) of tissue microarray (US Biomax, Inc). Scale bar
indicates 50 μm. d Scatter plot graph represents the MUC20 expres-
sion score in non-tumour and tumour portions of the pancreas. MUC20
expression was scored by multiplication of intensity (0–3) and positive
area (1–3). Data are presented as mean (n= 27) ± SEM. P-value was
the result of the paired t-test. *P < 0.05. e Statistics of MUC20
expression in paired PDAC tissue microarray. Abbreviations are:
N adjacent non-tumour, T tumour. f Representative images showing
the intensity of MUC20 expression in PDAC tumours. Scale bar
indicates 100 μm. g Kaplan–Meier plots of progression-free survival
(left) and overall survival (right). Log-rank test, P= 0.0217 and
0.0541, respectively. MUC20 low and high expression were scored
0–5 (n= 18) and scored 6–9 (n= 43), respectively
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However, MUC20 knockdown did not significantly affect
1% FBS-triggered migration and invasion without PSCs
(Supplementary Fig. S4). These results suggest that MUC20
knockdown inhibits migration and invasion of PDAC cells
during PSC co-culture or in PSC-conditioned medium.

MUC20 enhances hepatocyte growth factor (HGF)/
MET signalling in PDAC cells

Since mucins have been reported to regulate cellular phe-
notypes through various receptor tyrosine kinases (RTKs),
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we first analysed the effects of MUC20 on RTK signalling
pathways. Results from a human phospho-RTK array
showed that MUC20 knockdown decreased phospho-MET
levels in HPAF-II cells induced by the PSC-conditioned
medium (Fig. 6a). Interestingly, increased mRNA levels of
HGF, a ligand of MET, were also observed in PSCs treated
with 1% FBS for 24 h (Supplementary Fig. S5). Next, we
investigated AKT, extracellular signal-regulated kinase
(ERK), and nuclear factor-kappa B (NF-kB) activities,
which have been reported to be important in downstream
signalling pathways of MET [28, 29]. Western blotting
results showed that MUC20 knockdown inhibited HGF-
triggered phosphorylation of MET and AKT in HPAC and
HPAF-II cells (Fig. 6b, Supplementary Fig. S6A). How-
ever, ERK and NF-kB activities were not affected by
MUC20 knockdown (Supplementary Fig. S6B). By con-
trast, overexpression of MUC20 increased HGF-triggered

phosphorylation of MET and AKT in HPAF-II cells (Sup-
plementary Fig. S7A). In addition, we investigated the
effect of MUC20 on PDAC cellular phenotypes triggered
by HGF in vitro. The Transwell migration assay and
Matrigel invasion assay revealed that MUC20 knockdown
decreased HGF-induced cell migration and invasion (Fig.
6c), whereas overexpression of MUC20 enhanced HGF-
induced cell migration (Supplementary Fig. S7B). To
investigate the role of the MET signalling pathway in
MUC20-mediated cell viability, we treated PDAC cells
with the MET inhibitor PHA665757 or HGF. MTT assays
showed that MUC20-mediated cell viability was sig-
nificantly inhibited by PHA665757, but was enhanced by
HGF (Fig. 6d). Furthermore, we analysed the role of AKT
in phenotypic changes mediated by MUC20. AKT over-
expression increased the HGF-triggered viability, migration,
and invasion in MUC20 knockdown cells in the MTT,
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Transwell migration and Matrigel invasion assays, respec-
tively (Supplementary Fig. S8). Taken together, these
results suggest that MUC20 enhances the HGF/MET sig-
nalling pathway in PDAC cells.

Physical interactions of MUC20 and MET occur in
PDAC cells

To analyse the interaction of MUC20 with MET, we per-
formed a co-immunoprecipitation assay. MUC20 physically
interacted with MET, and MUC20 knockdown decreased
the association of MET with MUC20 in HPAC and HPAF-
II cells (Fig. 7a). By contrast, overexpression of MUC20
increased their association in HPAF-II cells. It has been
reported that the C terminal 53-amino acid region of
MUC20 could be the binding domain of MET [26]. To
examine whether MUC20 interacted with MET through this
domain in pancreatic cancer cells, we constructed the same
truncated MUC20. Interestingly, the results of the co-
immunoprecipitation assay indicated that both wild-type
and truncated MUC20 interacted with MET in HPAC and
HPAF-II cells (Fig. 7b). In addition, western blotting results

showed that the truncated MUC20 further enhanced MET
phosphorylation compared with the wild-type MUC20 (Fig.
7c). These results suggest that MUC20 physically interacts
with MET in PDAC cells and the binding is independent of
its C-terminal 53-amino acid domain.

Discussion

The most commonly used tumour marker, carbohydrate
antigen 19-9 (CA 19-9), is not very accurate in PDAC
detection [30, 31]. In addition, <20% of patients survive
longer than 5 years after receiving surgical resection, which
is the only curative treatment in PDAC [3]. Given these
terrible circumstances in PDAC, a suitable biomarker and
treatment are urgently needed. MUC1 is the most investi-
gated mucin in PDAC, and many approaches, including
vaccines, drugs, and antibodies, are being developed to
target MUC1. However, agents that target MUC1 in these
approaches fail to reach the surface of the cancer cells
because of the abundant expression of MUC1 in circulation
and normal tissues [32]. Compared to MUC1, public

A

10 0

MUC20

-actin

FBS (%) 10 0 10 0 10 0

M
U

C
20

 le
ve

ls
 

(fo
ld

 c
ha

ng
e)

0.0

2.0

4.0

6.0

10 0
0.0

0.5

1.0

1.5

10 0
0.0

1.0

2.0

3.0

10 0
0.0

0.5

1.0

1.5

10 0 FBS (%)

HPAF-CFPAC-1 Capan-2 HPAC
** ** ** **

B

21 1  

MUC20

-actin

21 1 21 1 21 1O2 (%)

C

MUC20

-actin

pH 7.4 6.5 7.4 6.5 7.4 6.5 7.4 6.5

100

40

kDa

O2 (%)

HPAF-CFPAC-1 Capan-2 HPAC
** **

* *

M
U

C
20

 le
ve

ls
 

(fo
ld

 c
ha

ng
e)

0.0

1.0

2.0

3.0

21 1
0.0
5.0

10.0
15.0
20.0

21 1
0.0

2.0

4.0

6.0

21 1
0.0
0.5
1.0
1.5
2.0

21 1

0.0

0.5

1.0

1.5

7.4 6.5
0.0
1.0
2.0
3.0
4.0
5.0

7.4 6.5
0.0
0.5
1.0
1.5
2.0
2.5

7.4 6.5
0.0
0.5
1.0
1.5
2.0

7.4 6.5 pH

HPAF-CFPAC-1 Capan-2 HPAC
**

*** *

M
U

C
20

 le
ve

ls
 

(fo
ld

 c
ha

ng
e)

100

40

kDa

100

40

kDa

Fig. 4 MUC20 is up-regulated in serum-deprived, hypoxic, and acidic
microenvironment. a MUC20 was induced by serum deprivation (0%
FBS). bMUC20 was induced by hypoxia (1% oxygen). cMUC20 was
induced by acidic condition (pH 6.5). PDAC cells were treated with

these different microenvironmental factors for 24 h. The expression of
MUC20 was analysed by western blotting. β-actin was used as an
internal control. Statistical results for MUC20 signals are shown. Data
are presented as mean (n= 3) ± SD. *P < 0.05; **P < 0.01
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Fig. 5 MUC20 knockdown inhibits migration and invasion of PDAC
cells co-cultured with PSCs. a MUC20 knockdown inhibited migra-
tion and invasion induced by pancreatic stellate cells (PSCs) in HPAC
(upper) and HPAF-II (lower) cells. b MUC20 knockdown inhibited
migration and invasion induced by PSC-conditioned medium. Cell

migration and invasion were analysed by Transwell migration and
Matrigel invasion assay, respectively. The left panel shows repre-
sentative images of migrated and invaded cells. The right panel shows
statistics of cell migration and invasion. Scale bars indicate 1 mm.
Data are presented as mean (n= 3) ± SD. *P < 0.05; **P < 0.01
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databases show that MUC20 expression in human tissues is
lower and is more tissue-specific. In addition, this study
proves that MUC20 expression is upregulated in PDAC
tissues compared with that in non-tumour pancreas tissues,
and that the high expression of MUC20 correlates with poor
survival. These results implicate MUC20 as a potential
marker to distinguish benign from malignant pancreatic
tissue. Furthermore, MUC20 knockdown inhibits tumour
cell growth both in vitro and in vivo. This study is the first
to suggest that MUC20 plays a critical role in PDAC
pathogenesis and could be a potential target for biomarker
and drug development.

PDAC is usually surrounded by a dense fibrotic stroma
consisting of extracellular matrix proteins and PSCs. The
stroma is thought to influence carcinogenesis, progression,
and metastasis [7, 8]. In this study, MUC20 knockdown
decreased migration and invasion of PDAC cells induced by

PSCs and PSC-conditioned medium. These findings suggest
that MUC20 enhances PDAC malignant behaviours by
modulating factors secreted by PSCs. HGF/MET signalling
has been repeatedly reported to be a critical pathway for
communication between stroma and cancer cells. PDAC-
derived PSCs enhance proliferation, migration, and invasion
of PDAC cells by secreting HGF [33–36]. In this study,
MUC20 knockdown inhibited the phospho-MET activity
triggered by PSC-conditioned medium and recombinant
HGF in PDAC cells. Additionally, MUC20-increased cell
viability was inhibited by a MET inhibitor, but was
increased by HGF. These data support the view that MUC20
can enhance the malignant behaviours at least partly through
the HGF/MET signalling pathway in PDAC cells.

It is worth noting that the HGF secretion of PSCs can be
induced by microenvironmental factors including hypoxia
[37, 38] and serum deprivation (Supplementary Fig. S5).
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Interestingly, we observed that MUC20 expression was also
upregulated by PDAC microenvironments, such as nutrient-
deprivation, hypoxia, and acidic pH. These findings suggest
that tumour microenvironmental factors could induce both
HGF and MUC20 expression and, in turn, enhance the
MUC20/HGF/MET signalling pathway to promote PDAC
progression. However, since MUC20 expression can be
upregulated by serum deprivation, it is important to know
the status of MUC20 levels in control and MUC20
knockdown cells under serum deprivation. We showed that
the MUC20 expression was elevated in both the control and
MUC20 knockdown cells under the condition of serum
deprivation (Supplementary Fig. S9). The difference in the
level of MUC20 expression between these two cells still
existed. Therefore, the effects of MUC20 on phenotypes
could be assessed although MUC20 expression was induced
under serum deprivation conditions.

This study indicates that MUC20 enhances the HGF-
induced phosphorylation of MET and AKT in PDAC cells.
By contrast, Toshio Higuchi et al. found that
MUC20 suppresses HGF-induced Grb2/p-ERK, but not p-
MET/p-AKT activity, in primary normal renal cells [26].
They further demonstrated that the major binding region of
MUC20 with MET is primarily located at the C-terminal 53-
amino acid domain. Unexpectedly, we found that the trun-
cated MUC20 still interacted with MET in PDAC cells
without a loss of binding activity. This discrepancy could

have resulted from the differences between normal and can-
cer cells or different cell types. To well understand the MET
signalling pathways modulated by MUC20, identification of
the binding site between MUC20 and MET is required.

In conclusion, MUC20 is frequently up-regulated in
PDAC tumours compared with non-tumour pancreas tissue,
and MUC20 high expression correlates with poor prognosis
of patients. MUC20 knockdown decreases PDAC tumour
growth in immunodeficient mouse models. Furthermore,
PSC-mediated malignant phenotypes are inhibited by
MUC20 knockdown in PDAC cells through the HGF/MET
signalling pathway. Our results suggest that MUC20 phy-
sically interacts with MET and enhances HGF-mediated
phosphorylation of MET and AKT, thereby promoting
malignant phenotypes of PDAC cells (Fig. 7d). These
findings demonstrate that MUC20 is a novel regulator of
PDAC malignant behaviours triggered by HGF or PSCs and
implicate MUC20 as a potential diagnostic marker and
therapeutic target.

Materials and methods

Immunohistochemistry

Pancreatic adenocarcinoma tissue microarray with mat-
ched cancer adjacent tissues (Biomax PA811) was
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purchased from US Biomax, Inc. (Rockville, MD, USA)
for immunohistochemical staining. Tissue slides of 61
PDAC patients with different histological grades and
stages were obtained from National Taiwan University
Hospital with IRB approval (201411085RINB). Poly-
clonal anti-MUC20 antibody made by our laboratory [24]
was used to recognize MUC20 protein and the signal was
detected by UltraVision Quanto Detection System
(Thermo Scientific, Cheshire, UK). MUC20 expression
was scored by multiplication of intensity (0–3) and posi-
tive area (1–3). Intensities were scored as 0 (negative), 1
(faint), 2 (moderate), and 3 (strong). Positive areas were
scored as 1 (<33%), 2 (33–66%), and 3 (>66%). MUC20
low and high expression were scored 0–5 and 6–9,
respectively.

Cell lines and cell culture

Human pancreatic cancer cell lines, CFPAC-1, MIA PaCa-
2, PANC-1, Capan-2, HPAC, and HPAF-II, and pancreatic
stellate cell line, PSC, were kindly provided by Dr. WH Lee
(Genomics Research Center, Academia Sinica, Taiwan). All
cell lines had been further confirmed by DNA typing. All
cell lines were cultured in medium containing 10% FBS
(Gibco, Gaithersburg, MD, USA), 100 IU/mL penicillin,
and 100 μg/mL streptomycin (Gibco) in a humidified tissue
culture incubator at 37 °C and 5% CO2 atmosphere. Dul-
becco’s modified Eagle’s medium (DMEM; Invitrogen,
Grand Island, NY, USA) was used for MIA PaCa-2 and
PANC-1 cells. DMEM-F12 GlutaMAXTM (Invitrogen) was
used for CFPAC-1, Capan-2, HPAC, HPAF-II, and PSC
cells.

cDNA synthesis and real-time RT-PCR

Total RNA was isolated using TRIzol reagent (Invitrogen)
according to the manufacturer’s protocol. For cDNA
synthesis, 2 µg of total RNA was used in a 20 µl reverse
transcription reaction using the High-Capacity cDNA
Reverse Transcription Kits (Applied Biosystems, Foster
City, CA, USA). The cDNA was subjected to real-time
PCR using QuantStudio 3 Real-Time PCR System (Thermo
Fisher Scientific, Waltham, MA, USA). The real-time PCR
reactions were performed in 20-µl volume containing 1 µl
cDNA, 10 µl SensiFAST SYBR Lo-ROX Mix (Bioline,
London, UK) and primer pairs. The following primer pairs
were used: β-actin sense, 5′-CGTGCGTGACATTAAGGA
GA-3′ and anti-sense, 5′-GAAGGAAGGCTGGAAGAGT
G-3′; MUC20 sense, 5′-AACTCCACGCCCACGCGCCT-3′
and anti-sense, 5′-GGAAGCACACAGATGGGTG-3′; HGF
sense, 5′-ATGATGTCCACGGAAGAGGAGA-3′ and anti-
sense, 5′-CACTCGTAATAGGCCATCATAGTTGA -3′.

Transfection and plasmid construction

For transient MUC20 knockdown, two independent siRNAs
and non-targeting siRNA (Dharmacon, ThermoFisher Scien-
tific, MA, USA) were used to transfect PDAC cells by
Lipofectamine RNAiMAX (Invitrogen) with a final con-
centration of 10 nM for 3 days. For stable MUC20 knock-
down and its control cells, sh-MUC20/pLKO.1 plasmid and
pLKO.1 vector (RNAi Core, Academia Sinica, Taiwan) were
used in lentivirus-based infection system, respectively, and
selected with 2 μg/ml puromycin (Sigma. St. Louis, MO,
USA). MUC20 overexpression and its mock control cells
were established by transfection of MUC20/pcDNA3.1 A
plasmid or pcDNA3.1 A vector, respectively, using Lipo-
fectamine 3000 (Invitrogen) according to the manufacturer’s
protocol. Human wild-type MUC20 (NCBI Accession No.
NM_001282506.1) and truncated MUC20 were cloned using
PCR kit (Invitrogen). The sense primer was 5′-AAGCTT
ATGGGCTGTCTCTGGGGTCT-3′. Antisense primer for
wild-type MUC20 was 5′-GGATCCTTAGCCTCTCCTGAC
ACGCA-3′. Antisense primer for truncated MUC20 was 5′-
GGATCCTTATGCACTCACGTCTGTGGTC-3′. The PCR
products were cloned into pcDNA3.1/myc-His (Invitrogen) to
generate the MUC20/pcDNA3.1A plasmid. The MUC20 was
confirmed by DNA sequencing. AKT/PCIS2 plasmid and its
control vector, PCIS2, were gifts from Dr. Michael J. Quon
(University of Maryland School of Medicine, Division of
Endocrinology, USA).

Antibodies and reagents

MUC20 antibody was prepared as described in our previous
study [24]. Antibody against β-actin (A5441) was obtained
from Sigma. Antibodies against MET (GTX100637),
AKT (GTX121937), NFκB (GTX102090), and p-NFκB
(GTX50098) were purchased from GeneTex Inc. (Irvine, CA,
USA). Antibodies for immunoprecipitation of MET (#8198)
and for MET pY1234/5 (#3077), p-AKT (#4060), ERK
(#9102), and p-ERK (#9101) were purchased from Cell
Signaling Technology, Inc. (Danvers, MA, USA). Recombi-
nant HGF was purchased from Sigma. PHA665752, MET
inhibitor, was purchased from Tocris Bioscience (Bristol,
UK). SP600125, JNK inhibitor, was purchased from Sell-
eckchem (Houston, TX, USA).

MTT assay

Pancreatic cancer cells (1.5 × 103) in 100 μl complete
DMEM-F12 were seeded in 96-well plates for 16 h. Ten
microliters of 5 mg/ml 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazolium bromide solution (MTT; Sigma)
was added to each well for the indicated times and
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incubated at 37 oC for 3 h, and the MTT formazan crystals
were dissolved with 100 μl 10% SDS containing 0.01 N
HCl. The resultant optical density was measured spec-
trophotometrically at dual wavelengths, 550 and 630 nm.

Transwell migration and Matrigel invasion assays

Cell migration and invasion assays were evaluated with
empty Transwell (Corning, NY, USA) or Matrigrl-coated
(BD Biosciences, San Jose, CA, USA) Transwell chamber,
respectively. Each Transwell chamber contains an 8-μm pore
size membrane. Pancreatic cancer cells (5 × 104) in 0.25 ml
serum-free DMEM-F12 were seeded into the Transwell or
Matrigel-coated Transwell chamber and then the chambers
were put into 24-well plates loaded with 0.5 ml of 10% FBS,
1% FBS, 25 ng/ml HGF, PSCs or PSC-conditioned medium,
respectively. After 48 h of incubation, cells were fixed and
stained with 0.5% (w/v) crystal violet (Sigma) containing
20% (v/v) methanol. The number of migrated cells from 5
random fields was counted under the microscope.

In vivo xenograft tumour growth model

For tumour growth analysis, stable transfectants were xeno-
grafted in 8 w/o female immunodeficient mice (National
Laboratory Animal Center, Taiwan). 5 × 106 of cells in 0.5 ml
serum-free DMEM-F12 were intraperitoneally injected into
each nude mouse. 5 × 106 of cells in 100 µl serum-free
DMEM-F12 containing 50%Matrigel (BD Biosciences) were
subcutaneously injected into each NOD/SCID mouse. 106 of
cells in 50 µl serum-free DMEM-F12 were orthotopically
injected into each NOD/SCID mouse. Animals were sacri-
ficed after 30 days of tumour cell injection. All animal
interventions were reviewed and approved by the Institutional
Animal Care and Use Committee IACUC of College of
Medicine, National Taiwan University.

Phospho-receptor tyrosine kinase array assay

Human phospho-receptor tyrosine kinase (p-RTK) array kit
including 49 RTKs was purchased from R&D systems
(Minneapolis, MN, USA). HPAF-II cells were serum
starved for 24 h and then stimulated with PSC-conditioned
medium for 8 min. Cells were lysed and 500 μg of protein
were subjected to western blotting according to the manu-
facturer’s protocol.

Immunoprecipitation

For immunoprecipitation, 1000 μg of whole cell lysates
were prepared and incubated with specific antibody for 16 h
at 4 °C. After that, the reaction products were applied to
Protein G agarose beads (GE Healthcare, Munich,

Germany) at 4 °C for 3 h. Precipitated proteins were then
analysed by western blotting.

Statistical analysis

Statistics were performed using Prism 5 and SPSS
22.0 statistical software. Survival curves were plotted by
Kaplan–Meier. The correlations between MUC20 expres-
sion and clinicopathologic characteristics were tested using
Chi-square test. Student t-test was used to compare differ-
ences between two experimental groups. Data are presented
as means (n= 3) ± SD and P < 0.05 was considered statis-
tically significant.
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