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Liver-specific Repin1 deficiency 
impairs transient hepatic steatosis 
in liver regeneration
Kerstin Abshagen1, Bastian Degenhardt1, Marie Liebig1, Anna Wendt1, Berit Genz1,2, 
Ute Schaeper3, Michael Stumvoll4, Ute Hofmann5, Marcus Frank   6, Brigitte Vollmar1 & 
Nora Klöting7

Transient hepatic steatosis upon liver resection supposes functional relationships between lipid 
metabolism and liver regeneration. Repin1 has been suggested as candidate gene for obesity and 
dyslipidemia by regulating key genes of lipid metabolism and lipid storage. Herein, we characterized 
the regenerative potential of mice with a hepatic deletion of Repin1 (LRep1−/−) after partial 
hepatectomy (PH) in order to determine the functional significance of Repin1 in liver regeneration. Lipid 
dynamics and the regenerative response were analyzed at various time points after PH. Hepatic Repin1 
deficiency causes a significantly decreased transient hepatic lipid accumulation. Defects in lipid uptake, 
as analyzed by decreased expression of the fatty acid transporter Cd36 and Fatp5, may contribute to 
attenuated and shifted lipid accumulation, accompanied by altered extent and chronological sequence 
of liver cell proliferation in LRep1−/− mice. In vitro steatosis experiments with primary hepatocytes 
also revealed attenuated lipid accumulation and occurrence of smaller lipid droplets in Repin1-deficient 
cells, while no direct effect on proliferation in HepG2 cells was observed. Based on these results, we 
propose that hepatocellular Repin1 might be of functional significance for early accumulation of lipids in 
hepatocytes after PH, facilitating efficient progression of liver regeneration.

Initially identified as a candidate gene in the quantitative trait locus for facets of the metabolic syndrome in 
subcongenic rat strains1, further investigations showed that expression of the Replication initiator 1 (Repin1) in 
the liver and adipose tissue is significantly associated with obesity and dyslipidemia2–5. Repin1 is ubiquitously 
expressed with highest amounts in liver and intraabdominal adipose tissue1. Ruschke et al.2 showed that Repin1 
in adipocytes regulates the expression of genes involved in adipogenesis, lipid droplet formation and fusion as 
well as glucose and fatty acid (FA) transport. Moreover, beneficial physiological consequences of a liver-restricted 
Repin1 deficiency (LRep1−/−), as lower body weight, reduced hepatic steatosis, increased energy expenditure 
and physical activity as well as improved insulin sensitivity, underline the significant role of Repin1 in glucose 
homeostasis and lipid metabolism6.

Altered regulation of metabolic genes and pathways involved in insulin signaling, lipid and glucose metab-
olism is functionally important for the initiation of regeneration upon hepatic insufficiency. Thereby, transient 
accumulation of lipids in the regenerating liver is a well-known phenomenon and appears to be essential for 
adequate liver regeneration after hepatic resection7–10. It might serve as energy source for subsequent metabolic 
events associated with the regenerative process and reconstruction of cell membranes11. Rapid increase in hepatic 
triglycerides (TG) results from enhanced lipolysis in peripheral adipose tissue and influx of non-esterified FAs 
into the liver12.
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The significance of hepatic fat for liver regeneration is supported by multiple studies, showing that reduced 
hepatic adipogenesis13,14, disruption/inhibition of ß-oxidation15–17 or defects in efficient lipid uptake, transport 
and formation18,19 are substantially associated with inhibition of the regenerative response of the organ. However, 
some reports showed the opposite11,20 and thus, it is still controversially discussed whether fat or rather glucose 

Figure 1.  (A) Quantitative RT-PCR analysis of Repin1 mRNA expression in liver tissue of LRep1+/+ and 
LRep1−/− mice at different time points after PH (n = 6–7 per genotype and time point). Values are given 
as means ± SEM. Significance of differences between the groups of an individual time point was tested 
using Mann-Whitney Rank Sum test followed by Bonferroni correction (*p < 0.0083 vs. LRep1+/+ of the 
individual time point). Analysis of plasma activities of (B) alanine aminotransferase (ALT) and (C) glutamate 
dehydrogenase (GLDH) as well as (D) plasma albumin concentration in LRep1+/+ and LRep1−/− mice at 
different time points after PH (n = 5–8 per genotype and time point). Analysis of (E) TGs and (F) free FAs in 
plasma of LRep1+/+ and LRep1−/− mice at different time points after PH (n = 6–8 per genotype and time 
point). Significance of differences between the groups of an individual time point was tested using two way 
ANOVA, *p < 0.05 vs. LRep1+/+ 0 h).



www.nature.com/scientificreports/

3Scientific Reports |         (2018) 8:16858  | DOI:10.1038/s41598-018-35325-3

Figure 2.  (A) Quantification of TGs in liver tissue of LRep1+/+ and LRep1−/− mice at different time 
points after PH using a standard kit (Values are given as means ± SEM; n = 6–8 per genotype and time point, 
Mann-Whitney Rank Sum test followed by Bonferroni correction, ***p < 0.001 vs. LRep1+/+ 24 h). (B) 
Representative Oil Red O stained frozen liver sections of LRep1+/+ and LRep1−/− mice 24 h after PH. Scale 
bars represent 100 µm. (C) Histomorphometric analysis of semi-thin toluidine blue stained liver sections to 
quantify fat deposition as percentage of blue stained area compared with the total section area. Values are 
given as means ± SEM (n = 3–6 per genotype and time point; Mann-Whitney Rank Sum test followed by 
Bonferroni correction). (D) Representative semi-thin toluidine blue stained liver sections of LRep1+/+ and 
LRep1−/− mice 24 h after PH. Scale bars represent 100 µm. (E) Quantitative analysis of the number, area and 
size of lipid droplets in hepatocytes of LRep1+/+ and LRep1−/− mice 24 h after PH by means of transmission 
electron microscopy and representative images (lipid droplets are marked with white asterisks). Scale bars 
represent 5 µm. Values are given as means ± SEM (n = 5 per genotype; t- test, ***p < 0.001 vs. LRep1+/+). (F) 
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is the main energy substrate after hepatectomy15,21,22. It is supposed that fat is the main energy substrate for liver 
regeneration only very early after resection, if glucose is not available. Furthermore, it is needed primarily by 
hepatocytes of acinar zone 1 which prefer fat as energy source21,22. Nevertheless, the complex mechanisms that 
regulate initiation and resolution of transient hepatic steatosis upon resection and the functional significance of 
these events for liver regeneration are not fully clarified.

On the contrary, there is considerable evidence that fatty livers are suboptimal for surgical resection or trans-
plantation, predominantly because of their increased susceptibility to ischemia-reperfusion injury and their 
disrupted regenerative response23–25. However, depending on the experimental model used, discrepant data 
regarding the regenerative capacity of steatotic livers exist26–30.

Based on previous findings in LRep1−/− mice regarding altered hepatic lipid storage, we hypothesized that 
Repin1 plays a functional role in hepatic regeneration. Therefore, we investigated the regenerative potential of 
LRep1−/− after partial hepatectomy (PH).

Results
Hepatic Repin1 expression upon liver resection.  Quantitative RT-PCR analysis revealed almost 
no mRNA expression of Repin1 in LRep1−/− compared to wildtype mice, in which Repin1 level transiently 
decreased immediately after PH (Fig. 1A). Non-parenchymal cells were responsible for the remaining low Repin1 
expression in LRep1−/− mice.

Liver injury and liver function.  Resection-associated liver injury, as given by a transient rise of liver 
enzymes upon PH, was significantly diminished in LRep1−/− animals with ALT values being about 1/3 lower 
than in LRep1+/+ plasma 24 h after PH (Fig. 1B). GLDH levels were also increasing upon 70% resection with a 
peak observed at 24 h, but with no significant differences between both genotypes (Fig. 1C). In contrast to that, 
albumin synthesis was maintained over the whole observation period with a minor decline in LRep1−/− mice 
at 72 h after PH (Fig. 1D).

Systemic and hepatic lipid profile.  Hepatic Repin1 deficiency caused dyslipidemia in plasma at baseline 
(Fig. 1E and F) and altered hepatic lipid content after PH (Fig. 2). Whereas LRep1−/− mice showed higher 
plasma TG levels at baseline (Fig. 1E), liver resection initially induced a decrease of plasma TGs in both genotypes 
with lowest levels being present at 24 h. Afterwards systemic TGs were increasing again. A similar trend after PH 
with no significant differences between both mouse strains was observed for plasma FFA, in which a drop down 
of FFA has been seen at 24 h (Fig. 1F).

Liver TGs and lipids were analyzed by different methods. Biochemical quantification of hepatic TG demon-
strated a PH-induced steep rise in TG of LRep1+/+ livers with a peak value 24 h after PH (Fig. 2A). In contrast, 
livers of LRep1−/− revealed significantly reduced TG at 24 h after PH (Fig. 2A). Additionally, Oil red O stained 
frozen liver sections (Fig. 2B) showed also a much lesser extent of fat positive area in LRep1−/− tissue. Moreover, 
fat deposition was quantified by histomorphometric analysis of semi-thin toluidine blue stained liver sections 
(Fig. 2C). This analysis also confirmed the dramatic increase of hepatic lipids 24 h after resection in wildtype 
mice, whereas lipid accumulation was much less pronounced in LRep1−/− mice. This means that 24 h after 
PH livers of LRep1+/+ mice consisted of ~20% lipid droplets compared to ~10% in LRep1−/− tissue, whereas 
livers of sham mice (0 h) simply contained <1% lipids (Fig. 2C). Representative toluidine blue stained liver sec-
tions (Fig. 2D) display this distinct difference in fat content between both genotypes at 24 h. Further electron 
microscopic analysis of the lipid droplets (Fig. 2E) revealed a significantly reduced number and total area of lipid 
droplets in LRep1−/− compared to LRep1+/+ hepatocytes 24 h after PH, with no difference in droplet size. 
Representative electron microscopic images displaying the higher number of lipid droplets in wildtype livers 
compared to LRep1−/− tissue (Fig. 2E, white asterisks).

For the time points with the most striking differences in lipid content between both genotypes, we analyzed 
the pattern of TG subgroups using LC-MS (Fig. 2F). Generally, the most prominent TG groups during early liver 
regeneration were TG 52:3 and 52:4. Compared to wildtype LRep1−/− mice exhibited markedly lower levels of 
these TG groups at 24 h after resection, but showed a delayed increase 48 h after resection, when in wildtype livers 
the levels of these TG groups have already declined. Measurement of total TG levels with this method confirmed 
the above mentioned results of significantly lower levels in LRep1−/− compared to LRep1+/+ livers at 24 h after 
resection. In LRep1−/− mice a delayed increase of TG at 48 h (Fig. 2F, inserted graph) was detected.

Hepatic glycogen content.  As the liver plays an important role in glucose homeostasis and storage, we 
evaluated the kinetics of glycogen content upon resection by different methods. Analysis of glycogen in liver tis-
sue homogenates revealed a rapid resection-induced loss of glycogen storage in both mouse strains, with almost 
no existing glycogen at 6 h after PH (Fig. 3A and B). Thereafter, glycogen content replenished slowly and was fully 
restored 7 d after PH. This could also be verified by PAS staining of LRep1−/− and LRep1+/+ livers (Fig. 3A), 
impressively showing the initial loss and continuous increase of glycogen after PH. Hepatic Repin1 deficiency 
was accompanied by a significantly reduced glycogen content at 3 d after PH (Fig. 3B). Representative electron 

Quantitative analysis of TG groups as well as total amount of liver TGs (insert) at baseline (0 h), 24 and 48 h after 
PH in LRep1+/+ and LRep1−/− mice using LC-MS. The first number is equivalent to the carbon numbers 
and the second number represents the numbers of double bonds. Values are given as means ± SEM (n = 6 per 
genotype and time point; total TGs: two way ANOVA, ***p < 0.001 vs. LRep1+/+; TG groups: Mann-Whitney 
Rank Sum test followed by Bonferroni correction).
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microscopic images of LRep1+/+ also display high glycogen content (white crystalline structures) at basal (0 h) 
and almost no glycogen deposition 24 h after PH (Fig. 3C).

Regenerative capacity.  Quantitative analysis of BrdU-stained hepatocytes (Fig. 4A) and non-parenchymal 
cells (Fig. 4B) as well as counting of mitotic figures (Fig. 4C) were performed as indices of hepatocellular regen-
erative response upon PH. Livers of LRep1-/- displayed attenuated cell proliferation, as indicated by signifi-
cantly reduced BrdU incorporation in hepatocytes 48 h after PH compared to LRep1+/+ mice (Fig. 4A,B). 
Representative immunohistochemical images of hepatic tissue in LRep1+/+ and LRep1−/− livers at 48 h 
(Fig. 4A) and 3 d (Fig. 4B) after PH demonstrate the high number of BrdU-positive cells as characteristic sign of 
both parenchymal and non-parenchymal cell proliferation in the regenerating LRep1+/+ liver, whereas livers of 
LRep1−/− showed less BrdU-positive cells.

To characterize proliferation in more detail, hepatocytes with mitotic figures were counted at the indicated 
time points (Fig. 4C). Interestingly, 48 h after resection LRep1−/− showed a markedly higher number of hepato-
cytes being in mitosis compared to LRep1+/+.

There was a constant increase of liver weight upon PH in both genotypes with return to almost pre-operative 
values (Fig. 4D), with LRep1−/− genotype being associated with a slightly lower liver weight (88.7% ± 2.9%) at 
day 7 after PH compared to wildtype (95.4% ± 3.3%).

Hepatic lipogenesis and lipolysis.  In order to evaluate the impact of hepatic de novo lipogenesis in the 
process of regeneration, especially upon Repin1 deficiency, we analyzed mRNA expression of the hepatic fatty 
acid synthase (Fasn) as a regulatory gene essential for efficient lipogenesis (Fig. 5A). In wildtype mice Fasn mRNA 
expression transiently decreased after PH and thereafter constantly increased with values at day 3 and 7 being 
much higher than pre-PH (Fig. 5A). A similar kinetic could be observed in LRep1−/− livers. Because of higher 
basal expression, Repin1 deficiency resulted in a steeper decline of Fasn mRNA immediately after resection com-
pared to wildtype mice. The extent of increase in Fasn expression at the later observation time points was less 
prominent in LRep1−/− than in wildtype mice (Fig. 5A). Additionally, we observed almost no resection-induced 
alterations in regulation of hepatic β-oxidation in both genotypes, as shown by almost constant Pparα mRNA 
expression, except for the time point 48 h (Fig. 5B). At that time point, Pparα mRNA expression was reduced in 
LRep1−/− compared to wildtype mice.

Figure 3.  (A) Representative images of PAS-stained liver sections of in LRep1+/+ and LRep1−/− mice at 
different time points after PH. Scale bars represent 100 µm. (B) Quantitative analysis of liver glycogen content 
in LRep1+/+ and LRep1−/− mice at different time points after PH. Values are given as means ± SEM (n = 6–8 
per genotype and time point). Significance was tested by two-way ANOVA followed by the appropriate post 
hoc comparison (Holm-Sidak method), **p < 0.01 vs. LRep1+/+ 3 d. (C) Transmission electron microscopic 
images of LRep1+/+ under physiological conditions (0 h) and 24 h after PH showing loss of glycogen (0 h, 
white deposition) upon PH. Scale bars represent 5 µm.
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Hepatic FA transport.  Next, we examined the expression of different hepatic lipid transporters. Here, Cd36 
mRNA expression tended to be lower in LRep1−/− early after PH, particularly at 48 h (Fig. 5C). Also mRNA 
expression of the liver-specific membrane associated FA transport protein 5 (Fatp5) was found to be markedly 
diminished in LRep1−/− at 6 h (Fig. 5D), though the difference did not reach statistical significance. However, 
mRNA expression of other membrane associated transport proteins like Fatp2 (Fig. 5E), intracellular FA binding 
proteins like Fabp1 (Fig. 5F) or the lipid droplet fusion protein Snap23 (data not shown) were not significantly 
altered between both experimental groups.

In vitro analyses.  To analyze whether Repin1 deficiency directly influences hepatocellular proliferation, we 
performed a BrdU proliferation assay with HepG2 cells using different concentrations of siRNA for Repin1 (siRe-
pin1). In contrast to the nonsense siRNA for the Luciferase gene (siLuci), higher Repin1 siRNA concentrations 
resulted in Repin1 deficiency (Fig. 6A). However, this had no inhibiting effect on the proliferative capacity of 
HepG2 cells (Fig. 6B).

Figure 4.  Quantitative analysis of proliferation by means of (A) BrdU-positive hepatocytes, (B) BrdU-
positive non-parenchymal cells and (C) mitotic figures (each given as cells/HPF) in livers of LRep1+/+ and 
LRep1−/− mice at different time points after PH. Values are given as means ± SEM (n = 6–8 per genotype and 
time point; *p < 0.0083 vs. LRep1+/+ of the individual time point, Mann-Whitney Rank Sum test followed 
by Bonferroni correction). Representative immunohistochemical images (lower panel) of hepatic tissue in 
LRep1+/+ and LRep1−/− 48 h (A) as well as 3 days (B) after resection, displaying the marked rise of BrdU-
positive cells, particularly in LRep1+/+, as characteristic sign of cell proliferation in the regenerating liver. 
Scale bars represent 100 µm. (D) Percent regenerated liver weight relative to preoperative liver weight in livers of 
LRep1+/+ and LRep1−/− mice at different time points after PH. The weight of the regenerated liver was used 
to calculate the growth of residual liver lobes as ratio of regenerated liver/preoperative liver weight × 100 (%). 
Pre-operative liver weight was assumed to be 4.7% of body weight for LRep1−/− and 5.0% of body weight for 
LRep1+/+.



www.nature.com/scientificreports/

7Scientific Reports |         (2018) 8:16858  | DOI:10.1038/s41598-018-35325-3

As CD36 is a membrane protein, we additionally performed FACS analysis of CD36 on the cell surface of 
primary isolated hepatocytes of LRep1−/− and wildtype mice (LRep1+/+) under normal (conventional) and, to 
simulate transient steatosis as in the early phase of liver regeneration, under steatotic culture conditions (Fig. 6C). 
Wildtype hepatocytes were also treated with 20 nM siRepin1/siLuci to evaluate the impact of a spontaneously 
induced Repin1 deficiency on CD36 cell surface expression. Compared to the corresponding wildtype control 
(Wt or Wt siLuci) Repin1 mRNA expression was significantly reduced in primary hepatocytes of LRep1−/− mice 
as well as in siRepin1 treated primary wildtype cells (Fig. 6D). Generally, in vitro steatosis was accompanied by a 
slightly increased Repin1 expression in wildtype hepatocytes (Fig. 6D). Although transfection efficiency was lower 
in steatotic cells compared to normal cultured hepatocytes, siRNA treatment resulted in a significantly decreased 
Repin1 expression (Fig. 6D). FACS analysis of normal cultured cells revealed a significantly reduced CD36 posi-
tivity only of cells with siRNA-induced Repin1 deficiency (Fig. 6C). In vitro steatosis induced cell surface CD36 

Figure 5.  Quantitative RT-PCR analysis of (A) Fasn, (B) Pparα, (C) Cd36, (D) Fatp5, (E) Fatp2 and (F) Fabp1 
mRNA expression in liver tissue of LRep1+/+ and LRep1−/− mice at different time points after PH (n = 6–8 
per genotype and time point). Values are given as means ± SEM. Significance of differences between the groups 
of an individual time point was tested by Mann-Whitney Rank Sum test followed by Bonferroni correction.
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Figure 6.  (A) Repin 1 mRNA expression of HepG2 cells 72 h after treatment with 0, 10, 20, 40, 80 and 160 nM 
siRNA specific for Luciferase (siLuci) and Repin1 (siRepin1) (n = 3–4 per group and concentration) and 
(B) proliferation of these cells using a BrdU proliferation assay (n = 9 per group and concentration). Values 
are given as means ± SEM (n = 4 per genotype and time point; *p < 0.0083 vs. LRep1+/+ of the individual 
time point, Mann-Whitney Rank Sum test followed by Bonferroni correction. (C) FACS analysis of Cd36 of 
primary isolated wildtype hepatocytes (Wt), which additionally were transfected with siLuci or siRepin1, and 
of hepatocytes of LRep1−/− mice under normal (left) and steatotic (right) culture conditions for a period 
of 72 h. Data are presented as box plots indicating the median, the interquartile range in form of a box and 
the minimum and maximum as whiskers. #p < 0.05 vs. Wt siLuci of the individual culture condition, Mann-
Whitney Rank Sum test. (D) Repin1 mRNA expression of primary hepatocytes of the different genotypes 
and treatment groups as described above. *p < 0.01 vs. Wt; #p < 0.05 vs. Wt siLuci of the individual culture 
condition, Mann-Whitney Rank Sum test. (E) Oil Red O staining of primary isolated wildtype hepatocytes 
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expression in each analyzed group of cells. A reduced CD36 expression was only observed upon spontaneously 
(siRNA-) induced Repin1 deficiency (Fig. 6C). Irrespective of the culture condition, CD36 expression values of 
LRep1−/− hepatocytes displayed a high variance. Of most interest, Oil Red O staining showed reduced lipid 
accumulation in both Repin1 deficient hepatocyte cultures upon FFA exposition for 24 h (Fig. 6E). However, with 
prolonged FFA exposure time of 72 h lipid accumulation increased with just minor differences between controls 
and Repin1-deficient groups (Fig. 6E).

We additionally performed SEM (Fig. 6F) and TEM (not shown) analysis of differentially cultured and treated 
primary hepatocytes after FA exposure for 72 h to characterize hepatocellular lipid uptake/load and intracellular 
lipid distribution in more detail. In general, in contrast to normal culture (not shown) in vitro steatosis induced 
formation of numerous lipid droplets of different size in wildtype cells (Fig. 6F, Wt and Wt siLuci). Noticeably, 
deficiency of Repin1 resulted in much smaller intracellular lipid droplets (Fig. 6F, Wt siRepin1 and LRep1−/−). 
TEM analysis revealed that lipid droplets are solely located intracellular (not shown).

Discussion
Recent studies investigated distinct roles of the zinc finger protein Repin1 in adipocytes2,4,31. In human adipose 
tissue, Repin1 mRNA expression significantly correlates with body fat content and adipocyte size2,5. Relationships 
between Repin1 expression in adipose tissue and metabolic parameters also suggest a functional role for Repin1 
in the liver. As alterations in systemic and hepatic metabolism are important modulators of the physiological 
regenerative response to hepatic insufficiency, we therefore elucidated the potential role of Repin1 in liver regen-
eration after partial hepatectomy using LRep1−/− mice6.

The importance of Repin1 for FA uptake in adipocytes has been implied previously2,4,6,31 which is in line with 
our data, as hepatic deficiency of Repin1 causes reduced lipid content in hepatocytes during the early phase of 
liver regeneration. This was accompanied by a delayed cell proliferation. As fat accumulates concomitantly with 
cellular proliferation32 and Repin1 deficiency itself showed no direct effect on liver cell proliferation, it can be 
assumed that the reduced and shifted fat accumulation in LRep1−/− mice in turn impacts extent and course of 
hepatocellular proliferation, but finally without impairing liver weight recovery.

Generally, discrepant data concerning the effects of (chronic) steatosis on liver regeneration exist. However, 
several groups suggest that steatosis does not impair the regenerative response or even an induction of mild ste-
atosis may be beneficial for surgical outcome of hepatectomies30, while others showed the opposite24,33–35. Much 
controversy continues on the predominant energy substrate (glucose or fat) for liver regeneration which complies 
on the availability of glucose21 but might primarily relate to the hepatic energy status15,21. Thus, with increasing 
resected hepatic mass and a decreasing energy charge, the liver predominantly utilizes FA as energy source15 and 
therefore transiently accumulates fat after PH7,36. Many studies dealing with a decreased hepatic fat accumulation 
imply a significant role for acute hepatic steatosis in liver regeneration11,13,14,18,37,38. Moreover, for several decades 
it has been known that infusion of lipids and carnitine following PH stimulated the initiation of liver regener-
ation16,39,40. Consistent with previous studies19,41 we also hypothesize that a lower temporary fat accumulation, 
as seen upon Repin1 deficiency, is linked to a delayed DNA synthesis in liver cells. Using different methods, we 
verified a significant decrease in lipids/TGs at 24 h after resection in LRep1−/− mice, while TG accumulation 
peaks in wildtype mice. However, LRep1−/− mice showed a compensatory shifted increase of TG at 48 h after 
PH. Phenotypic characterization of LRep1−/− mice6 suggests that reduced TG accumulation in the liver is due 
to decreased expression of genes involved in lipid uptake and formation. At the molecular level, we demonstrated 
that during liver regeneration absence of Repin1 resulted in a temporarily reduced mRNA expression of the 
FA transporter Cd36 and Fatp5, while expression of other hepatic lipid transfer or binding genes were similar 
between both genotypes. FATP and CD36 have been suggested to be a functional unit42. Impaired and delayed FA 
uptake, resulting in lower hepatic TGs, was also shown in Cd36-, Fatp2- and Fatp5-deficient mice43–46. However, 
as no difference in circulating lipids (TG, FFA) was observed between both genotypes, it can also be suggested 
that FA transport was compensated by other mechanisms or was still sufficient to protect against dyslipidemia 
in LRep1−/− mice. To analyze lipid uptake and formation as well as cell surface CD36 protein expression, we 
additionally performed in vitro experiments with primary hepatocytes. In contrast to primary LRep1−/− hepat-
ocytes, siRNA-mediated downregulation of Repin1 in vitro alone caused a significant reduction of cell surface 
CD36 expression in normal, but also steatotic hepatocytes. Interestingly, we also noticed distinct defects in effi-
cient lipid accumulation and formation upon Repin1 deficiency by using fat staining and electron microscopy. 
However, differences disappeared after long-term exposure to FAs, indicating different underlying mechanisms. 
Hepatic FA uptake is complex and suggested to be a dual-kinetic process, consisting of a rapid, carrier-mediated, 
and a delayed, passive diffusional phase37,42. Thus, it can be supposed that Repin1 deficiency results in impairment 
of the facilitated, protein-mediated, phase of hepatic FA uptake (e.g. for acute conditions, like liver resection) but 
with preservation of the diffusional phase (e.g. upon chronic FA exposure).

Of interest, we noted that simultaneously with the onset of transient hepatic steatosis upon PH, the 
resection-induced liver injury is most severe. In turn, a diminished liver injury was obvious in LRep1−/−, prob-
ably due to a lower lipid load.

(Wt), which additionally were transfected with siLuci or siRepin1, and of hepatocytes of LRep1−/− mice under 
steatotic culture conditions for a period of 24 and 72 h. Scale bars represent 50 µm. (F) Scanning and electron 
microscopic images of primary isolated Wt hepatocytes (Wt), which additionally were transfected with a siRNA 
for Luciferase (siLuci) and Repin1 (siRepin1) as well as of LRep1−/− hepatocytes after 72 h of FA exposure. 
Compared to controls lipid droplets (white asterisks) appear smaller in Repin1-deficient hepatocytes. Scale bars 
represent 10 µm.
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Due to the fact that the main source of TGs in hepatocytes during regeneration does not arise from de novo 
lipogenesis47, but rather from FA uptake from plasma and thus, lipolysis of systemic fat, a rise in circulating and 
hepatic FAs can be observed11,38. It is also well known, that loss of systemic adipose storages occurs in proportion 
to the extent of hepatic resection/insufficiency38. Although it is suggested that de novo lipogenesis provides an 
initial supply of FAs at the very early phase (0–6 h)19, expression profile of Fasn in this study indicates that de novo 
lipogenesis is not involved in the early phase of transient fat accumulation, neither in wildtype nor in LRep1−/− 
mice. However, Repin1 deficiency rather resulted in an impaired rise of Fasn expression in the later regenerative 
phase, when hepatic lipogenesis becomes more essential, suggesting a promoting role for Repin1 in lipogenesis. 
Interestingly, this would indicate a causal connection between the observed transient down-regulation of Repin1 
and suppressed lipogenesis following PH.

By analysis of Pparα, a transcriptional regulator of FA oxidation48, prominent alterations in β-oxidation of FAs 
could not be observed during the course of liver regeneration.

Cell cycle of hepatocytes and fat accumulation are subjected to a well-defined dynamic. PH induces four waves 
of proliferation which are linked to three waves of fat accumulation32. In contrast to the DNA synthesis, which 
was significantly diminished in LRep1−/− hepatocytes at 48 h, mitosis index at 48 h was increased upon Repin1 
deficiency. Remarkably, hepatocyte mitosis occurs consistently during a time of day determined by the circadian 
clock49. Also performing surgery between 10:00 and 12:00 am, Zou et al.32 showed that mitosis always peaks at 
6:00 am, with a first mitosis peak observed at 44 h after resection. Therefore, we postulate that in this study at 48 h 
the mitosis peak of LRep1+/+ hepatocytes as well as a probably decreased mitosis index of LRep1−/− cells are 
already past and just a delayed and shifted compensatory increase in the number of mitotic LRep1−/− hepat-
ocytes is present. In addition, the division of hepatocytes is so rapid, taking no more than 30 minutes21 that the 
mitotic index is a suboptimal indicator for the evaluation of the regenerative condition. Furthermore, as the first 
wave of hepatocyte DNA synthesis is present at 36–48 h after PH10, it also can be assumed that the differences 
between both genotypes are even more noticeable for earlier DNA synthesis peaks between 36 h and 44 h after 
PH.

Interestingly, hypoglycemia frequently occurs after partial liver resection36. This metabolic response is sug-
gested to initiate signals that promote liver regeneration as dextrose supplementation suppresses PH-induced 
proliferation39,50, mainly due to inhibition of the release of free FAs from systemic adipose stores15. As also shown 
by Lai et al.21, glycogen disappeared in the early post-hepatectomy regenerative phase and reappeared constantly 
until day 7. Although Repin1 deficiency resulted in reduced basal glucose uptake in adipocytes due to lower Glut1 
expression2, LRep1−/− livers restored glycogen nearly at the same degree as LRep1+/+ and showed a lower gly-
cogen content only at day 3 after PH. To account for changes in lipid availability compensatory pathways for gen-
eration of intracellular energy sources have to be upregulated. As in LRep1−/− mice the regenerative response is 
just timely delayed, it can be suggested that LRep1−/− hepatocytes also use glucose as energy substrate.

Our results demonstrate that acute changes in lipid metabolism have specific effects on the course of liver 
regeneration with Repin1 being important for regulation of lipid load. Although hepatocytes of LRep1−/− main-
tain the ability to incorporate lipids after PH, however, the number of lipid droplets and finally the TG con-
tent is substantially lower than in wildtype. Consequently, insufficient amounts of energy might cause timely 
delayed proliferation of LRep1−/− hepatocytes. However, this had no impact on liver weight recovery which 
might also caused by compensatory hypertrophy8. As also discussed by others, a decreased expression of FA 
transporters seems to offer a partial explanation for a lower lipid load, but it has not clearly been determined if 
this effect is either due to decreased FA uptake or altered TG synthesis51. Besides, a more rapid turnover of TGs 
in the absence of Repin1 could also account for reduced TG accumulation in these mice. Vice versa, it can be 
assumed that reduced hepatic lipid content after resection may hamstring hepatocytes from regulating genes 
involved in metabolic pathways that are required for sufficient recovery. Because liver regeneration is a complex 
and multi-factorial process, more probably a combination of hepatic lipid load and genetic and metabolic changes 
determines recovery from surgery.

Due to its contribution to increased lipid accumulation and adipocyte hypertrophy, augmented Repin1 expres-
sion may play a fundamental role in adipose tissue dysfunction and its related metabolic diseases52. Whereas ther-
apeutic strategies to reduce Repin1 expression are of interest in human obesity, the availability of lipids during 
regeneration after liver surgery is of high importance. Thus, Repin1 modulation may be a novel strategy to inter-
fere in this process, particularly in case of limited liver regeneration of pre-existing liver injury.

Methods
Mice.  Male mice with a hepatocyte-restricted, Cre-loxP-mediated Repin1 deletion (LRep1AlbCre; LRep1−/−) 
and wildtype littermates (LRep1+/+) (background C57BL/6 N) at an age of 10–16 weeks and with a body weight 
of 25–30 g were kept at a 12 h day and night cycle on water and standard laboratory chow ad libitum. Experiments 
were approved by the local government Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei 
Mecklenburg-Vorpommern (LALLF M-V/TSD/7221.3-1.1-099/12) and conducted in accordance with the 
German legislation on protection of animals and EU-directive 2010/63/EU.

Surgical procedure and experimental groups.  Mice were anesthetized by breathing isoflurane 
(1.5 vol%) and subjected to a 68% PH as described previously53,54. Sham- operated animals without hepatic 
resection served as group 0 h (n = 6 per genotype). The animals were allowed to recover from anesthesia and 
surgery under a red warming lamp and were held in single cages until the subsequent experiments followed 
at postoperative hours 6, 24 and 48 as well as days 3 and 7 (n = 7–8 per genotype and time point). Animals 
were sacrificed under ketamine/xylazine anesthesia (90/7 mg/kg bw ip) at the indicated time points (7–8 ani-
mals per time point) and blood as well as liver tissue samples were taken. The remnant livers were harvested, 
weighed and processed for subsequent analyses. The weight of regenerated liver was used to calculate the growth 
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of residual liver lobes according to weight of regenerated liver/preoperative liver weight × 100 (%). As determined 
by sham-operated animals, preoperative liver weight was assumed as 4.7% of body weight for LRep1−/− and 
5.0% of body weight for LRep1+/+. Additionally, to analyze the regenerative response, 5-bromo-2-deoxyuridine 
(BrdU; 50 mg/kg bw ip) was injected 1 h prior to harvest of liver tissue. BrdU incorporation into DNA was ana-
lyzed by immunohistochemistry.

Hematological measurements and plasma enzyme levels.  Blood samples were collected at final time 
points by retrobulbar sinus puncture. Blood cells were assessed with an automated cell counter (Sysmex KX-21, 
Sysmex). Activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehy-
drogenase (GLDH) in ethylenediaminetetraacetic acid (EDTA) plasma were measured spectrophotometrically as 
indicators of hepatocellular disintegration and necrosis using cobas c 111 analyzer (Roche Diagnostics; Rotkreuz, 
Switzerland) according to the manufacturer’s instructions.

Assays.  EDTA plasma further served for the analysis of albumin as a parameter of liver function using a 
commercially available enzyme-linked immunosorbent assay kit in accordance with the manufacturer’s instruc-
tions (Assaypro, MO, USA). Measurements of plasma triglycerides (TG) and free fatty acids (FFA), serving as 
indicators of systemic dyslipidemia, were performed using the TG (Cayman Chemical Company, MI, USA; 
10010303) and FFA (abcam, ab65641) assay kit methods according to the manufacturer’s instructions. Glycogen 
levels in liver samples were measured using a glycogen assay kit (Abnova; KA0861) according to the manu-
facturer’s instructions with 10 mg of homogenized frozen liver tissue. For measurement of hepatic TG, Lipids 
were extracted from mouse liver biopsies using the commercially available LabAssay Triglyceride (WAKO Pure 
Chemicals, Kyoto, Japan).

Histopathology/Cell staining.  Lipid accumulation in 8 µm frozen liver sections and cultured primary 
hepatocytes was visualized by Oil Red O staining. Briefly, liver sections were rinsed with 60% 2-propanol and 
stained for 15 min with freshly prepared and filtered Oil Red O (Sigma) solution (0,2% (w/v) in 60% 2-propanol 
diluted from a 0,5% (w/v) Oil Red O stock solution in 100% 2-propanol). After rinsing in 60% 2-propanol and 
distilled water, slides were counterstained with hematoxylin. Primary hepatocytes grown on cover slips were fixed 
in 4% phosphate buffered formalin (Grimm med. Logistik, Torgelow, Germany) for 5 min. After washing with 
PBS and water, the cells were then stained for 7 min using the same Oil Red O solution as described above. After 
rinsing extensively in water the cells were counterstained with hematoxylin.

Liver tissue was fixed in 4% phosphate buffered formalin for two to three days, embedded in paraffin, and cut 
into 5 µm thick sections. Periodic acid-Schiff (PAS) reaction was used to visualize the presence and distribution of 
carbohydrates, particularly glycogen, in liver cells. Therefore, slides were treated with 0.1% periodic acid solution 
for 5 min, washed and subsequently incubated with Schiff ’s Reagent for 15 min at RT. After vigorous washing 
nuclei were counterstained with hematoxylin. The intensity of purple color in PAS-stained liver sections corre-
sponds to the amount of glycogen in hepatocytes. Digital images were taken with a Color View II FW camera 
(Color 10 View, Munich, Germany).

Gene Primer Sequence (5′ to 3′)

Repin1
forward GCCTTCTGTTGTGCCATCTGT

reverse TCTCAGGCATCGTGCTTCTTCC

REPIN1 (human)
forward GAAGCAGGCGTGGTAGAGTC

reverse GGGAAGGAAGAGGATGGAAG

Fas
forward TACCATGGCAACGTGACACT

reverse TAGCCCTCCCGTACACTCAC

Fabp1
forward AAGTGGTCCGCAATGAGTTC

reverse GTAGACAATGTCGCCCAATG

Fatp2
forward AACACATCGCGGAGTACCTG

reverse CTCAGTCATGGGCACAAATG

Fatp5
forward GACTTTTGATGGGCAGAAGC

reverse GGGCCTTGTTGTCCAGTATG

Cd36
forward GGTGATGTTTGTTGCTTTTATGATTTC

reverse TGTAGATCGGCTTTACCAAAGATG

Snap23
forward AGAAGATCACAGAAAAGGCTGACA

reverse AGCAGGGCTTTAACTATCAATGAGTT

GAPDH (human)
forward ATCACCATCTTCCAGGAGCGA

reverse GCCAGTGAGCTTCCCGTTCA

Gapdh
forward GAATTTGCCGTGAGTGGAGT

reverse CGTCCCGTAGACAAAATGGT

Table 1.  Primer sequences used for amplification by conventional quantitative real-time PCR.
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Immunohistochemistry.  For analysis of DNA-incorporated BrdU in liver cells, 5 µm paraffin sections col-
lected on poly-L-lysine-coated glass slides were incubated with monoclonal mouse anti-BrdU antibody (1:50; 
M0744, Dako) overnight at 4 °C followed by incubation with HRP-conjugated goat anti-mouse immunoglobin 
(LSAB kit plus; Dako). Sites of peroxidase-binding were detected by DAB (Dako). Sections were counterstained 
with hematoxylin. BrdU-positive hepatocellular and non-parenchymal nuclei (discriminated by morphology and 
intrahepatic location) were counted in a blinded manner within 30 consecutive high power fields (HPF) (x40 
objective, numerical aperture 0.65) and are given as cells/HPF. BrdU-stained liver sections were also used to count 
mitotic figures (visible chromosome aggregation) in a blinded manner within 30 consecutive high power fields 
(HPF) (x40 objective, numerical aperture 0.65) and are given as mitotic figures/HPF.

Conventional RT-PCR analysis.  RNA isolation and conventional Real-time PCR gene expression analysis 
was performed as described previously55 using SYBR Green I (Roche, Mannheim, Germany) detection of ampli-
fied dsDNA strands applying the LightCycler System 1.5 (Roche) (Table 1). All data were calculated by using the 
comparative ddCt method and expression values were normalized to the expression levels of the GAPDH house-
keeping gene. Target gene expression was compared to wildtype C57BL/6 N liver tissue pool.

Liver lipidomics.  TGs were analyzed by LC-MS on a 6550 iFunnel QTOF mass spectrometer (Agilent 
Technologies, Waldbronn, Germany) equipped with a Dual Agilent Jet Stream (AJS) electrospray source. 
Electrospray parameters were as follows: gas temperature, 200 °C; drying gas flow, 11 l/min; nebulizer pressure, 
35 psig; sheath gas temperature, 350 °C; sheath gas flow, 12 l/min; capillary voltage, 4000 V; nozzle voltage, 500 V; 
and fragmentor voltage, 350 V. Mass spectrometric analysis was done in positive ion mode with a scan range of 
m/z 100–1100 and a scan rate of 4 spectra/s. Data was acquired with intensity thresholds of 10 counts/0.001% 
and stored in profile mode. TG standards were obtained from Larodan Fine Chemicals AB (Malmö, Sweden). 
Frozen liver tissue samples (about 30 mg) were homogenized in an ice cold mixture of 400 µl of methanol and 
130 µl of water in a FastPrep® 24 homogenizer (MP Biomedicals, Santa Ana, USA) for 20 s at speed 6.0 using 
lysing matrix D. An aliquot of the homogenate was spiked with internal standard and extracted with chloroform 
as described previously56. The chloroform extract was evaporated to dryness and reconstituted in 2-propanol. 
Chromatographic separation of the TGs was carried out at 70 °C on a Poroshell 120 RP18 column (2.1 × 100 mm, 
2.7 μm particle size, Agilent) coupled to a 1290 Infinity UHPLC System (Agilent). Gradient runs of mobile phase 
A (20 mM ammonium acetate in acetonitrile:water 95:5 (v/v)) and mobile phase B (20 mM ammonium acetate 
in 2-propanol) were programmed as follows: 0–2 min, 5–15% B; 2–4 min, 15% B; 4–8 min, 15–50% B; 8–11 min, 
50–60% B; 11–12 min, 60% B, 12–13 min, 60–90% B ;13–21 min, 90% B. The column was reconditioned to initial 
conditions (5% B) for 5 min. TGs were analyzed as ammonium adducts [M+NH4]+ using triheptadecanoin as 
internal standard. Calibration samples were prepared in aqueous BSA in the concentration range from 0.0625 
to 75 nmol/10 µl and were worked up as described above and analyzed together with the unknown samples. 
Calibration curves based on internal standard calibration were obtained by weighted (1/x) quadratic regression 
for the peak-area ratio of the analyte to the internal standard against the amount of the analyte. The concentration 
of the analytes in unknown samples was obtained from the regression curve. Assay accuracy and precision were 
determined by analyzing quality controls that were prepared like the calibration samples.

Electron microscopy.  For electron microscopy, hepatocytes were cultured on 13 mm circular supports cut 
from Melinex plastic film sheets (no. L4103, Plano, Wetzlar, Germany) with a manual punching tool. The Melinex 
supports were sterilized by immersion in ethanol and air-dried under a cell culture hood after washes with sterile 
water. For fixation, cultured hepatocytes or small blocks of liver tissue were immersed in a fixative containing 2% 
glutaraldehyde and 1% paraformaldehyde in 0.1 M sodium phosphate buffer pH 7.3. Prior to resin embedding for 
transmission electron microscopy (TEM) samples were washed three times with 0.1 M sodium phosphate buffer 
and were postfixed with a solution of 1% aqueous osmiumtetroxide for 1 hour. Following washes in distilled 
water, the cells or tissue blocks were dehydrated in a graded series of acetone completed with two pure acetone 
steps. Next the specimens were infiltrated with epoxy resin (Epon 812, Serva, Heidelberg, Germany) starting with 
1:1 mixture of acetone and resin overnight, continued with pure resin for 4 hours and transfer to rubber molds 
on the following day. After curing of the resin at 60 °C for 2 days, semithin sections (0.5 µm) and thin sections 
(50–70 nm) were cut on a ultramicrotome (Ultracut E, Reichert&Jung, Wien, Austria) using diamond knifes 
(Diatome, Biel, Switzerland). Semithin sections were stained with toluidine blue to visualize the tissue structure 
and for further use in morphometric measurements (see below). Thin sections for ultrastructural inspection were 
cut from these areas, transferred to 300 mesh copper grids and were stained with lead citrate and uranyl acetate. 
The grids were examined in a Zeiss EM902 electron microscope (Carl Zeiss, Oberkochen, Germany) operated at 
80 kV. Digital images were acquired with a side-mounted 1 × 2k FT-CCD Camera (Proscan, Scheuring, Germany) 
using iTEM camera control and imaging software (Olympus-SIS, Münster, Germany) with calibrated morpho-
metric measurement tools to determine e.g. lipid droplet size and numbers.

In addition, for histomorphometric analysis of semi-thin toluidine blue stained liver sections, images of 
10–15 random low power fields (10x magnification, Olympus BX 51, Hamburg, Germany) were acquired with a 
Color View II FW camera (Color View, Munich, Germany) and evaluated using an image analysis system (Adobe 
Photoshop). Fat deposition was quantified as percentage of blue stained area compared with the total section area.

For scanning electron microscopy (SEM), hepatocytes cultured on glass coverslips (no. L40971, Plano, 
Wetzlar, Germany) or on Melinex supports were fixed as detailed above, washed with sodium phosphate buffer 
and dehydrated with a graded series of ethanol or acetone. The cells were critical point dried using an Emitech 
K850 critical point dryer (Emitech Ltd. Ashford, UK) with CO2 as an intermedium. Specimens were mounted 
on SEM stubs with adhesive carbon tape (Plano, Wetzlar, Germany) and were coated with evaporated carbon 
in a Leica EM SCD 500 coater (Leica Microsystems, Vienna, Austria). The cellular structure was viewed with 
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a field-emission SEM, Zeiss Merlin VP compact (Carl Zeiss Microscopy, Jena Germany) operated at 10 kV and 
digital images with a size of 1024 × 768 pixels were recorded.

Isolation and culture of primary hepatocytes and HepG2 cell line.  Hepatocytes were isolated from 
male LRep1−/− and LRep1+/+ mice at an age of 6 weeks as described previously55. Cells were plated on colla-
gen A (200 µg/ml in PBS; Biochrom, Berlin, Germany) coated cell culture dishes with Williams E medium (PAN 
Biotech, Aidenbach, Germany) containing L-glutamine, 10% (v/v) FCS (for the first 4 hours, subsequently FCS 
free) and 100 nM dexamethasone (Sigma Aldrich) and incubated in a 5% CO2 humidified atmosphere at 37 °C.

The human hepatocellular carcinoma cell line HepG2 was cultured in Dulbecco’s modified Eagle’s medium 
(DMEM, high glucose) supplemented with 10% (v/v) FCS at 37 °C in 5% CO2.

In vitro transfection.  For siRNA transfection cells were seeded in 6-well petri dishes at a density of 1 × 105 
(HepG2) or 2.5 × 105 (primary hepatocytes) cells per well. To transfect HepG2 cells the media was changed 24 h 
after seeding. Repin1 siRNAs or Luciferase siRNAs were transfected using AtuFECT01 (Silence Therapeutics, 
Berlin, Germany) at final siRNA concentrations of 0, 10, 20, 40, 80 and 160 nM. Primary LRep1+/+ hepatocytes 
were transfected simultaneously with seeding with 20 nM siRNA. After an incubation period of 4 h at 37 °C the 
medium was changed again and the cells were cultivated until further analyses were performed.

BrdU-proliferation assay.  HepG2 proliferation was measured by a BrdU Cell Proliferation ELISA (Roche 
Applied Sciences, Mannheim, Germany). For this purpose, HepG2 were trypsinized 48 h after transfection and 
seeded on a 96-well-plate at a density of 4 × 103 cells per well. After attachment BrdU labeling solution was added 
and the cells were grown for additional 24 h. Fixation, staining and measurement of cell proliferation was per-
formed according to manufacturer’s instructions.

In vitro steatosis.  For induction of steatosis primary LRep1−/− and LRep1+/+ hepatocytes as well as pri-
mary transfected LRep1+/+ hepatocytes were exposed to a mixture of long-chain FFA (oleic acid and sodium 
palmitate at a ratio of 2:1). A stock solution of 50 mM of the FFA-mixture prepared in Williams E medium con-
taining 1% BSA was diluted in medium to obtain a final concentration of 0.5 mM. The FFA mixture was added to 
hepatocytes ~24 h after seeding and transfection for a period of 72 h. The medium with FFA mixture was renewed 
daily.

FACS analysis.  Hepatocellular cell surface CD36 expression levels were investigated by flow cytometry anal-
yses, conducted with a FACSCalibur cytometer (BD Biosciences) running CellQuest (BD Biosciences) acqui-
sition and analysis software. For analysis of CD36 expression primary hepatocytes were harvested after culture 
for 96 h, washed and incubated at 4 °C for 30 min with 20 µl anti-CD36-FITC antibody (Santa Cruz, sc-13572 
FITC) or mouse IgA-FITC (sc-3900) as isotype control in FACS buffer containing PBS with 0.5% BSA. Cells were 
washed again and resuspended in FACS buffer for measurement. The number of CD36 positive cells (%) in each 
experimental group was normalized to the number of CD36 positive cells (%) of normal cultured LRep1+/+ 
hepatocytes.

Statistical analysis.  Results are presented as mean ± standard error of the mean (SEM) or as box plots 
indicating the median, the interquartile range in form of a box, and the minimum and maximum as whiskers. 
All statistical analyses were performed using SigmaPlot 12.0 (Systat Software Inc., Erkrath, Germany). After test-
ing for normality and equal variance across groups differences between the two groups and time points were 
assessed by two-way ANOVA followed by the appropriate post hoc comparison (Holm-Sidak method) including 
Bonferroni probabilities to compensate for multiple comparisons, p < 0.05 was used to define statistical signifi-
cance. If the data were not normally distributed, pairwise comparison was performed using Mann-Whitney Rank 
Sum test including Bonferroni probabilities to compensate for multiple comparisons, and thus statistical signifi-
cance was set at p < 0.0083. For reasons of clarity and comprehensiveness, only statistically significant differences 
and p-values p < 0.05 between the groups of an individual time point are indicated in the figures.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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