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Abstract: Dynamic light scattering optical coherence microscopy (DLS-OCM) integrates 
DLS, which measures diffusion or flow of particles by analyzing fluctuations in light 
scattered by the particles, and OCM, which achieves single-cell resolution by combining 
coherence and confocal gating, integratively enabling cellular-resolution 3D mapping of the 
diffusion coefficient, and flow velocity. The diffusion coefficient mapping has a potential for 
the non-destructive measurement of cellular viability in the standard unit but has not been 
validated yet. Here, we present DLS-OCM imaging of intra-cellular motility (ICM) as a 
surrogate of cellular viability. For this purpose, we have simultaneously obtained and 
compared ICM-contrast DLS-OCM images and calcium fluorescence-contrast images of 
retinal ganglion cells, and then characterized the responses of the measured ICM to a change 
in cellular viability induced by environmental conditions such as temperature and pH. The 
diffusion-coefficient-represented ICM exhibits consistent changes with the manipulated 
cellular viability. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
A cell is the smallest unit of life in structure and function. It consists of a membrane layer 
which encloses the cytoplasm, wherein various intracellular organelles are found. In a viable 
cell, intracellular organelles exhibit metabolic reactions normally to maintain life. The 
concept of cellular viability plays a critical role in a wide range of studies using cell assays on 
the effect of drug treatment as well as cytotoxicity tests of chemicals on cells [1–3]. The 
cellular metabolic reactions are also associated with mechanical and active movements of 
intracellular organelles consuming adenosine triphosphate (ATP) energy, which leaves 
diffusion-like trajectories. 

Based on these characteristics, the intracellular organelle movement (often called intra-
cellular motility; ICM) has been utilized to estimate the cellular viability. Labeling organelles 
with fluorescent dyes were amongst the first techniques to measure ICM [4–11]. These 
techniques typically utilize fluorescent ligands that bind to the target organelle and detect the 
fluorescent probes with various optical methods. These label-based methods have been 
advanced from directly tracing the particles to quantifying other useful properties such as 
applied force. For example, endogenous cytoskeletal microtubules were used as probes to 
directly measure the applied force, where the microtubules’ amplitude was useful due to its 
local bending motion [12]. However, these methods are invasive in nature, posing several 
problems such as phototoxicity or photobleaching, eventually making samples be in a non-
viable condition. To overcome such limitations, methods which do not include dyes have 
been advanced to enable label-free measurements of ICM. By analyzing light scattered from 
cells, quantities such as frequency fluctuations and mean square displacement have been 
suggested to represent intracellular movements [13–18]. Recently, optical coherence 
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tomography (OCT) was tested to detect ICM via the signal fluctuation amplitude, 
autocorrelation decay time [21], signal contrast [22], and decorrelation [23]. 

Label-free measurement of ICM has a potential to enable non-destructive assessment of 
cellular viability without any chemical injection or genetic manipulation and thereby 
facilitating longitudinal studies of drug effects or environmental cytotoxicity. The potential, 
however, has not been fully realized; previous label-free methods mostly measured ICM in an 
arbitrary unit such as the decorrelation of OCT signals [23,24], which is less suitable for 
quantitative comparison across different samples or systems than a standard unit-represented 
measurement, and/or have not sufficiently shown that the measured ICM indeed represents 
the cellular viability by testing if it varies with a change in viability [19,20,25–27]. 
Previously, we used dynamic light scattering optical coherence tomography (DLS-OCT) [19] 
and found that neurons exhibit high diffusion coefficients [20], but have not tested if they 
vary with viability changes. Here, we present label-free, cellular-resolution measurement of 
ICM in the standard unit of diffusion coefficient and demonstrate that it correlates with and 
thus represents the cellular viability. For this purpose, we used DLS-OCM that enables us to 
produce a micrometer-resolution, three-dimensional map of the diffusion coefficient, 
optimized the method to match its dynamic range with the typical range of ICM, tested if the 
diffusion coefficient map can visualize cells based on the contrast of ICM by comparing it 
with simultaneously-imaged intracellular calcium fluorescence, and then investigated how the 
measured ICM varies with a change in the cellular viability induced by altering conditions 
with well-known effects such as temperature and pH. We expect that the DLS-OCM 
assessment of cellular viability in the standard unit will be widely utilized in various studies 
from drug and toxin tests using human tissue spheroids to longitudinal disease development 
researches using animal models. 

2. Methods 
2.1. Simultaneous OCM and fluorescence imaging 

A commercial spectral-domain (SD) OCT system (Thorlabs, Newton, NJ, USA) was used and 
modified for this study. The system uses a large-bandwidth near-infrared light source with a 
center wavelength of 1310 nm and a wavelength bandwidth of 170 nm, which leads to high 
axial resolution (3.5 μm). 40x objective lens (1-U2M587, Olympus America, Inc) was used 
for cellular imaging with the lateral resolution of 0.78 μm. The system uses a high-speed 
2048-pixel line-scan camera to achieve 147,000 A-scan/s with a relatively large imaging 
depth (2.5 mm maximum). The field of view (FOV) has 256 (X) × 256 (Y) × 1024 (Z) voxels 
with the transverse and axial sampling rates of 0.5 μm and 3.46 μm, respectively, leading to 
128 μm × 128 μm × 3.54 mm imaging volume. Due to the high numerical aperture, the 
effective depth of field was ~15 μm (twice of the Rayleigh length). To compare label-free 
DLS-OCM images to one of the current standards for cellular imaging, GCaMP3 
fluorescence imaging that needs no exogenous calcium dye [28], we built a wide-field 
fluorescence microscope and combined it to the OCM system, as shown in Fig. 1. Blue light 
with nominal wavelength of 490 nm from the light emitting diode (LED) and driver (M490L4 
and LEDD1B, Thorlabs) travels through a diffuser (ACL2520UDG6, Aspheric Condenser 
Lens, Thorlabs), an excitation filter (MF469-35, GFP Excitation Filter, Thorlabs), and a 
dichroic beamsplitter (69-899, Dichroic Longpass Filter, Edmund Optics) to a sample. Green 
fluorescence light (typically 500-540 nm in wavelength [28]) emitted from the sample travels 
through the beamsplitter and emission filter (FELH0500, Premium Longpass Filter, Thorlabs) 
to a camera (OCTG-1300, Thorlabs). Images were acquired and displayed in real time on a 
computer using custom-built LabVIEW software. The specific excitation and emission 
wavelength ranges were chosen to enable simultaneous OCT and fluorescence imaging while 
minimizing crosstalk. 
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A-scan rate) and the maximum time lag in the autocorrelation function. This study uses a 
faster OCT system (147,000 A-scan/s) than the one used in our previous publication (47,000 
A-scan/s) and specifically focuses on diffusion-coefficient mapping of cellular viability, 
whereas the previous study focused on distinctive mapping of the blood flow and intracellular 
diffusion [20]. For this reason, we optimized our DLS-OCM measurement of the diffusion 
coefficient through numerical simulation and phantom experiment, to match its dynamic 
range for the reported values of ICM (0.1-10 μm2/s [19,20,25]) prior to its application to 
biological specimen imaging. 

The numerical simulation tested combinations of three cases of the data acquisition time 
(0.68, 1.4, and 2.7 ms, corresponding to the numbers of A-scans repeated at each X-Y 
position, 100, 200, and 400 A-scans, respectively) and two cases of the maximum time lag 
(1/2 and 1/4 of the acquisition time), to find which combination results in the most accurate 
estimation of the diffusion coefficient over the range of 0.3-30 μm2/s. Five diffusion 
coefficients in the range were chosen with even intervals in a log scale. A longer acquisition 
time may be more advantageous to measure lower diffusion coefficients, so the range of data 
acquisition time was chosen based on our initial guess that it is appropriate for the diffusion 
coefficient range. The detailed simulation procedure was similar to the one we previously 
published [19]. In short, for each given set of parameters (including the diffusion coefficient, 
number density of diffusing particles, velocity of flowing particles (as a potential noise), and 
the number density of static particles within the OCM resolution volume), we generated time-
series position data of the particles, determined true diffusion coefficient and flow velocity 
from the position data, generated a time-series OCM signal from the position data, obtained 
its autocorrelation function, fitted it to our model to estimate the diffusion coefficient and 
flow velocity, and then compared them with the true values. We repeated this simulation for 
100 random initial positions of the particles, repeated it for 1,050 parameter sets (5 diffusion 
coefficients, 5 flow velocities, 7 flow angles, and 6 number densities), and repeated the 
analysis again for six cases of the acquisition time and maximum time lag. As a result, the 
0.68-ms acquisition time and the 0.17-ms maximum time lag produced the minimum root-
mean-square error in the diffusion coefficient measurement (1.7%) when more than 60% of 
the particles in the OCM resolution volume exhibit diffusive movements and the flow 
velocity as noise is lower than 10 mm/s (Fig. 3(a)). Based on this optimization, in the 
following DLS-OCM imaging, 128 A-scans were repeated at a fixed position, it was then 
moved to the next scanning position, and their autocorrelation functions with the 1/4 
maximum time lag (0.22 ms) were obtained and processed, producing a 3D map of the 
diffusion coefficient of a sample. 

The simulation was followed by a phantom experiment to confirm the accuracy and 
dynamic range of DLS-OCM measurements. As a standard sample, microspheres with 
various sizes were used because the diffusion coefficient and diameter of microspheres have 
an inversely linear relationship as given by Stokes-Einstein equation [29], D = kBT/8πηr3 
where kB = 1.38 × 10−23 J/K, T = 293 K, η = 1.00 cP. Monodisperse polystyrene microspheres 
in 2.5% solids (w/v) aqueous suspension (Polysciences, Inc.) with diameters of 0.05, 0.088, 
0.15, and 0.22 μm were used. Following the simulation results, repeated A-scans were 
obtained to acquire a 3D volume data of the sample. From the raw OCT-spectrum data, 4D 
complex-valued SD-OCT reflectivity signals ( ( , )R tr ) were computed, from which a field 

autocorrelation function was generated as following; 
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Here, E[ ] denotes averaging over initial positions, * denotes the complex conjugate, and  

denotes the time averaging. The field autocorrelation function was then convolved with a 3 × 
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3 × 3 (voxels) spatial kernel to average over initial positions of particles and fitted to the 
previously developed model shown in Eq. (2) [19] to derive the dynamic parameters of the 
sample (see [19] for details). 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2

, 1 ( ) ( )t t z zh v h v q D iqv
S F S Fg M M e e e M Mτ τ τ ττ δ τ− − − −= + + − −  

r r r rr r r r r
 (2) 

Here, the scatterers are assumed to be static or flowing in an OCT resolution volume, and the 
flowing particles should exhibit translational motion with a velocity or diffusive motion with 
a diffusion coefficient. The dynamic parameters obtained are the fraction of static particles, 

( )SM r , the fraction of flowing particles, ( ) FM r , the transverse component of the velocity, 

( )tv r , the axial component of the velocity, ( )zv r , and the diffusion coefficient, ( )D r . Thus, 

five dynamic parameter maps were generated which were then convolved with a 5 × 5 × 5 
(voxels) Gaussian kernel. As shown in Fig. 3(b), our DLS-OCM makes relatively accurate 
measurements (80.4% in accuracy) while it becomes inaccurate for higher diffusion 
coefficients than ~8 μm2/s. This upper limit of the dynamic range is attributed to the limited 
temporal sampling rate of our OCT system (0.68 μs), so one may need a faster system to 
increase the dynamic range, although the current range is suitable for our purpose because the 
reported typical ICM ranges from 0.1 to 10 μm2/s [19,20,25]. Finally, we determined the 
lower limit of the dynamic range using a static sample (WS-1, Oceans Optics) to 0.05 μm2/s. 

 

Fig. 3. (a) Numerical simulation results with the optimized acquisition time and maximum 
time lag. Each error bar represents variations due to the other combinations: diffusion 
coefficients, flow velocities, flow angles, and/or number densities. (b) DLS-OCM 
measurements of the diffusion coefficient in the standard sample. The circles with error bars 
indicate measurement data while the line indicates the theoretical value as given by the Stokes-
Einstein equation. 

2.3. DLS-OCM imaging of mouse retina with a genetically encoded calcium indicator 

As a biological specimen to test DLS-OCM measurements of cellular viability, intact retinal 
tissues dissected from mice were used. The retinal explant was chosen for this study because 
it has well-known laminar cellular distribution, it is relatively easy to be encoded with 
genetically-induced calcium fluorescence indicators [28], which is advantageous for the 
simultaneous fluorescence and DLS-OCM imaging, and it is closer to in vivo than cell culture 
as it has other tissue constituents as well (e.g., extracellular matrix). Thus, we established a 
colony of GCaMP3 mice (B6.Cg-Tg(Thy1-GCaMP3)6Gfng/J) and euthanized a mouse 
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following our IACUC-approved protocol before dissecting retinas. For the retinal dissection, 
a mouse was anesthetized with 3-5% isoflurane with a mixture of 100% oxygen in the air. 
Immediately after the initiation of anesthesia, pharmaceutical grade Dexamethasone (0.2 
mg/kg) was administered to decrease inflammation, and buprenorphine (0.05-0.1 mg/kg) was 
administered to ensure pain relief. Whole retina was harvested directly from the euthanized 
animal by puncturing the eye, cut out the cornea, and cut around the eye at the limbus to 
release the retina. Then, the retina was freed from the eyecup, detached from the optic nerve, 
cut in a clover shape to put on a filter (Millicell Cell Culture Insert, EMD Millipore Corp.), 
and then sucked from the other side to be fixed at the surface (Fig. 4(c)). This fixing method 
is widely used in retinal physiology experiments to keep a retinal explant in place even when 
the medium is slowly perfused. While we repeated the experiment, we visually checked the 
position of the retina sample between OCT data acquisitions and found that the fixing method 
works well in our setup as well. The sample and filter were placed in our imaging chamber 
(Figs. 4(a-b)), where the explant was supplied with Ames medium (Sigma-Aldrich Corp.) 
bubbled by O2 (5% CO2), through a syringe pump (AL-1000, WPI Inc.) for precise perfusion 
rate. The controlled flow went through a heater and controller (SH-27B, TC-324C, Warner 
instrument) to maintain the physiological temperature (31°C). All animal-based experimental 
procedures were reviewed and approved by the Institutional Animal Care and Use Committee 
of Brown University, according to the guidelines and policies of the office of laboratory 
animal welfare and public health service, National Institutes of Health. 

To investigate how the measured ICM consistently varies with change in cellular viability, 
we manipulated the viability by altering conditions with well-known effects on it: the 
temperature and pH. DLS-OCM data were acquired before and after the condition changes 
(30 min later exposure to the change). The routine metabolic rate decreases at low 
temperature [30]; thus, we lowered the temperature to 15°C by packing the chamber 
surroundings with ice packs, to decrease the metabolic rate of retinal cells. On the other hand, 
cellular oxygen consumption decreases at low pH [31], so we decreased the pH to 3.5 by 
adding hydrogen chloride to the continuously perfused Ames medium. 

 

Fig. 4. (a) Perfusion setup for live retinal imaging. (b) The retina holder. (c) A dissected retina 
explant on the retinal imaging chamber. 
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Fig. 8. Percent changes of ICM in response to the induced viability changes. *p < 0.05. 

Finally, Fig. 8 summarizes statistical percentage changes in the measured ICM from the 
physiological condition to the changed condition. Both pH change and lowered temperature 
have produced statistically significant negative changes in ICM (−30% ~-40%; p = 0.016 and 
p = 0.034, respectively). The reheated case has shown a slight increase in ICM in comparison 
to that of the initial normal temperature, but it is statistically insignificant (p = 0.28). These 
results support that DLS-OCM-measured ICM can serve as an effective estimate of the 
cellular viability. 

4. Discussions and conclusion 
This paper proposes DLS-OCM measurement of ICM as a means of label-free, standard unit-
represented estimation of cellular viability. DLS-OCM has been optimized for the dynamic 
range matching with ICM, its diffusion coefficient map has visualized ICM of individual cells 
in the ex vivo retinal tissue as confirmed by comparison with simultaneously acquired 
coregistered fluorescence imaging, and finally, the measured ICM has consistently varied 
with the manipulated cellular viability. 

When a cell is viable, active metabolism gives rise to active motions of intracellular 
organelles. Active and directional motions are primarily driven through cytoskeleton, which 
fluctuates and transports small particles. On the other hand, intracellular motions that are 
similar to diffusive motions, are also active motions consuming ATP that are different from 
passive diffusions [12,32]. Although small organelles exhibit directional motions, it can 
appear to be diffusive due to the size of the particle, the nature of the viscoelastic 
surroundings, and the force applied [33]. Some of the previous studies investigating the 
intracellular organelle movements used the standard unit of diffusion coefficient to quantify 
them. The previously reported diffusion coefficients in viable cells range from 0.1 to 10 μm2/s 
[19,20,25], and our previous study using DLS-OCT reported the diffusion coefficient of the 
neural cytoplasm in the range of 0.5-1 μm2/s. In this paper, ICM exhibits 1-4 μm2/s (see the 
histograms in Figs. 6 and 7), which is consistent, in the order of magnitude, with the previous 
reports even though they used different systems and biological specimen. 
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are known to limit the oxygen delivery to mitochondria and cause changes to the anaerobic 
metabolism that has a lower efficiency of ATP reproduction compared to the aerobic 
metabolism [34]. In turn, with lower ATP, cellular energy levels also drop and the metabolic 
rate decreases [35]. The lowered metabolic rate will also lower the associated active motions 
of intracellular organelles (i.e., ICM). The previous study tracked polystyrene beads using in 
vitro motility assay and found that the active motion of microtubule-based transport decreased 
by 56% at a low temperature of 15 °C [36], which agrees with our measurements (Fig. 8). 

pH condition that is lower than a physiological pH surrounding a tissue results in a 
metabolism rate decrease, due to the oxygen consumption rate decrease and glucose 
utilization rate [31,37]. pH also affects cell membrane permeability by changing the net 
electric charge of the amino acids. A study showed that both oxygen and glucose 
consumption rate of brain slices decreased by ~20% and ~60%, respectively, after 20 minutes 
of exposure to pH 6.2 compared to pH 7.4 [37]. In accordance with the metabolism decrease 
in the lower temperature above, a decrease in the metabolism by lowering pH will decrease 
ICM. Our observation of the decreased diffusion coefficient under pH 3.5 is in harmony with 
the previous studies. With the acidic condition we have achieved with a low pH of 3.5, cells 
may have also undergone necrosis, which may also contribute to low ICM. 

According to the Mie scattering theory, relatively large organelles with the size ranging 
from 0.1 to 10 μm (e.g., mitochondria and cytoskeleton) may dominantly contribute to our 
OCT signals (with the center wavelength of 1.3 μm) and thereby the measured diffusion 
coefficient [20]. Although Actin and microtubules are the two main drivers in the ATP-
consuming intracellular motility, they are too small to substantially contribute to the OCT 
signals. It is currently unclear which organelles exactly are responsible for DLS-OCM-
measured ICM. A mechanism study that employs various drugs that affect a specific process 
targeting a specific organelle is required to answer the question. In addition, although this 
study shows the possibility of longitudinal monitoring of cellular viability changes in the 
same sample, which is difficult with destructive traditional cell assay methods, the present 
report does not demonstrate an additional interesting potential of tracking the viability cell by 
cell. When realized, the capability will enable unprecedented drug and toxin effect studies 
that track the effects over individual cells in a longitudinal manner (e.g., how an 
environmental toxin invades a human tissue spheroid and thus how the cells in its necrotic 
core respond differently to the toxin in time). In this study, the conditional changes were 
made through the continuously perfused medium, which had the sample slowly move and 
thereby made it difficult to track the exactly same cells between the imaging sessions 30-min 
apart. Therefore, another study using either a real-time visualization and adjustment of FOV 
(in both transverse and axial directions) or a treatment causing minimal movements is 
required to validate the capability. Finally, the current scanning and data processing time for 
our DLS-OCM may need further improvement for practical applications. For the FOV of 128 
μm × 128 μm, our current system with 147,000 A-scan/s takes about 1 minute to repeat 128 
A-scans at every X-Y position, which is faster than the previous DLS-OCT but still needs to 
be improved for high-throughput viability assessment on multiple microwells that is needed 
for drug and toxin effect studies. The current data processing time for the fitting of 5 
coefficients takes 4 hours for the above FOV data when the algorithm we previously 
published [20] runs on our computer (two 2.30-GHz CPUs), which precludes the possibility 
of real-time analysis and visualization. A faster OCT, as well as a computationally-optimized 
algorithm for fitting, should be developed for the high-throughput application. 

In conclusion, we have demonstrated the potential of DLS-OCM for non-destructive, 
standard-unit assessment of cellular viability. The technique can measure ICM of individual 
cells in biological tissue in the standard unit of diffusion coefficient, and the measured ICM 
has been shown to correlate with cellular viability. Such label-free, cellular-resolution 
measurement of viability will be useful for a wide range of drug and toxin effect studies. 
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