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Abstract

Population modeling evaluations of pesticide exposure time series were compared to aspects of a 

currently used risk assessment process. The US Environmental Protection Agency’s Office of 

Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk 

assessments, but does not routinely make full use of the information in those time series. We used 

mysid shrimp Americamysis bahia toxicity and demographic data to demonstrate the value of a 

toxicokinetic-toxicodynamic model coupled with a series of matrix population models in risk 

assessment refinements. This species is a small epibenthic marine crustacean routinely used in 

regulatory toxicity tests. We demonstrate how the model coupling can refine current risk 

assessments using only existing standard regulatory toxicity test results. Several exposure 

scenarios (each with the same initial risk characterization as determined by a more traditional 

organismal-based approach) were created within which population modeling documented different 

risks than assessments based on the traditional approach. We also present different acute and 

chronic toxicity data scenarios where TK-TD coupled with population modeling can distinguish 

different responses; responses that tradition risk evaluations are not designed to detect. Our results 

reinforce the benefits of this type of modeling in risk evaluations, especially related to time-

varying exposure concentrations.
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INTRODUCTION

Most determinations of acceptable toxicant concentrations to aquatic organisms are still 

based on a combination of single species, organismal-level standardized laboratory tests 

conducted using constant exposure concentrations (e.g., Stephan et al. 1985; CCME 1991). 

The need for this type of testing will likely never go away; however, real world toxicity 

exposures are rarely constant— even for short durations. This is particularly true for 

pesticides because they are applied on a periodic schedule. In recognition of this, 

mechanistic effect models are receiving increasing attention, especially as they relate to risk 

assessment of pesticides. Many of these incorporate some aspect of toxicokinetics (TK) and 

toxicodynamics (TD) at either the organismal or population level (Hommen et al. 2016). 

Toxicokinetics describes the accumulation of a toxicant from the surrounding medium or 

food and the subsequent metabolism or elimination of the absorbed material. The balance of 

these two processes determines the time course of the internal concentration. 

Toxicodynamics describes the effect of this internal concentration on the organism—either 

lethal or sublethal. In the simplest application of TK-TD the effect is directly proportional 

the internal concentration.

There is a rich history of TK and TD modeling within the toxicity testing research 

community with attempts to address extrapolation from relatively simple laboratory 

exposure scenarios to time-varying exposures that might be more likely in the field. Through 

some straightforward mathematics, internal toxicant concentrations can be calculated (TK), 

and an organism’s response to that internal concentration can be estimated (TD). This 

approach provides more realistic assessments of time-varying toxicant concentrations than 

are achieved assuming constant exposure concentrations. Most of the earliest applications of 

the technique addressed survival in laboratory exposures in which the toxicant 

concentrations declined appreciably over the duration of the test (e.g., Southworth et al. 

1978; Kooijman 1981; Widianarko and Van Straalen 1996). Among the earliest applications, 

Mancini (1983) used the technique to evaluate both declining and increasing concentrations 

with time. Others have followed, applying TK-TD methods to the evaluation of a variety of 

time-varying concentration scenarios (e.g., Péry et al. 2001; Ashauer et al. 2007).

Most applications of TK modeling make the simplifying assumption that an organism is a 

onecompartment model (i.e., the whole-body concentration represents the target 

concentration), and assume uptake and elimination kinetics are first order. Modifications to 

these efforts include expanding on TD through incorporating damage and recovery rates 

within the organisms. Instead of assuming instantaneous damage and instantaneous 

recovery, these models include response kinetics for translating internal concentration into 

damage, as well as recovery rate for the repair of damage (Lee et al. 2002; Ashauer et al. 

2007). This added feature explains effects which continue after exposure has ended (e.g., 
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Ashauer, et al. 2010). The enhancement, however, comes with additional data requirements 

to estimate damage and recovery kinetics—often requiring measured internal concentrations 

(Jager et al. 2011), which are generally not available in standard regulatory test procedures. 

One potential objection for using toxicokinetics is the perceived need for internal 

concentration measurements. This objection, however, is overcome by using a scaled 

internal concentration. The concept of rescaling the internal concentration was used by 

Kooijman (1981) and Mancini (1983). The former scaled the internal concentration by 

dividing by the bioconcentration factor (which can be estimated by the ratio of the uptake 

rate constant to the elimination rate constant), and this is how rescaling is often done now 

(Péry et al. 2001; Jager et al. 2011; Ashauer et al. 2013). Mancini (1983), however, scaled by 

only dividing by the uptake rate constant. Either technique permits TK-TD modeling 

without the need to measure internal concentrations or to estimate the uptake rate constant, 

since a time course of survival or other effects can be related to the scaled internal 

concentration.

Linking TK-TD to population models is a useful way to incorporate variations in life history 

strategies into the risk evaluation of time varying exposure concentrations. This has often 

been accomplished through either individual-based models or matrix models (Billoir et al. 

2007; Gabsi et al. 2014; Galic et al. 2014; Liu et al. 2014; Dohmen et al. 2016; Ducrot et al. 

2016). However, despite this and despite the routine use of population models in ecology, 

conservation biology and natural resource management, their application in environmental 

risk assessment is extremely limited (Schmolke et al. 2010, Galic et al. 2014; Hommen et al. 

2016). Although guidance for the use of a TK-TD population model (based on dynamic 

energy budget—DEB— theory) has been included in the European Union’s (EU) risk-

assessment guidance for the evaluation of ecotoxicological data (OECD 2006), its use, or 

any other population model, in formal risk assessments is uncommon (Forbes et al. 2009; 

Ducrot et al., 2016; Raimondo et al. 2018). The approach to using DEB in population-level 

risk assessments is one of the more sophisticated modeling efforts. However, standard 

toxicity tests will rarely if ever have enough data to justify the complexity, thus, 

simplifications are frequently used (Jager et al. 2104, and references therein).

Toxicokinetic-toxicodynamic models are one of the most suitable methods to incorporate 

realistic exposure patterns into effects (Ducrot et al. 2016). Coupling TK-TD and population 

models also integrates several organismal effects (e.g., survival and reproduction) into a 

unified risk evaluation (population growth, recovery rate, etc.). In addition, population 

models address the influence of life history differences among species such as the timing of 

reproduction relative to exposure in their response to a specific exposure scenario (e.g., 

Etterson and Bennett 2013). Most population models provide insight that cannot be 

otherwise achieved with traditional risk assessments (Schmolke et al. 2010). With all the 

potential advantages of modeling, especially TK-TD linked modeling, it seems 

counterintuitive why they are not considered more in risk evaluations (Raimondo et al. 

2018). Just the opposite is true for chemical fate and exposure models. These are routinely 

used in pesticide risk evaluations in the EU (FOCUS 2001) and the U.S. (Pesticide in Water 

Calculator, see methods for citation link). Despite the acceptance and use of exposure 

models, there remain obstacles facing the adoption of population effect models in ecological 

risk assessment—not the least of which is convincing risk assessors and other stakeholders 
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that effects models can result in more accurate and realistic risk characterizations (Forbes et 

al. 2009). Current risk assessment relies heavily on exposure model predictions compared to 

empirical toxicity test results and assumes the latter are not amenable to predictive modeling 

such as TK-TD. The work we present herein not only reinforces the benefit of TK-TD 

models, but also demonstrates this using standard regulatory toxicity data.

We have developed a coupled TK-TD population modeling platform that can be used with 

existing data on exposure and effects. To demonstrate its utility in risk assessment, we have 

contrasted its results with those of “traditional” risk assessment methods which use 

empirical measures of effects and deterministic and probabilistic measures of exposure. We 

used mysid shrimp Americamysis bahia toxicity and demographic data to demonstrate the 

value of a TK-TD model coupled with a series of matrix population models in risk 

assessment refinements. The mysid shrimp is a small marine epibenthic crustacean, and a 

standard marine invertebrate toxicity test species. We are not promoting our mysid model as 

the only, or necessarily the best way to accomplish this risk refinement. Although, we do 

provide a novel way to incorporate sublethal effects into TK-TD models when restricted to 

standard toxicity data. Our paper only shows the value for risk to a single test species. It 

does not address other aspects of pesticide risk evaluation—such as species sensitivity 

distributions, joint probability curves, etc.

MATERIALS AND METHODS

The Office of Pesticides Programs has specific test guidelines for acute and chronic tests for 

the mysid shrimp Americamysis bahia (OCSPP 850.1035 and OPPTS 850.1350, 

respectively, https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances). To 

demonstrate the utility of TK-modeling under the current regulatory framework, parameter 

estimation for TK-TD modeling was restricted to data typically expected from these 

standard toxicity tests.

Exposure modeling

For assessing pesticide risks to aquatic organisms, the USEPA’s Office of Pesticide 

Programs (OPP) models pesticide spray drift, runoff and erosion into a hypothetical 

agricultural pond with specific water body and watershed characteristics. Numerous 

scenarios represent different crop, regional, climate, watershed and agronomic specification 

across the United States. These scenarios are intended to capture agronomic and regional 

factors that influence the delivery of pesticides to surface waters (e.g., precipitation patterns, 

soil characteristics, pesticide application timing). With each of these agricultural scenarios, 

the Pesticide in Water Calculator (PWC, https://www.epa.gov/pesticide-science-and-

assessing-pesticide-risks/models-pesticide-riskassessment) simulates daily concentrations 

for 30-year exposure distributions for surface water, sediment and interstitial (pore) water. 

Because the PWC output depends in part on soil properties, soil and crop management 

practices and weather data, different regions of the country and different crop types will have 

different aquatic exposure time series for equivalent applications of the same pesticide.

The three 30-year time series for our comparisons were based on one of OPP’s modeled 

aquatic endosulfan exposures (USEPA 2010). The exposure calculations for endosulfan were 

Thursby et al. Page 4

Environ Toxicol Chem. Author manuscript; available in PMC 2019 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://www.epa.gov/test-guidelines-pesticides-and-toxic-substances
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/models-pesticide-riskassessment
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/models-pesticide-riskassessment


calculated using USEPA’s PRZM/EXAMS models—these have now been replaced by the 

Pesticide in Water Calculator referenced above. Endosulfan is an organochloride insecticide 

and acaricide whose use in the United States was cancelled in 2010, with a phase-out period 

lasting through 2016 (https://archive.epa.gov/pesticides/reregistration/web/html/endosulfan-

agreement.html). The selected water concentration series was used to create two additional 

series by multiplying almost all the daily values by either 0.5 (low) or 1.5 (high). As 

explained below, OPP’s initial deterministic risk assessment is based on an evaluation of the 

30 annual maximum values (we did not adjust the daily values associated with these annual 

maxima). We created the “low” and “high” time-series in such a way to maintain these 30 

annual maxima—thus guaranteeing that the deterministic risk evaluation would be identical 

for each of the three exposure time series. These time series are presented in Thursby 

(2016).

Risk analyses

Three common types of risk analyses were used for calculating the toxicity effects of the 

different exposure time series—deterministic, probabilistic, and population-level methods. 

The deterministic approach is currently the first tier of an assessment within an OPP 

regulatory risk determination. In this approach, the daily average time series data are used 

for comparison against acute toxicity data, or, are converted to either a 21-d running average 

(for evaluating chronic exposure to invertebrates) or a 60-d running average (for evaluating 

chronic exposure to fish or aquatic phase amphibians). These running averages are part of an 

existing regulatory program which made science policy decisions to represent chronic 

exposure as either 21-d or 60d running averages. Once a time series is selected—and the 

running averages calculated—the maximum value for each year is recorded. An estimated 

environmental concentration (EEC) is determined for each time series as the 90th percentile 

of the 30 ranked values of annual maxima and is subsequently used to calculate a risk 

quotient (RQ), which is the EEC divided by a toxicity value of interest. Chronic data for the 

marine invertebrate mysid shrimp Americamysis bahia were used, thus 21-d running 

averages of each time series exposure data were calculated for the deterministic 

comparisons. The chronic endpoint for A. bahia is 0.27 ug/L, based on the geometric mean 

of five values for the 28-d No Observable Adverse Effect Concentration (NOAEC) for 

endosulfan (McKenny 1982). Use of NOAECs is criticized by some; however, we apply it 

here because it is the chronic value used in the calculation of RQ values for the registration 

of pesticides in the US. The probabilistic approach also used the 21-d running average data, 

but included all the exposure data, not just the annual maxima, as cumulative distributions. 

The same mysid chronic endpoint was used as in the deterministic approach, except this 

approach calculates the probability that the exposure data exceeds that endpoint using counts 

of how many concentration values in each time series are greater than the endpoint value 

(28-d NOAEC). The third risk analysis approach used TK-TD modeling coupled with matrix 

population models. The details are described in the following sections. What is worth noting 

here relative to the deterministic and probabilistic approaches, however, is that the 

population modeling approach used the daily exposure values rather than the 21-d running 

averages.
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Toxicological factors

Toxicokinetics using scaled internal concentration.—We used Mancini’s (1983) 

method for estimating the scaled internal concentration—although this author did not use the 

phrase. Equation (1) is the commonly used differential equation for a one-compartment 

model to estimate the rate of toxicant change in an organism’s internal concentration.

dQ(t)
dt = kiCw − keQ(t) (1)

Where

Q(t) = concentration of toxicant inside organism at time t (μg/g);

Cw = concentration of toxicant in external medium (e.g., water—μg/L);

ki = uptake into organism rate constant (L/g·t);

ke = elimination rate constant (1/t);

t = time.

Simply put, the amount by which the internal concentration increases in each time interval is 

equal to a constant proportion of the external concentration minus an elimination rate that is 

proportional to the current internal concentration. The elimination rate does not distinguish 

between actual excretion or any of several potential internal detoxification processes. The 

solution to this differential equation is:

Q(t) =
ki
ke

Cw 1 − e
−ke ⋅ t

(2)

The internal concentration is then scaled by dividing both sides by ki, which is usually not 

known directly nor can it be easily calculated indirectly from standard toxicity test data.

Q(t)
ki

=
Cw 1 − e

−ke ⋅ t

ke
(3)

The scaled internal concentration is now a function of the external water concentration—

which can be measured or modeled—and the elimination rate constant. The elimination rate 

parameter can be estimated from standard acute test data by plotting the LC50 vs time 

(Verhaar et al. 1999; Lee et al. 2002).

Thursby et al. Page 6

Environ Toxicol Chem. Author manuscript; available in PMC 2019 October 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



LC50t =
LC50∞

1 − e
−ket (4)

Toxicodynamics for survival.—Survival probability is treated as proportional to the 

scaled internal concentration (Bedaux and Kooijman 1994) and can be calculated once the 

killing rate (kkill, defined below) is estimated. This survival probability is in addition to 

natural background survival. In other words, the probabilities of surviving from one age 

group to the next in the control are multiplied by S(t) calculated below. The killing rate 

constant is initially derived from standard toxicity data (usually acute data) by fitting a 

survival probability equation to time-todeath data for a given external concentration (see 

equation B-13 in Thursby 2016). Using the Widianarko and Van Straalen (1996) 

proportionality constant’s relationship to the Bedaux and Kooijman (1994) killing rate we 

can derive the hazard function.

h(t) = kkill ⋅ ke ⋅
Q(t)
ki

−
QNEC

ki
(5)

Where:

h(t) = hazard function—the probability of dying at time t given the individual has 

survived to time t (Lee and Wang 2003),

QNEC/ki = the scaled no effect internal concentration—determined during the 

calibration step, see below, and kkill = killing rate (L/μg·t).

Survival is a function of the cumulative hazard function over a given time interval (Lee and 

Wang 2003).

S(t) = exp −∫
0

t

h(x)dx) (6)

Because our time interval is daily (t = 1), Equation (6) simplifies to:

S(t) = exp −kkill ⋅ ke ⋅
Q(t)
ki

−
QNEC

ki
(7)

Equation (7) converts a 30-year daily time series into a 30-year series of daily survival rates. 

Note, the model was set so that S(t) defaults to 1.0 when Q(t)/ki < QNEC/ki.

Toxicodynamics for reproduction.—Reproductive effects cannot usually be handled in 

the same manner as survival. Simple toxicodynamics for sublethal effects are not easily 
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calibrated and generally require more data than provided by traditional test protocols 

(Ashauer and Brown 2013, Martin et al. 2013). Standard tests often do not have sufficient 

time series data for reproductive output to estimate directly the kinetic coefficient for 

reproduction (i.e., analogous to the survival killing rate). To compensate for this the 

reproductive effects rate (kR) was calculated by multiplying kkill by a reproduction 

adjustment factor (RAF)—which assumes a constant relationship between survival and 

reproduction kinetic rates (kR = kkill·RAF). A RAF value of zero means there is no direct 

effect of the toxicant on reproduction. Values greater than zero indicate some degree of 

direct effect on reproduction, and the greater the value the greater the effect relative to 

survival. The most readily available reproduction data usually will be chronic end-of-test 

effects information. For the model used herein, the ratio of chronic reproduction (28d EC50) 

to chronic survival effect (28-d LC50) to was used as a starting value which was further 

adjusted during the calibration procedure described below. While not ideal, this is the best 

that can be done with the available standard mysid toxicity data. The equation for 

reproduction proportional effects is:

R(t) = exp −kR ⋅ ke ⋅
Q(t)
ki

−
Q*NEC

ki
(8)

Where Q*NEC/ki is the scaled internal no effect concentration for reproduction, which is 

estimated independently from the NEC for survival (see calibration section below).

Matrix population model

Our population approach builds upon a matrix population model previously developed for 

the marine invertebrate Americamysis bahia (Thursby 2009). The approach was patterned 

after periodic matrix models (Caswell 2001), creating 52 sub-matrices to represent weekly 

population activity. Unlike true periodic matrix models, the sub-matrices were not multiplied 

together to create a single annual matrix. This adaptation of the model retains the basic 

structure of the original matrix model—subpopulation groups were age classes with a one-

week time step (Thursby 2009). All age classes (ranging from 1 to 13 weeks) were assigned 

the same sensitivity, differing only in the length of time exposed. The earlier model is 

density independent, stochastic, and assumes constant exposure concentrations. The current 

model is density dependent and deterministic and allows variable exposure concentrations. 

The density dependent factor was calculated based on Leslie (1948) and required 

specification of a carrying capacity. Because the maximum size of field populations for 

mysids is not easily known, 100 was chosen as the maximum—100%, so the carrying 

capacity is a relative number. For specifics on the density dependence equation see Thursby 

(2016).

Each sub-matrix represented the population’s status for a given week within the year, and 

therefore integrated a different past exposure. Each age class within a sub-matrix maintained 

a separate record of its past exposure. For example, age classes 1 and 2 integrated exposure 

from the previous 7 and 14 days, respectively. The model endpoint was the proportion of 

weeks within the 30-year time series where the model population declined to or below a 
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given threshold based on weekly counts of total population size. The decline was measured 

against a control response using a time series without exposure. The survival and fecundity 

rates for each weekly submatrix were modified based on the daily S(t) and R(t) time series; 

however, the sub-matrix timestep was one week. To compensate, the minimum survival for 

each week was used for that week’s matrix adjustments. For reproduction, the R(t) value for 

the last day of each week was used. The modeling result was a time series showing the 

weekly change in population size as a percentage of the control response. The response was 

quantified by counting the number of times the weekly population size fell below a given 

threshold—expressed as a fraction of the total number of weeks in 30 years (1,560 weeks).

The risk of a population falling below a threshold is obviously a function of a specified 

threshold (the closer the threshold to the control, the greater the potential for observing that 

change). Using a range of percentage declines from the control, risk curves were 

constructed, in which a range of population thresholds (i.e., 5 to 95% in 5% steps) were used 

and the area under such curves was considered proportional to the total risk (Burgman et al. 

1993). As a comparison, we included the World Conservation Union thresholds for 

vulnerable (30% decline), endangered (50% decline) and critically endangered (80% 

decline).

Model calibration.

The toxicological data for the model runs were based on endosulfan acute and chronic 

interlaboratory comparisons (Schimmel 1981 and McKenney 1982). For calibration 

purposes, the model was run using constant concentrations covering the range of measured 

values within the available 28-d chronic tests (McKenny 1982). A special, four-week, 

density independent version of the model was used for calibration. Chronic toxicity tests 

were assumed to have sufficient feeding rates and low enough population density to make 

density dependent factors irrelevant. As with the standard chronic toxicity test, the model 

runs began with all 100 individuals assigned to the youngest age class (corresponding to 

100%). Calibration runs only tracked this initial cohort through each additional week as a 

measure of survival. The initial estimate of the survival kinetic parameter (killing rate) was 

adjusted to achieve the best fit to the endosulfan chronic data. In addition, a threshold 

parameter was added to the Thursby (2016) model allowing the incorporation of a no-effect 

lower limit for the scaled internal concentration. The final kinetic killing rate used in all the 

30-year model runs was 0.30, and the scaled internal no effect threshold concentration 

(QNEC/ki) was set to 0.25. The modeled values for survival for A. mysis match well the 

measured survival data endosulfan in a 28-d standard chronic test (Figure 1). Similarly, the 

reproduction adjustment factor (RAF, which creates the reproduction kinetic rate) and the 

reproduction-scaled internal no-effect concentration were manipulated to achieve a 

reasonable fit to the measured reproduction data (Figure 2). The RAF for this fit was 4.5 and 

the reproduction threshold (Q*NEC/ki) was 2.00.

Toxicity scenarios

The population model was used to compare not only the different exposure time series, but 

also to evaluate the effect of changes in kinetic rates, as well as the relative sensitivity of 

survival and reproduction, on risk estimations using the same time series. The kinetic 
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parameters for each of these are listed in Table 1. Two different species exposed to the same 

toxicant could have similar 96 hr LC50 values, but significantly different LC50 values at 

other time intervals. Using the standard deterministic or probabilistic risk analysis 

approaches, two similar 96 hr LC50 values would result in the same estimation of acute risk 

for a given exposure time series. However, LC50 values can change substantially with length 

of exposure in standard tests, even beyond the usual 96 hr test limit. It also is not unusual for 

the 24 hr LC50 result to be similar to the 96 hr value. These two scenarios were created 

using ke values of 0.025 and 1.25 d−1 (“slow” and “fast” kinetics, respectively). The 96 hr 

LC50 was 1.3 μg/L and the 24 hr values were 5.01 and 1.81 μg/L, respectively.

The population model was also used to address the relative toxicological sensitivity of 

survival compared to reproduction. In one scenario, survival and reproduction had similar 

dose response curves (Figures 1 and 2). This was based on the actual endosulfan mysid 

chronic test data. In the other scenario, survival was assumed to be insensitive relative to 

reproduction (Figure 3). Toxicity data were selected so that both scenarios had similar 

NOAEC values (based on reproduction), and therefore both would have similar traditional 

deterministic and probabilistic evaluations of chronic risk. In the special model run where 

survival was artificially set to be significantly less sensitive to endosulfan than reproduction, 

the RAF was changed to 13.5, and the thresholds for survival and reproduction were 5 and 1, 

respectively. In addition, kkill was changed to 0.10 to keep kR at 1.35 (the same value used in 

the other scenario).

RESULTS

Deterministic

All three 30-year exposure series have the same annual maxima for the 21-d running average 

concentrations (Table 2), and thus the same 90th percentile value (0.772 ug/L). For this 

example, the mysid endosulfan chronic NOAEC is 0.27 ug/L (McKenny 1982) making the 

RQ for mysids 2.86. By design, this estimated risk was the same for all three time series.

Probabilistic

The cumulative distributions of the three endosulfan concentration exposure series are 

shown in Figure 4. Although the deterministic approach shows the same risk analysis for 

each of the three exposure scenarios, the probabilistic approach clearly shows differences 

among the three. The probabilities of exceeding the chronic value for mysids (0.27 ug/L) are 

8, 40 and 76%, for the x0.5, original and x1.5 series, respectively.

Population modeling

Predicted mysid population declines for the three 30-year endosulfan exposures are shown in 

Figure 5. As an example, a 10% decline means that the threshold for counting was 90% of 

the control, and this occurred in approximately half of the weekly counts for the “x0.5” 

exposure time series. The areas under the curves are 14% for x0.5-time series, 35% for 

original time series and 52% for the x1.5-time series. The greater the area under a curve, the 

greater the overall probability of effect. Summary statistics using the IUCN thresholds for 

vulnerable, endangered and critically endangered populations are listed in Table 3. Note that 
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the vulnerable category values are similar to those from the probabilistic approach, but this 

is likely coincidence.

Acute scenarios.

The population modeling results from the comparison with different acute toxicity kinetics 

are plotted in Figure 6—the acute dose responses for both model runs had the same 96 hr 

LC50, but significantly different LC50 vs time scenarios. Only the data from the “original” 

exposure time series (Figure 6, bottom) are displayed. However, the results for the other two 

exposure time series were similar. The modeled population responded quicker when the 24 

hr LC50 value was closer to the 96 hr LC50 value, but displayed a larger decline when the 

24 hr value was greater than the 96 hr value.

Chronic scenarios.

The modeling outputs for two different survival-reproduction toxicity scenarios are plotted 

in Figure 7. The NOAEC for each was similar and based on reproduction. Only the results 

for model runs using the original time series are shown, but as with the acute scenarios the 

relative results for the other two exposure time series were similar.

DISCUSSION

We successfully coupled toxicokinetic-toxicodynamic and matrix population models for risk 

evaluations of 30-year exposure time series. Most significantly, we demonstrated how this 

coupling can refine current risk assessments by using only results from standard toxicity test 

data. Ecological risk assessments for pesticides in the United States involve a complex 

exposure characterization and effects assessment, which are then combined into a final risk 

characterization. The effect and risk characterizations are applied to a broad range of 

freshwater, marine and terrestrial organisms, as well as to both acute and chronic effects 

scenarios. We restricted our evaluation to the marine invertebrate, Americamysis bahia, 
however, there is no reason this approach cannot be accomplished for any of the standard 

species used in pesticide risk assessments. Clearly, we are not the first to recognize and 

promote the value of population modeling in moving beyond the current standard use of 

single species toxicity tests based on the response of individuals (see reviews in Forbes et al. 

2008 and Forbes et al. 2016), or the use of standard toxicity data (Ashauer et al. 2013). In 

the past, however, most of the emphasis on this value focuses on the ability of population 

models to merge lethal and sublethal endpoints into a single endpoint (e.g., population 

growth rate, or population recovery rate), as well as on the ability of TK-TD models to 

integrate time-varying exposure series. These are certainly very valuable attributes; however, 

population models still are rarely used in regulatory risk decisions (Raimondo et al. 2018). 

Regulatory programs still primarily rely on empirical toxicity data as the evaluation of 

choice. Modeled output for exposure is readily accepted—for the evaluation of exposure 

scenarios that are difficult if not impossible to evaluate empirically. Why not the same 

acceptability for effects predictions?

One reason could be the perception that population models are too complex to adequately 

derive the variety of needed parameters. As one paper expressed it, some of the more 
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sophisticated effects models are “data hungry” (Jager et al 2014). This is not a good reason 

to avoid effects models altogether while we wait on test guidelines to catch up to model data 

needs. We have added to the growing number of analyses showing the ease and utility of 

TK-TD/population models. We have done this by emphasizing the use of data already 

submitted during the registration process for pesticides. These data were used in 

comparisons among population modeling results and more “traditional” risk assessments.

In our initial comparisons, risk characterization began with a simple deterministic approach 

whereby risk quotients (RQ) were calculated by dividing estimated environmental 

concentrations by the mysid’s chronic value. Because the three 30-year time series were 

created to contain the same annual maxima, they all had the same RQ—2.86. This value was 

compared against an established level of concern (LOC) for chronic risk to aquatic animals 

(see Chapter 5 in USEPA 2010). The RQ exceeded the LOC value of 1, therefore there is the 

potential for chronic risk to marine invertebrates. However, this first tier approach could 

make no distinction in terms of risk among the three very different time series. The more 

inclusive probabilistic approach creates an obvious distinction among the three exposure 

time series. The probabilistic approach, however, cannot distinguish among a variety of 

potential toxicological or exposure scenarios. These include fast versus slow acute kinetics, 

potential differences in survival versus reproduction effects, and distinguishing differences 

caused by the timing of a spike in exposure concentration. For this latter case, the 

probabilistic approach only displays how many times within 30 years that a give 

concentration occurs. It cannot, for example, even distinguish between an impactful 

concentration occurring 30 times within a single year and the same concentration only 

occurring once a year for 30 years. Because TK-TD modeling can track time-varying 

concentrations, population modeling which includes TK-TD can easily distinguish between 

these.

Where the utility of population models was best demonstrated, and perhaps will best 

demonstrate their usefulness in the refinement of risk assessments, was to distinguish 

between difference in toxicological scenarios. We chose comparisons using plausible 

differences in toxicity situations that traditional assessments are not designed to detect. Yet 

with some simple refinements this need not be the case. One of these scenarios focused on 

TK-TD differences with otherwise similar standard acute toxicity data summaries (i.e., 

similar 96 hr LC50 values). While the ke value for an individual species/toxicant 

combination is generally assumed to be constant, ke values can vary substantially among 

species (Rubach et al. 2010). The effects on population size are not always intuitive. The 

more similar a 24hr LC50 is to a 96 hr LC50 the quicker a species internal concentration 

responds to a change in the environmental concentration for a given 96 hr LC50—fast 

kinetics. One might be tempted to assume that this would mean greater potential mortality, 

thus a greater effect on the number of individuals in the population. The greater the ke value, 

the faster the kinetics, also means the quicker the internal concentration declines when the 

environmental concentration declines. When the acute kinetics are such that the 24 hr value 

is significantly greater than the 96 hr value, a peak in exposure may pass before the full 

potential mortality is realized. However, this also means the internal concentration may not 

decline quickly when a peak occurs, thus allowing continual increase in the internal 

concentration—and greater overall mortality. In the example we present, the case with the 
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lower 24 hr LC50 is less detrimental to the population growth. Coupling TK-TD and 

population models gives a refinement that aids in distinguishing among exposure time series. 

It is worth noting that the distinction revealed with these differences in ke values was within 

the same 30-year time series. The traditional risk evaluation would have assigned the same 

risk under both conditions (because the 96 hr LC50s were the same).

Being able to accommodate differences in toxicokinetics is only one value demonstrated by 

our evaluations. Linking population modeling with TK-TD adds an additional refinement 

that cannot be accomplished with traditional risk assessments. While the probabilistic 

approach also used all the exposure data, and clearly differentiated among the three different 

30-year time series, it is not designed to distinguish between the toxicity scenarios we 

presented. It is easy to envision a set of chronic toxicity data within which reproduction is 

significantly impaired, yet survival is little effected—as well as a data set within which 

reproduction and survival have similar concentration responses. We present a compelling 

argument for the utility of coupled TK-TD and population models in distinguishing between 

these two data situations. The way we set up these two situations, the chronic values (based 

on the NOAEC for reproduction) were the same—therefore the expected chronic risk based 

on traditional assessments of a given time series would be the same. However, the model 

runs where both survival and reproduction had similar dose responses to endosulfan had a 

higher probability of decline than those model runs where reproduction is essentially the 

only effected parameter. This is consistent with earlier assertions that reproduction generally 

has a lower elasticity than other life cycle traits, especially among small invertebrates 

(Forbes et al. 2010). We also tested the scenario where survival was the basis for the 

NOAEC and reproduction had similar sensitivity as survival or no effects at all (results not 

shown). The results of these two scenarios were not very different, largely because the 

matrix reproduction parameter was a function of both survival and maternity rate (see 

Caswell 2001, equation 2.34). So even though we could eliminate toxic effects on the 

number of offspring per female, the model still shows a reproductive effect because of 

effects on female survival rate.

Including a TK-TD/population model is not a cure-all for risk characterizations. We can 

calculate an effect relative to a control response and provide an estimate of the probability of 

decline below a threshold. A challenge with this approach is the selection of a population 

threshold. One solution is to use thresholds that have already been established. For example, 

the World Conservation Union (IUCN 2012) defines a population as vulnerable if a 30% 

decline is observed over a specified amount of time or number of generations. A population 

is endangered if there is a 50% decline, and critically endangered if an 80% decline is 

observed. While the IUCN uses different data than those calculated herein, their thresholds 

present a useful starting point for establishing biologically significant thresholds. The issue 

of “what is ‘biologically significant’ is a major problem in conservation biology and does 

not seem to have easy solutions” and it is more a policy decision which should be agreed 

upon by consensus (Reed and Blaustein 1997).

An alternate approach to summarizing population model results, that solves the problem of 

what threshold to select, is to use a series of thresholds. This approach calculates the area 

under a curve that plots probability of decline against a full range of thresholds. This is 
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analogous to population viability risk curves, where the area under the curves represents the 

change in the expected minimum population size (Burgman et al. 1993). Our population data 

are not the same as those used in the quasi-extinction definition of risk in Burgman, et al. 

(1993). The concept, however, of relating total risk to the area under the curve is similar. The 

decision of what constitutes a biologically significant probability of risk still looms. 

Establishing an acceptable change in area under the “risk curve” still requires consensus, and 

is still a science-policy decision. We may be better able to understand and feel more 

comfortable defending a population modeling endpoint compared to the probability of a 

chronic value being below exposure data; however, we cannot eliminate the need for 

judgement.

Coupled TK-TD/population models are a convenient mathematical method to integrate 

multiple sources of effects (e.g., effects on survival and reproduction) into a single endpoint. 

We must keep in mind that applying population modeling for interpreting a time series of 

exposure does not automatically mean greater sensitivity of a species to that time series 

relative to the single endpoint (e.g., RQ approach). It just gives us greater ability to explain 

and characterize risk according to time-varying exposures. When examining only organism-

level data, large effects on the demographic rates (e.g., survival or reproduction) do not 

necessarily translate into large population growth rate (Caswell 1996). In other words, a 

compound cannot be assumed to cause the same degree of effect on population growth rate 

as it does on survival or reproduction. This phenomenon is true for a variety of exposure 

scenarios with A. bahia (Raimondo and McKenney 2006; and Grear 2016). Similarly, 

nematode reproduction is more sensitive to cadmium than juvenile period (duration as 

juvenile); however, change in juvenile period has a greater effect on population fitness than 

does effects on reproduction (Kammenga et al. 1996). Clearly, species that have different life 

history strategies can respond differently to a stressor producing responses of similar type 

and magnitude at the individual level (Stark et al. 2004; Baveco et al. 2014).

Population models hold great promise for integrating exposure, toxicity and life history 

information into meaningful measures of risk. The value added from population modeling is 

the ability to distinguish among risks due to differences in toxicity kinetics, as well as 

differences in patterns of exposure time series. The acute and chronic scenarios we presented 

clearly indicate the potential for enhancing risk assessments through coupling TK-TD and 

population modeling—without requiring new toxicity test guidelines. Several circumstances 

can occur wherein population modeling results in different risk conclusions than do 

assessments based on more traditional endpoints such as LC50s, NOAECs and RQs. 

Population modeling provides a more complete assessment of the potential risk of a time-

varying exposure. In the future, with wider acceptance of TK-TD and population modeling 

in the regulatory arena, standard regulatory toxicity test procedures may change to reflect the 

need for better derivation of model parameters. In the meantime, we have shown that 

existing toxicity data requirements are effective in the application of simple population 

models. We stress that our purpose was not to promote a definitive model, but rather to 

quantify the ability of these types of models to distinguish among various exposure time 

series, as well as among different toxicological features. We presented output for the same 

time series wherein very different risk conclusions can result from choice of determinate, 

probabilistic or population modeling approaches. Population models clearly refine the 
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evaluation of toxicant exposure time series, and can be a significant part of a tiered 

assessment approach. However, such models do not have to be relegated to later tiers. 

Population modeling can be incorporated into the first levels of risk evaluation using existing 

required toxicity data. If an initial population modeling effort using minimal toxicity data 

demonstrates the potential for a significant risk, higher tiered efforts can require more 

complex toxicity testing, yet still use the same modeling approach. We demonstrated a way 

for regulatory programs to incorporate TK-TD and population models using existing data 

until improvements are made to modeling and test guidelines.

Next steps

It is tempting to make a list of ways within which existing population models or standard 

toxicity tests could be improved to meet regulatory needs. These might include refinements 

for the inclusion of sublethal effects in TK-TD models, or changes to toxicity test guidelines 

to accommodate modeling needs. These latter needs could include measured internal 

concentrations to estimate recovery kinetic parameters (Jager et al 2011), or post exposure 

monitoring within existing test protocols to evaluate carryover effects (Ashauer, et al. 2010; 

Galic et al. 2014). Additional work comparing the outputs among models of different 

complexities would be useful (e.g., Baveco et al. 2014), as well as guidance on when 

different levels of complexity are justified. Models and test guidelines can always be refined; 

however, until some sort of effects modeling is deemed acceptable (i.e., required) in formal 

risk assessments, all the refinement in the world will not matter. Hunka et al. (2013) provide 

an interesting analysis of stakeholders’ perspectives on applications of ecological modeling 

to pesticide risk assessments. The authors list a variety of obstacles to the acceptability of 

population models for regulatory use. It is interesting that most obstacles appear to have less 

to do with the above refinements, and more about communication between model makers 

and model users (i.e, risk managers). Raimondo et al. (2018) confirm that the issue of lack of 

population model use is less about scientific limitations and more about proper guidance on 

model selection in output interpretation, that is, communication.
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Figure 1. 
Comparison of modeled survival output with data from a 28-d laboratory chronic test using 

Americamysis bahia. Solid markers are the measured survival data from the endosulfan 

chronic test. Open markers are the modeled output—ke = 0.25, kkill = 0.30, and scaled 

internal no effect concentration (QNEC/ki) = 0.25.
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Figure 2. 
Comparison of modeled reproduction (based on number of young per female) output with 

the data from a 28-d laboratory chronic test using Americamysis bahia. Solid markers are 

the measured reproduction data from the endosulfan chronic test. Open markers are the 

modeled output. Survival kinetic parameters as in Figure 1, in addition, RAF = 4.5 and 

scaled internal no reproduction effect (Q*NEC/ki) was 2.00. The discontinuity around 0.5 μ/L 

is because the population reproduction is a function of both survival and maternity rate. At 

the lowest concentrations there is no direct effect on reproduction, but there is an indirect 

effect due to female mortality.
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Figure 3. 
Hypothetical 28-d dose responses for survival and reproduction where survival is less 

sensitive to endosulfan than reproduction. Model parameters were ke = 0.25, kkill = 0.10, 

RAF = 13.5, and no effect concentrations for survival and reproduction were 5 and 1 

respectively.
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Figure 4. 
Probability of exceeding a given concentration within the 21-d running averages of the 

exposure data. The center solid line is for the “original” time series, the lower dotted line for 

the “x0.5” data, and the upper dashed line for “x1.5”. The vertical dashed line is the NOAEC 

chronic value for mysids exposed to endosulfan (0.27 μg/L).
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Figure 5. 
Summary of the chance of a given % decline in mysid population size relative to the control 

response for each of the three exposures. The x-axis represents the estimated decline in the 

mysid population relative to the control. The y-axis is the fraction of weeks within the time 

series where a given decline (or greater) was present. The center solid line is for the 

“original” time series, the lower dotted line for the “x0.5” data, and the upper dashed line for 

“x1.5”. Vertical dashed lines represent % declines corresponding to IUCN categories of 

vulnerable (30%), endangered (50%) and critically endangered (80%).
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Figure 6. 
Time series for population size relative to the control response showing two LC50 kinetic 

scenarios (top)—elimination kinetic constants were 0.025 d−1 (dashed line, 24 hr LC50 

greater than 96 hr value) and 1.25 d−1 (solid line, 24 hr LC50 approximately equal to 96 hr 

value). For comparison, the daily concentration time series is shown (bottom).
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Figure 7. 
Summary of the chance of % decline in population size relative to the control for the original 

exposure time series. The data represent two different chronic test data scenarios. For the 

Survival = Repro scenario the dose response data for reproduction and survival were similar 

(see Figures 1 and 2). For the Survival < Repro model run survival was set to be less 

sensitive than reproduction, while keeping the reproduction doseresponse like that in the 

other run (see Figure 3). The area under the Survival = Repro curves is 35% and the area 

under the Survival < Repro is 5%.
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Table 1.

TK-TD kinetic parameters for the various modeling scenarios
a

Acute Kinetics
b Chronic Sensitivity

Model Parameters Standard Run Slow Fast Survival = Reproduction Survival < Reproduction

ke 0.25 0.025 1.25 0.25 0.25

kkill 0.30 0.30 0.30 0.30 0.10

RAF 4.5 4.5 4.5 4.5 13.5

kR 1.35 1.35 1.35 1.35 1.35

a
Parameters for the standard run are those based on the mysid acute and chronic endosulfan tests. The acute kinetics and chronic sensitivity 

parameters deviated from these values to make the toxicity scenario comparisons. bSlow: 24 hr LC50 value greater than 96 hr value. Fast: 24 hr 
LC50 value approximately equal to 96 hr value.

b
Slow: 24 hr LC50 value greater than 96 hr value. Fast: 24 hr LC50 value approximately equal to 96 hr value.
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Table 2.

Annual maximum daily concentration values based on 21-d running averages
a

Year Maximum (ug/L) Year Maximum (ug/L)

1 0.147 16 0.462

2 0.185 17 0.572

3 0.754 18 0.691

4 0.759 19 0.631

5 1.135 20 0.377

6 0.468 21 0.478

7 0.585 22 0.971

8 0.724 23 0.598

9 0.532 24 0.890

10 0.402 25 0.419

11 0.531 26 0.468

12 0.623 27 0.561

13 0.453 28 0.625

14 0.663 29 0.324

15 0.522 30 0.575

a
The 90th percentile is between the 3rd (year 24) and 4th (year 4) highest values.
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Table 3.

Summary statistics using the IUCN thresholds for Figure 5

Probability of falling below cut off (%)

IUCN Thresholds Cut off, % decline from control x0.5 Original x1.5

Vulnerable 30 19 52 75

Endangered 50 4 29 51

Critically Endangered 80 0 4 19
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