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Abstract: The emerging fiber-optic two-photon endomicroscopy technology holds a strong 
promise for enabling translational applications of nonlinear optical imaging. Effective 
femtosecond pulse dispersion management is critical for achieving high-quality imaging. 
Here we report systematic analyses and performance characterization of a dual-fiber spectro-
temporal dispersion management scheme involving a grating pair as the pulse stretcher. 
Compared with conventional linear-only compensation, the grating-based spectro-temporal 
compensation also takes into account nonlinear effects and enhances the two-photon signal by 
~3-fold as experimentally demonstrated. Numerical simulations were carried out to 
systematically investigate the influence of several key design parameters on the overall 
compensation efficacy. Furthermore, comprehensive performance comparison with an ideal 
grism-pair counterpart reveals that a grating-pair stretcher affords much higher power 
throughput and thus is preferable for portable endomicroscopy systems with limited laser 
source power. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction

The emerging two-photon endomicroscopy technology is critical for translational clinical 
applications of nonlinear microscopy, and recent studies have demonstrated its strong promise 
to enable functional histological imaging of internal organs in vivo, in situ and in real time [1–
10]. To develop an endomicroscope that truly lends itself to practical label-free imaging 
applications, the imaging signal-to-noise ratio (SNR) is of paramount importance [11]. Since 
two-photon excitation (2PE) efficiency scales reciprocally with the temporal pulsewidth [12], 
effective dispersion management is indispensable to fiber delivery of ultrafast laser pulses to 
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the distal end of the endomicroscope. It is well-known that a femtosecond laser pulse, when 
propagating through an optical fiber, is subject to temporal broadening induced by both linear 
dispersion and nonlinear effects [13]. The principal linear dispersion, the group delay 
dispersion (GDD), can be compensated by giving the shorter-wavelength component (which 
propagates slower in fiber) an appropriate head start; such negative pre-chirping can be 
realized by several methods such as a grating pair- or a prism sequence-based pulse shaper 
[14,15]. In the femtosecond regime, however, such a linear compensation method is only 
effective for very low-energy pulses. Even at a sub-ten mW average power, the peak intensity 
of a 150-fs pulse (e.g., at 800 nm with an 80 MHz repetition rate) launched into a single-mode 
fiber core (~5 µm in diameter) is high enough to induce substantial nonlinear effects and 
spectral changes, thus making linear-only dispersion compensation ineffective. Indeed, 
previous research has shown that the primary nonlinear effect, named self-phase modulation 
(SPM), can suppress the spectral bandwidth of a negatively-chirped ultrashort laser pulse 
[16,17]. Therefore, the negative pre-chirping GDD-compensation method always ends up 
with a narrowed spectral bandwidth, and temporal broadening is essentially inevitable as 
prescribed by the universal lower bound of time-bandwidth product [18]. This also explains 
previous observations that, starting with transform-limited 150 fs pulses, the best achievable 
pulsewidth out of an endomicroscope of an ~70 cm fiber length was on the order of ~400-500 
fs FWHM [1,7,9]. 

Since negative pre-chirping is indispensable to balance the positive in-fiber GDD within 
the typical 2PE wavelength range (700-1000 nm), an intuitive idea to counteract such 
inevitable SPM-induced spectral narrowing is to start with a pulse of broader spectral 
bandwidth. One easy-to-implement solution is to couple the initial unchirped pulses first into 
a piece of single-mode fiber (SMF), in which the SPM effect functions to broaden (rather than 
compress) the pulse spectrum [13]. Spectrally broadened pulses out of the first SMF are then 
negatively chirped and launched into the single-mode core of a second fiber (often a double-
clad fiber (DCF) in the two-photon endomicroscope), which restores both the spectral 
bandwidth and the temporal pulsewidth while delivering the pulses to the distal end of the 
endomicroscope [19]. In this manuscript, we will present detailed performance 
characterization and operational optimization of such dual-fiber spectro-temporal dispersion 
compensation scheme utilizing a grating pair as the pulse stretcher. Besides experimentally 
quantifying the enhancement of the two-photon signal, we undertook comprehensive 
numerical simulations which reveal practical guidelines for optimized operation of the grating 
pair-based spectro-temporal dispersion compensation scheme. Furthermore, we theoretically 
(by simulation) compared the grating pair with an ideal grism pair under different practical 
contexts, which elucidates the respective merits of each method. 

2. Methods

2.1 Experimental setup 

The setup for characterizing our grating pair-based dual-fiber femtosecond pulse delivery 
scheme is shown in Fig. 1, which is under the operational context of our recently developed 
fiber-optic two-photon endomicroscopy system [11]. Briefly, transform-limited near infrared 
(NIR) laser pulses out of a Ti:Sapphire laser (Chameleon Vision II, Coherent Inc., 
California), ~150 fs FWHM with an 80 MHz repetition rate, are launched into a piece of ~30-
cm-long polarization-maintaining single-mode fiber (PM-SMF; PM780-HP, Thorlabs, New
Jersey). Using a PM-SMF ensures that the output light stays nearly linearly polarized with
polarization direction perpendicular to grating grooves for better diffraction efficiency. The
pulse spectrum becomes broadened due to the interaction between positive chirping and SPM
effect in the PM-SMF (dash box labeled as Spectral Broadening (SB) in Fig. 1). Pulses out of
the PM-SMF are first collimated via a customized achromatic triplet, then pass through a pair
of volume holographic transmission gratings (600 lpmm; Wasatch Photonics, North Carolina)
to gain sufficient negative pre-chirping, and finally are coupled into the core of the DCF (~0.8
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home-made 2-µM solution of fluorescein (Sigma-Aldrich), and counting the emission rate of 
epi-collected 2PF photons using a time-correlated single-photon counting module (SPC 150, 
Becker & Hickl GmbH). Note that such submersion configuration makes sure the collection 
efficiency stays the same across multiple experiments. Therefore, we can fairly compare the 
2PE efficiency between the single-fiber linear-only configuration and the dual-fiber spectro-
temporal dispersion compensation configurations. 

2.3 Pulse propagation simulation 

Simulations were carried out to investigate the evolution of the pulse profile through the 
endomicroscopy system. The simulation procedure for the dual-fiber spectro-temporal 
dispersion compensation scheme starts with a transform-limited femtosecond pulse. The pulse 
propagates first through the PM-SMF (i.e. the first fiber), then a grating- or grism-based pulse 
stretcher, and finally the single-mode core of the DCF (i.e. the second fiber). We adopted the 
total field formulation in the frequency domain to simulate the nonlinear pulse propagation in 
optical fibers [20]. The basic concepts and key parameters that are necessary for 
understanding the simulation results are detailed below. 

2.3.1 Frequency-domain E-field propagation in optical fibers 

Following the total field formulation [20], the electric field of an ultrafast pulse can be 
represented as 

( ) ( ) ( ) ( ){ }0 0, , ,  ,j t zz t r r Re A z e ω β ωψ τ  − ∝E (1)

where ( ) , A z τ  denotes the dimensionless amplitude function, ( )rψ  the radially symmetric

E-field distribution,  ( )β ω  the mode-propagation constant in fiber, and
(1)

0 0/t z V t zτ β= − = −  the retarded (local) time with 0V  denoting the group velocity of the 

pulse at a carrier frequency 0ω , i.e. ( )1
0 0V ω β ω− = ∂ . For simplicity, in our simulations the

mode-propagation constant  ( )β ω  is approximated by the material dispersion of fused silica 

as ( ) ( )2 /nβ ω π ω λ=  with the refractive index ( )n ω  given by the well-known Sellmeier

equation. 
Taking the weakly guiding approximation core clad 0 n n n≈  , the instantaneous total power 

of an ultrashort pulse at any given distance z and local time τ , integrated across the entire 
beam profile, is equal to 

( ) ( ) ( )2 20
scale

0

, , , d d , .
2

n
P z z t r x y P A z

c
τ τ

μ
= ⋅ E (2)

Here 0μ  and c denote the linear permeability and the speed of light in vacuum, respectively, 

and scaleP  represents the power scale which absorbs all time-independent factors in the 

equation. Basically scaleP  scales with the pulse energy (or equivalently the average light 

power) [20]. The strength of in-fiber nonlinear effects is related to scaleP  (i.e., the laser power), 

( , )A z τ  (i.e., the temporal pulse shape), and ( )rψ  (i.e., the spatial mode distribution). In 

simulation, scaleP  can be determined from the pulse energy and the initial pulse profile, while 

the pulse energy equals average laser power divided by the pulse repetition rate. Especially, 
assuming a sech2-shaped intensity profile and thus an initial amplitude function 

( ) ( )0 0, sech /A τ τ τ= , we can evaluate the pulse energy by 
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( )2
pulse scale 0 0 scalesech / d 2 .E P Pτ τ τ τ= ⋅ = ⋅ (3)

And the FWHM temporal pulsewidth is FWHMτ = ( ) 02ln 2 1 τ+ . Since max (0, ) 1A τ = , the 

power scale scaleP  here corresponds also to the peak instantaneous power of the initial pulse. 

Therefore, the nonlinear length can be calculated as 

2
eff

NL
2 scale 2 scale

MFD
.

2 8I I

A
L

n P n P

λ λ
π

⋅= =
⋅

(4)

where effA  is the effective core area and is approximated by 2MFD / 4π ⋅  above (where 

MFD is short for mode-field diameter) and 2
In  denotes the nonlinear-index coefficient [13]. 

For the 890-nm wavelength used in this manuscript, the value of 2
In  is taken as 2.7 × 10−20 

m2/W [13]. In our simulations, the time constant 0τ is set to 85.09 fs so that the initial

FWHM pulsewidth equals 150 fs, and the mode-field diameter is set to 5.0 µm for both the 
SMF and the DCF. 

Defining the temporal Fourier transform of ( , )A z τ  as ( ) ( ) Ω ,Ω , djA z A z e ττ τ−=  , pulse 

propagation in the frequency domain is carried out following the propagation equation in Ref 
[20] (which is equivalent to the nonlinear Schrödinger equation in the time domain [13]). For
simplicity, the in-fiber attenuation has been ignored since the propagation distance considered
here is only on the order of meters. In this way, the temporal integral of the squared modulus

of E-field amplitude ( ) 2
, dA z τ τ  stays constant over propagation [20], and thus the

average light power propagating in the SMF or DCF is controlled purely by scaleP  in our 

simulation. The frequency-domain propagation equation is solved by the Runge-Kutta 
method using the built-in ordinary differential equation (ODE) solver ode45 in MATLAB 
(MATLAB R2016b, Mathworks, Natick, MA) [21,22]. Numerically, the amplitude function 
is digitized into 8192 discrete time points (also the FFT length) with 2-fs sampling interval, 
thereby covering a temporal range of 16.384 ps and a frequency bandwidth of 500 THz, both 
wide enough for ranges encountered in the simulation. 

2.3.2 Negative chirping from the grating- and grism-pair stretcher 

Numerically, both the grating-pair and the grism-pair stretchers are implemented by adding 
extra spectrally dependent phase in the frequency domain of the pulse amplitude function, and 
the practical power throughput (or loss) is simulated by reducing the total pulse energy, i.e., 
by decreasing the power scale parameter scaleP . With details about SMF DCF/P P  ratio (always 

larger than one) provided in the main text, described here are phase functions of grating- and 
grism-pair pulse stretchers employed in our simulation. 

Given a grating pair, denoting the groove period by d, the grating separation (along the 
grating surface normal direction) by G, and the incident and diffraction angles by iθ  and  dθ , 

respectively, the total double-pass phase delay is [14] 

( ) ( )Ψ 2 Λ cos / ,dG cω ω θ= + (5)

where Λ  denotes the common in-air propagation distance shared by all wavelengths. Starting 
from this, the double-pass GDD and TOD furnished by the grating pair can be found from 

2 2 Ψ / ω∂ ∂  and 3 3 Ψ / ω∂ ∂ , respectively. Explicitly, we have:

2 2

2 3 2 3

8
GDD( .

cos d

cG

d

π
ω ω θ

∂ Ψω) = = −
∂

(6)
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And the TOD can be calculated further as 

( )
3 2

3 2 2

sinΨ 3 Ψ
TOD ω 1 .

cos
d

dd

θλ
ωω θ ω
 ∂ ∂= = − + ⋅ ⋅ ∂ ∂ 

(7)

As manifested in the two equations above, the TOD and GDD provided by a grating pair are 
of opposite sign. 

The dispersion provided by a grating pair is implemented directly in frequency domain via 
[20] 

0
0 0

2 32 3
0 0

2 3

( )
( )] ( )

grating

( ) ( )

2 6

(out, ) (in, )

(in, ) .

j

j

A A e

A e

ωω ω
ω

ω ω
ω ω

∂Ψ − ⋅ Ψ +Ω −Ψ − ⋅Ω ∂ 

 ∂ Ψ ∂ ΨΩ Ω− ⋅ ⋅ + ⋅ 
∂ ∂  

Ω = Ω ⋅

≈ Ω ⋅

 



(8)

The first line in Eq. (8) takes into account all higher-order phases, while the second line 
accounts for only the GDD and TOD terms. We numerically compared the two methods and 
found that they give almost identical outputs for the fiber length range of interest here; we 
adopted the second line in our simulation to be consistent with the grism phase function as 
described below. 

To investigate all setup parameters featured by a practical grism pair is beyond the scope 
of this study, and thus in our simulation without loss of generality, we assume an ideal grism 
pair which provides anomalous GDD and TOD that cancel exactly the GDD and TOD 
induced by optical fibers. Therefore, the grism-pair phase function can be simply calculated 
as 

2 3
(2) (3)

total0 02 6

grism (out, ) (in, ) ,
j L

A A e
β β
 Ω Ω− ⋅ ⋅ + ⋅ ⋅ 
  Ω = Ω ⋅  (9)

where totalL  is the total length of SMF and DCF, and ( ) 0
0

( )k
k

k

β ωβ
ω

∂
∂

  the chromatic 
dispersion of optical fiber at the central frequency 0ω . Such an ideal grism-pair stretcher 
basically cancels out both GDD and TOD of the two fibers. 

2.3.3 Evaluation of 2PE efficiency 

Both temporal pulsewidth and spectral bandwidth can be evaluated from the final amplitude 
function A(z,τ) out of the second fiber (i.e. the DCF). The root-mean-square (rms) pulsewidth 
and bandwidth are adopted in this manuscript to characterize the overall temporal intensity 
profile or spectral power density distribution [18]: 

( )
( )

( )
( )
( )

22 22

rms 2 2

 , d  , d
Δ 2 ,

 , d  , d

A z A z
z

A z A z

τ τ τ τ τ τ
τ

τ τ τ τ

 
 = ⋅ −
 
 

 
 

(10)

( )

( )

( )
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22 2
2

rms 2 2

Ω ,Ω dΩ Ω ,Ω dΩ
1

Δ ( ) .

,Ω dΩ ,Ω dΩ

A z A z
z

A z A z

ν
π

 
 
 = ⋅ −
 
 
 

 

 

 

 

(11)

The resultant absolute two-photon signal strength is basically proportional to the integral of 
instantaneous pulse power squared, i.e. 

( ) ( ) 42 2
2PF scale,  d DCF output, d .I P z P Aτ τ τ τ∝ = ⋅  (12)
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fiber spectro-temporal dispersion compensation schemes). To avoid the influence of the 
spatial variation of collagen fibers on the collected SHG signals, images were obtained from 
multiple quasi-randomly selected locations at the same depth (controlled by a 3D 
manipulator) under each compensation configuration. Representative SHG images are shown 
in Fig. 3, where the increase of the signal intensity and the signal-to-noise ratio under the 
dual-fiber compensation scheme is remarkable. Quantitatively, by averaging over many fields 
of view (FOVs), we estimate that the spectro-temporal compensation promotes the SHG 
signal strength by ~2.7-fold on average. 

One immediately notices that the extent of experimentally measured two-photon signal 
enhancement (~2.7× to 3.2× ) falls below the ~6.6-fold temporal pulsewidth reduction as 
derived from the intensity ACF. This discrepancy results mainly from the difference in the 
detailed pulse shapes between the two cases since the grating pair compensates only the GDD 
and leaves higher-order dispersions (mainly TOD) unbalanced. In fact, the TOD induced by 
the grating pair cumulates with the fiber TOD and results in increased trailing tails in the final 
pulse profile, which disperses pulse energy and compromises the overall 2PE efficiency 
[13,20,24]. 

4. Theoretical analyses by simulation

To understand the impact from higher-order dispersion, particularly the TOD, on the final 
pulsewidth and 2PE efficiency in our current grating pair-based endomicroscopy system, and 
to seek for practical guidance, we undertook numerical simulations to investigate the 
evolution of the pulse profile through the dual-fiber dispersion management procedure. 

Details of the simulation are explained in Section 2.3. Since the kernel component of 
interest here is the pulse stretcher, careful characterization of operational parameters (e.g., 
incident angle and throughput) of the grating pair is critical for simulation accuracy. The 
volume holographic grating (VHG) employed in our endomicroscopy system can afford a 
single-pass efficiency up to 90% at the design wavelength (890 nm), yielding a four-pass 
overall power throughput of more than 60%. Even off the peak diffraction wavelength (e.g., 
at 750 nm), the overall 4-pass power throughput of the grating pair can still achieve ~30% 
under the Littrow configuration. Considering a typical single-mode fiber coupling efficiency 
of ~80% at around 800 nm, the power launched into the DCF core (after the grating pair) is 
about 50% (i.e., ~60% × 80%) to 25% (i.e., ~30% × 80%) of the power launched into 
(propagating within) the PM-SMF (i.e., the first fiber); therefore, in our simulation study, the 
SMF-to-DCF power ratio is set to either 2 or 4 for a grating-based stretcher. Furthermore, two 
different groove densities, 600 lpmm and 900 lpmm, are compared since the TOD/GDD ratio 
of a grating pair is density-dependent. Without losing generality, the DCF length within the 
endomicroscope is fixed at 1.0 m for all simulations. 

4.1 Dependence on SMF length and in-fiber power 

The group velocity dispersion (GVD) inside a fiber is ~29.2 fs2/mm at 890 nm (as 
approximated by the material GVD of fused silica). For an initial sech2 pulse ~150 fs in 
FWHM pulsewidth, the dispersion length is calculated to be 2

D FWHM / GVDL τ=  = 77.1 cm 
[13]. For average input power PSMF = 30 mW (80 MHz repetition rate), the peak instantaneous 
power of the initial pulse can be estimated to be ~2.21 kW; then the nonlinear length can be 
calculated according to Eq. (4) as NLL  = 4.7 cm. Since NLL  scales reciprocally with the
initial pulse’s peak power, it is even shorter for higher PSMF; therefore, the nonlinear lengths 
for all PSMF’s considered here are much shorter than the dispersion length. For SMF lengths 
less than DL , pulse propagation is dominated by nonlinear SPM effect; while for longer
SMFs, pulse evolution is governed by the interplay of both dispersion and nonlinearity. 

Fundamentally, when an unchirped pulse enters the core of an SMF, the nonlinear SPM 
effect it experiences is strongest in the beginning portion (when the propagation distance is 
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of the DCF on various SMF lengths (ranging from 10 cm to 120 cm) and power 
configurations (with PDCF ranging from 15 mW to 60 mW and PSMF/PDCF = 2 or 4). Based on 
these curves, several observations and comments are made in the following: 

Firstly, as evident in Fig. 4(a), the final spectral bandwidth of pulses out of the DCF 
generally increases with longer SMF (for given PSMF and PDCF configuration) and higher PSMF 
(for given SMF length and PSMF/PDCF ratio). It is noteworthy that spectral recompression in 
DCF never manages to restore the bandwidth back to the initial value of 2.16 THz, due to 
significantly lowered power level and therefore weakened nonlinear effects in the DCF. 
Although a broader bandwidth can ideally support a shorter pulsewidth, the final pulsewidth 
plotted in Fig. 4b doesn’t simply match with the reciprocal of bandwidth shown in Fig. 4a; 
instead, it exhibits complicated dependence on the PSMF/PDCF ratio and the SMF length, 
implying the important role played by the uncompensated TOD and the resultant pulse 
distortion (e.g. trailing tails). Compared with the common FWHM pulsewidth, the rms 
pulsewidth can better characterize the temporal distribution of pulse energy. Especially, for 
each given PSMF and PDCF and PDCF configuration, the evolution of rms pulsewidth in Fig. 4b 
matches well with the reciprocal of the corresponding normalized 2PE efficiency in Fig. 4c. 

Secondly, for each power configuration (i.e., each curve in Fig. 4a-4c), there exists a best 
SMF length that leads to the highest normalized 2PE efficiency (equivalent to the best 
dispersion compensation efficacy). With all best SMF lengths tabulated in the legend of Fig. 
4, we notice that the best SMF length decreases quickly with an increasing PSMF, from 80 cm 
for PSMF= 30 mW, to 30 cm for PSMF = 60 mW, 20 cm for PSMF = 120 mW, and finally to 10 
cm for PSMF = 180 mW and beyond (probably limited by the discrete set of SMF lengths 
simulated here). Furthermore, for each power configuration, the final normalized 2PE 
efficiency decays monotonically when the LSMF goes beyond the respective best SMF length. 
These observations match well with our analysis on balancing between spectral bandwidth 
and total TOD. Specifically, for the cases of lower PSMF and subsequently weaker SPM effect 
(i.e., the asterisk- or circle-marker blue curves in Fig. 4a-4c), the pulse spectrum grows 
slowly; therefore, a longer propagation in SMF could potentially help broaden the pulse 
spectrum. For the cases of higher PSMF and subsequently stronger SPM effect (i.e., the square- 
or diamond-marker red curves in Fig. 4a-4c), the pulse spectrum broadens so rapidly with 
propagation that the detrimental effect of accumulating TOD quickly outruns the gain from a 
broader pulse spectrum and therefore a shorter SMF works out better. 

Thirdly, we notice that for the cases of relatively higher PDCF (i.e., the square- or diamond-
marker curves in Fig. 4a-4c), a lower PSMF/PDCF ratio is generally advantageous, since the 
2PE efficiency represented by the blue-colored curves in this groups are generally better than 
the red-colored counterparts. For the cases of relatively lower PDCF (i.e., the asterisk- or 
circle-marker curves in Fig. 4c), however, a higher PSMF/PDCF ratio (corresponding to the red-
colored curves) turns out better as long as the SMF length is maintained below 30 cm. Such 
distinct preference of PSMF/PDCF ratio stems again from the need for good trade-off between 
TOD and broadening pulse spectrum. Essentially, pulses of broader spectra are more 
vulnerable to higher order dispersions (e.g., TOD). Therefore, for a given PDCF and an SMF 
length (thus a given TOD), the power in SMF should not be too high; otherwise, the benefit 
gained from broader pulse spectra can be overturned by the increased sensitivity to TOD. 

Observations similar to what were discussed above were also found in simulation studies 
at the 750-nm center wavelength (data not shown for brevity). In summary, since a grating-
pair pulse stretcher leaves TOD uncompensated, the propagation power and distance within 
the SMF should be carefully selected so that the gain from the nonlinear pulse spectral 
broadening is not overwhelmed by the adverse effects from the unbalanced TOD. In our 
current endomicroscope system, we chose a 30-cm-long SMF to better accommodate the 
commonly use range of PDCF (i.e., ~15 – 45 mW) at varying center wavelengths (thus varying 
PSMF/PDCF ratios). 
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length exceeds the optimal length. Since both longer propagation and higher SPM power 
promote SPM-induced spectral broadening, the observation reflects the robustness of a grism 
pair against TOD accumulation from extra propagation in the SMF. 

To investigate the extent to which an ideal grism-based pulse stretcher can further 
enhance the compensation efficacy, we should compare the respective optimal scenarios from 
the grating pair and grism pair cases. For the grism-pair case, we choose LSMF = 80 cm with 
the SMF-to-DCF power ratio set to 4. For the grating-pair compensation scheme (600 lpmm 
chosen for better performance), we choose LSMF = 20 cm over other SMF lengths since it 
yields overall higher normalized 2PE efficiencies when taking into account all power 
configurations (see Fig. 4c). With these choices, the best normalized 2PE efficiency obtained 
with a grating-pair stretcher is compared with that obtained with an ideal grism pair at 
varying PDCF levels (Fig. 6c). Clearly the grism pair affords ~2- to ~3-fold improvement on 
the normalized 2PE efficiency; and as expected, the extent of signal enhancement becomes 
more profound at higher PDCF (also higher PSMF) values. 

On the other hand, we are also concerned with the maximal absolute two-photon signal 
obtainable with a given input power PSMF. To check this parameter, we pick the high 
throughput cases (i.e., PSMF/PDCF = 2) for the grating-pair approach and calculate the absolute 
two-photon signal strength as defined in Eq. (12). As shown in Fig. 6d, this time the ~2-fold 
higher power throughput afforded by a grating pair can outbalance its deficit in the 
normalized 2PE efficiency (i.e., the pulse profile) and result in an overall stronger two-photon 
signal than the grism counterpart with the same given input power to the SMF. 

Furthermore, it is worth noticing that achieving the optimal grism throughput of ~30% at 
the design wavelength requires: 1) anti-reflection coating on the prism surfaces, and 2) 
meticulous selection or even customization of the apex angle of the prism and the blaze angle 
of the reflective gratings so that the incident angle on the grating as prescribed by the target 
anomalous GDD-to-TOD ratio lies close to the grating’s blaze angle (also the Littrow angle). 
As the target GDD-to-TOD ratio is wavelength-dependent, the beam path through the grism 
pair also needs to be adjusted accordingly (typically by rotating the entire grism-pair setup) to 
accommodate the varying wavelength. Therefore, at non-optimal wavelengths the incident 
angles on both grating and prism surfaces deviate from the respective design values, and as a 
result the overall throughput could drop quickly (down to <10% based on our experience). 
Given that the safe laser power allowed in a typical SMF is limited to ~500 mW, a severe 
power loss in the grism setup limits the obtainable excitation power from the endomicroscope 
and thus the imaging depth in biological tissues and imaging quality. 

To summarize, for bench-side scenarios with an abundant input power (e.g., from a 
Ti:Sapphire laser), a grism pair generally yields a stronger two-photon signal with a given 

DCFP , as long as its throughput is specially optimized for the excitation wavelength. When

the input power budget is limited, e.g., when building a portable endomicroscopy system 
using a compact fiber laser, the grating pair could be a better choice in terms of both signal 
expectation and setup simplicity. We would like to point out that, although the grating pair’s 
two-photon signal advantage with a given input laser power involves a much higher laser 
power incident on the specimen, it still possesses significant practical value. For example, in 
the context of deep-tissue two-photon imaging, a higher laser power on the tissue surface is 
necessary for overcoming scattering loss so that sufficient ballistic photons can reach the 
target deep focus, with the laser intensity (power per area) still staying safe everywhere. 

5. Discussions

Another alternative for dispersion compensation is to use a prism pair, which provides GDD 
and TOD of the same sign and therefore counteracts rather than increases the existing TOD in 
optical fibers. However, the compensation capability afforded by a prism pair is generally 
much lower; even with highly dispersive prisms, a prohibitive inter-prism separation on the 
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order of meters is needed to provide adequate anomalous GDD for an only 1-meter-long silica 
fiber [15]. Therefore, the prism pair is poorly applicable for a practical fiber-optic two-photon 
endomicroscope. 

Our simulation study suggests that, compared with a grating pair, the grism-pair stretcher 
can indeed further improve the efficacy of spectro-temporal dispersion compensation and 
enhance the 2PE efficiency. In the context of practical fiber-optic two-photon 
endomicroscopy imaging, however, the signal enhancement obtainable by switching from 
grating to grism can fall below the expectation from simulation. One practical challenge is 
associated with the significantly broadened spectral bandwidth of the final ultrafast laser 
pulses. Fundamentally, the SPM-induced spectral recompression in the DCF, where the 
propagation power is much lower, cannot fully revert the preceding spectral broadening in the 
SMF. According to simulation, the root-mean-square (RMS) spectral bandwidth [18] can be 
easily expanded by 4- to 5-fold (data not shown), which also matches previous reports of sub-
30-fs pulsewidth obtained from an initial 150-fs FWHM pulsewidth [27,28]. Moreover, the
actual wavelength span (not in the RMS sense) of the final pulse can approach ~100 nm wide
(red-colored curve in Fig. 2a). To tightly focus such a broadband laser beam with high NA (at
least ~0.6) imposes demanding requirements on the miniature objective design. Considering
the notable spherical and chromatic aberrations of standard graded-index (GRIN) lenses
[29,30], a more sophisticated high-performance miniature objective of minimal aberration and
excellent achromaticity is needed to realize the 2PE advantage promised by the grism pair
[31–33].

Overall, we believe that a grating pair-based pulse stretcher features unique merits for the 
dual-fiber spectro-temporal dispersion compensation scheme in a fiber-optic two-photon 
endomicroscopy system. Compared with the prism pair, it features much effective GDD 
compensation and thus a more compact footprint. Compared with a grism pair, it affords a 
higher power throughput and superior wavelength versality, i.e., one setup can well 
accommodate a broad wavelength range (at least from 730 to 920 nm in our experience). 
Moreover, the grating pair’s advantage in power throughput can potentially make up for its 
shortage of uncompensated TOD, therefore finding its unique niche in two-photon 
endomicroscopic systems and biomedical imaging applications with limited input power 
budget. 

Fundamentally, given any target pulse profile (amplitude and phase) out of the DCF, the 
desired input pulse profile can be calculated via reversely propagating the target output pulse 
backwards through DCF (i.e., time reversal). Then an ideal pulse shaper can be built to 
generate this desired input pulse profile, typically based on raw pulses from some laser source 
[34]. In the dual-fiber spectro-temporal dispersion compensation scheme, the nonlinear 
propagation in the first fiber (i.e., the SMF) and the following negative chirping in the grating 
pair work in concert as a pulse shaper. With negative chirping properly tuned, the original 
transform-limited pulse profile from the Ti:Sapphire laser is shaped into a best approximation 
of the desired input pulse profile for the DCF. Due to the unbalanced higher-order dispersion 
and unmatched propagation power in the SMF and in the DCF, such a pulse shaper is 
suboptimal. Other pulse shaper implementations that lend themselves to a more efficient fiber 
delivery of femtosecond laser pulses deserve future investigation [35]. 

6. Conclusions

In summary, we have undertaken a comprehensive analyses and characterization of the dual-
fiber spectro-temporal dispersion compensation scheme with a grating pair serving as the 
pulse stretcher in the context of fiber-optic two-photon endomicroscopy imaging. The 
dispersion compensation efficacy of this setup was experimentally confirmed as enhancing 
the two-photon signal by ~3-fold compared with the linear-only single-fiber counterpart. 
Furthermore, with the aid of numerical simulation, we have also examined the influence of 
several key design parameters (including the length of SMF, the propagation powers in both 
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fibers, and the grating density) on the overall dispersion compensation efficacy and proposed 
several design and operational guidelines such as using a shorter SMF and lower-density 
gratings if possible. We have also evaluated the extent of two-photon signal enhancement 
promised by cancelling the TOD and GDD simultaneously with an ideal grism-pair pulse 
stretcher. The comparison study reveals that although in general the grism-pair stretcher can 
substantially enhance the overall 2PE efficiency, the grating-pair stretcher features much 
higher power throughput, which can outbalance its deficit in compensation efficacy and thus 
generate more nonlinear signal photons per input SMF laser power. Such advantage in input 
power economy, along with its engineering simplicity and remarkable wavelength versality, 
makes the grating pair the preferable pulse stretcher choice for applications with a limited 
power budget, for example, when building a portable endomicroscopy system powered by a 
compact femtosecond fiber laser [36,37]. 
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