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Abstract: Doppler optical coherence tomography (OCT) is widely used for high-resolution 

mapping of flow velocities and is based on analysis of temporal changes in the phase of an 

OCT signal (i.e., how fast the OCT signal rotates in the complex plane). Determination of the 

rate of phase change or rotation speed critically depends on the center of rotation. Here, we 

demonstrate the bias in high-pass filtering, the current widely used method to determine the 

center of rotation, and propose two advanced methods for Doppler OCT clutter rejection. The 

bias in the high-pass filtering method becomes increasingly significant with lower velocities or 

larger signal noise. Two novel methods based on variance minimization and offset 

extrapolation can potentially reduce this bias and thereby improve the accuracy of Doppler 

OCT measurements of flow velocities, even for low-velocity and/or high-noise signals. The 

two novel methods and the current standard method (high-pass filtering) have been tested in 

combination with several currently used velocity measurement algorithms: Kasai, 

autocorrelation function fitting, and maximum likelihood estimation. The newly proposed 

methods are shown to improve the accuracy in both the center of rotation and resultant velocity 

by up to 60 percentage points and reduce the flow conservation error by 30% when applied to 

in vivo cerebral blood flow imaging of the rodent brain cortex. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical coherence tomography (OCT) is a 3D biomedical imaging technique based on optical 

interference to achieve depth-revolved mapping with a penetration depth on the order of 1-2 

millimeters [1–3]. Through a process called coherence gating, OCT analyzes the interference 

between light reflected from a specimen and a reference beam to determine the optical 

properties of a sample in a depth-resolved manner. 

Doppler OCT is a special application of this technique. It uses the time-varying phase of 

the reflected light from the specimen to determine the velocity component at every voxel in the 

direction of the probing OCT beam. The time-varying signal obtained from Doppler OCT can 

be represented on the complex plane. An idealized noise-free signal rotates about the origin and 

thus its phase angle linearly increases in time. Doppler OCT uses the rate of this signal rotation 

to determine velocity, as the rotation rate is proportional to the velocity. Finding the rate of 

rotation in the ideal signal is simple; one can determine the change in phase or angle that each 

data point makes about the origin per unit time, often in conjugation with an autocorrelation to 

reduce noise [4–6]; one can determine the mean or maximum frequency of the signal after a 

frequency decomposition [7,8]. 

In real signals, however, the center of rotation (COR) of the signal is not always the origin. 

This will occur in a specimen when the voxel under consideration contains both static and 

mobile scattering components. The static scattering component introduces a superimposed 
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offset in the signal [9–11] that leads to velocity underestimation and reduced estimator 

performance [12,13]. Some examples from Doppler OCT data of rodent cerebral blood flow 

clearly show this complication in real signals (Fig. 1). 

 

Fig. 1. Examples of non-origin CORs in real Doppler OCT signals. Multiple rotations in the top 
row correspond to higher velocities, while partial rotations in the bottom row represent lower 

velocities. All signals are shown on the same scale (a.u.). Re, real axis; Im, imaginary axis. 

 

Fig. 2. Illustration of the bias in the high-pass filtering method to determine CORs. Re, real axis; 

Im, imaginary axis. 

High-pass filtering has been widely used to determine the COR as the mean of the signal 

data points [10,14–16]. This method works well in cases of large signal rotations (i.e., high 

velocities) but is biased for smaller rotations (Fig. 2). This bias makes the COR-corrected signal 

seem to span a wider angle and thus have a faster rate of phase change than the true values, 

leading to potential overestimation of velocity [17]. Maximum and mean frequency-based 

methods are also susceptible to static clutter [8], and the latter case at least demonstrates bias 

when high pass filtering is applied [8,18]. Other methods for clutter rejection also show some 

limitations [15,16,19–21]; examples include a second-order autoregressive model which has 

non-ideal performance for large clutter signals and can demonstrate spectral leakage of the 

clutter component [15,22], and the mean pursuit method which, despite its high computational 

cost, may still remove non-clutter components or fail to remove some clutter components [16]. 
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The few data points available in the signal pose what is often regarded as one of the most 

difficult challenges for designing clutter filters [23]. 

Here, we propose two novel methods to more accurately determine the COR and thereby 

increase the accuracy and dynamic range of Doppler OCT measurement, even when the 

velocity is so low that the signal makes only partial rotations. First, the COR can be determined 

as a point on the complex plane such that the variance in the distances from the determined 

COR to the data points is minimized. This method, termed variance minimization, will correctly 

give CORs for both large and small signal rotations. 

However, even variance minimization may be biased when noise is large enough to move 

the variance minimizing point toward the data points and away from the true COR. Therefore, 

we propose and test a second method, termed offset extrapolation, based on the statistical 

characterization of this potential bias and its application to extrapolate the true COR from the 

high-pass filtering and variance minimization-determined CORs. 

This paper describes the implementation of these two algorithms, numerical simulations to 

test and compare their performance with the current standard method of high-pass filtering, 

specifically comparing the accuracy of both COR determination and velocity measurement, and 

applications to experimental data to demonstrate the effects of these novel algorithms. 

2. Methods 

2.1 Numerical data 

We used 16 time points (i.e., 16 consecutive A-scans) for our numerical simulations. We chose 

a set rotation for the signal (larger rotations corresponding to larger velocities). For 

characterization of the bias, we tested 40 different rotations from 0 to 2π, and fitted a bias or 

offset function to the data. For validation, we specifically tested π, 5π/4, 3π/2, 7π/4 and 2π 

rotations, which corresponds to flow velocities of 5.1-10.2 mm/s for our OCT system with 

1,310-nm center wavelength and 147,000 A-scan/s speed. We then added Gaussian white noise 

to each data point independently. In implementing the offset extrapolation method, we used 8 

different noise levels, with standard deviations of the noise being 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 

7/8, and 8/8 of the radius of rotation (ROR) of the OCT signal. The ROR was set to 1 in our 

numerical simulation. For the performance evaluation, we tested three noise levels: 0, 1/16, and 

1/8 of the ROR. Our tests were independent of the orientation and offset in the simulated signal, 

since the COR algorithms always determined the COR point with respect to the signal, 

independent of orientation and offset. For implementing the offset extrapolation method, we 

tested 1000 data point for each rotation and noise case. We tested the COR algorithms with 

each 500 generated signals for the 1/16 ROR noise case, and 1000 signals for the 1/8 ROR 

noise case for each of the different rotations. 

2.2 Spectral-domain OCT system 

A commercial spectral-domain OCT system (Thorlabs, Newton, NJ, USA) was used for 

experimental data acquisition. The system uses a large-bandwidth near-infrared (NIR) light 

source with a center wavelength of 1310 nm and a wavelength bandwidth of 170 nm, which 

leads to high axial resolution (3.5 μm). The 5x NIR objective lens (Mitutoyo) was used for 

lateral resolution of 7 μm. The focal plane was located ~120 μm below the cortical surface. The 

system uses a high-speed 2048-pixel line-scan camera to achieve 147,000 A-scan/s with a 

relatively large imaging depth. Thus, the temporal sampling rate of Doppler OCT signal was 

6.8 μs. The field of view (FOV) had 512 (X) x 512 (Y) x 1024 (Z) voxels with the transverse 

and axial sampling rates of 3 μm and 3.5 μm, respectively, leading to 1.54 mm x 1.54 mm x 

3.58 mm imaging volume. We repeated 8 A-scans at each (x,y) position, leading to the temporal 

signal duration of 54 μs. 
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2.3 Animal preparation and imaging 

Five mice were used for this study. On each mouse, craniotomy surgery was performed at 9 

weeks of age. The animal was sedated with 3% isoflurane and sedation maintained with 1.5% 

isoflurane, delivered with 1 L/min O2. An approximately 10 mm sagittal incision was made on 

the surface of the head, terminating at least 3mm behind the eyes. The incision was 

symmetrically laterally expanded to expose a 10mm-diameter surface of the dorsal skull. A 

custom metal head post was cemented to the cortex. Once cured, a circular hole of diameter 3 

mm was created in the right parietal bone. A glass aperture consisting of one 5 mm x 0.1 mm 

and two 3 x 0.1 mm circular cover glasses were affixed, leaving a sealed 3mm aperture which 

allowed direct longitudinal optical viewing of the cortex. 

After surgery, the animal was placed into the OCT system for Doppler OCT imaging of 

cerebral blood flow. The animal was kept under isoflurane anesthesia during imaging. Oxygen 

saturation, pulse rate, and temperature were continuously monitored with pulse oximetry and a 

rectal probe throughout the surgical procedure and experiment. The body temperature was 

maintained at 37°C and the pulse rate remained within the normal range of 250–350 pulse/min. 

All animal-based experimental procedures were reviewed and approved by the Institutional 

Animal Care and Use Committee of Brown University, according to the guidelines and policies 

of office of laboratory animal welfare and public health service, National Institutes of Health. 

3. Results 

3.1 Variance minimization method 

In theory, on the complex plane, the COR should have equal distances from Doppler OCT 

signal data points. Thus, in practice, we can determine the COR as a point where the variance 

in the distances is minimized [11]. We derived an equation to find the point in the complex 

plane ( A Bi ) for a given set of Doppler OCT signal data points,  k k kR t a b i  . 
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 (1) 

where < > denotes an average over k . Figure 3(b) shows that this method determines the COR 

accurately even when the signal data exhibits partial rotations, while the previous high-pass 

filtering method would be biased. 

 

Fig. 3. Examples of CORs determined by the high-pass filtering and variance minimization 

methods. Re, real axis; Im, imaginary axis. 

In contrast, when noise is very large, there is a chance for the variance minimization method 

to be biased as illustrated in Fig. 3c. The illustrated example shows that the COR determined 

by Eq. (1) is biased toward the data points from the true COR. As noise increases, the variance 
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minimization-determined point moves closer to the mean of the data points (i.e., the high-pass 

filtering-determined COR). In summary, the CORs determined by the high-pass filtering and 

variance minimization methods follow a pattern: Firstly, reducing the rotation increasingly 

biases the high-pass filtering COR away from the true COR and towards the signal. Noise does 

not affect this bias. Secondly, small rotations and large noises may bias the variance 

minimization COR away from the true COR towards the signal, but less than that of the high-

pass filtering COR. The patterns inherent in these potential biases have motivated us to develop 

another method as follows. 

3.2 Offset extrapolation method: determining the offset function 

First, we systematically characterized how the above biases in the high-pass filtering and 

variance minimization methods depend on the degree of rotation and noise level, using the 

numerical data with known true values of the COR, rotation or velocity, and noise level. This 

characterized relationship will serve as a lookup table in our second method, termed offset 

extrapolation. While the lookup table receives the rotation and noise level as its input, the input 

values do not need to be precise because the offset extrapolation method will use an iterative 

search to find their accurate values as described in Section 3.3. 

The noise level was defined by the ratio of the standard deviation of added Gaussian noise 

to the radius of rotation (i.e., overall amplitude of the OCT signal’s mobile component). For 

each rotation and SNR, Doppler OCT signals have been generated as described in Section 2.1 

(n = 1000 per rotation and noise case with individual random noise generation). From each 

signal, we determined two CORs by using the high-pass filtering and variance minimization 

methods; then, the CORs were ensemble-averaged (over n = 1000 per rotation and noise case). 

Finally, we quantified the offset between the two CORs and the true COR as shown in Fig. 

4(a). The offset was obtained for each rotation and SNR, resulting in the offset as a function of 

two parameters (Fig. 4(b)). 

 

Fig. 4. (a) Definition of the offset between the high-pass filtering-determined COR (green), 

variance minimization-determined COR (blue), and the true COR (black). Re, real axis; Im, 

imaginary axis. (b) The characterized offset as a function of the degree of rotation and noise 
level. The rotation represents flow velocity when the OCT scan speed and data point number are 

fixed. The noise level is presented in the standard deviation (SD) of added random noise divided 

by the radius of rotation (ROR). 

The offset function takes the rotation of the signal and the noise level as inputs and returns 

the offset. This function is shown to have an approximately quadratic relationship to noise 

(increasing with larger noise) and a reciprocal relationship with rotation (increasing with 

smaller rotations). Note that the obtained offset function or the lookup table only depends on 
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the geometry of a given Doppler signal, not on any system parameter (like A-scan/s); thus, it is 

universally applicable for different systems. 

3.3 Offset extrapolation method: iterative search 

When the true COR is known, the degree of rotation in a given Doppler OCT signal can be 

determined by finding the total angle spanned by the signal from the COR. The radius of 

rotation (ROR) can be estimated as the mean distance to the data points from the COR and a 

variance in the distance computed. Dividing the variance by the mean distance will give an 

estimate of the noise level as defined above. These rotation and noise levels measured with 

respect to the true COR will serve as an accurate input for the offset function which in turn will 

enable us to find the true COR again. However, in practice, all of the true COR, true rotation, 

and true noise level are unknown. Therefore, we have implemented an iterative search so that 

we can find the ‘true’ COR from a provisional COR, without any priori information. 

As illustrated in Fig. 5, for a given signal, we determine two CORs by the high-pass filtering 

and variance minimization methods, choose a provisional COR, estimate the rotation and noise 

level with respect to the provisional COR, input them to the offset function, and use its result 

and the two CORs to extrapolate a ‘true’ COR. Then, this process is iterated until the 

discrepancy between the old and new ‘true’ CORs becomes smaller than a pre-defined 

threshold. The threshold we used was determined independently for each voxel and was taken 

to be 1/1000 of the maximum distance between the data points and their mean. 

 

Fig. 5. Diagram of the iterative process used to determine the offset extrapolation method. HP, 

high-pass filtering; VM, variance minimization. 

Our implemented iterative algorithm has demonstrated convergence in the range of 

parameters tested (see Section 2.1. for detailed parameter range). When a provisional COR is 

chosen to be very far from the origin and the data points, it makes the discrepancy between the 

old and new CORs increase indefinitely, as the spanned angle and the noise level follow an 

inverse relationship with an increase in the discrepancy. However, even in such cases, the 

iterative search does not diverge as our offset function increases faster with respect to a decrease 

in the rotation than it decreases with respect to a decrease in the noise level. 

An example of Fig. 6 shows that this method determines the COR more accurately than 

both the high-pass filtering and variance minimization methods, especially when the signal data 

exhibits a partial rotation and large noise. A more systematic evaluation of the method is 

presented in later sections. 

Both methods were implemented in MATLAB, and our software codes have been uploaded 

to Brown Digital Repository with the DOI of 10.7301/Z0K35S6G for public access. 

Choose a 
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Fig. 6. Examples of four CORs for different rotations and noise levels: true, high-pass filtering 

(HP)-determined, variance minimization-determined, and offset extrapolation-determined 

CORs. Re, real axis; Im, imaginary axis. 

3.4 Comparative algorithm performance 

We compared three methods (high-pass filtering, variance minimization, and offset 

extrapolation) in terms of their accuracy in determining CORs. The accuracy was measured as 

an absolute percentage of the ROR (the overall amplitude of the OCT signal’s mobile 

component). The accuracy was tested for various degrees of rotation (or flow velocities) and 

noise levels. As presented in Fig. 7, both the variance minimization and offset extrapolation 

methods result in higher accuracy than the previously used high-pass filtering method, by up to 

60 percent points. As expected, this improvement is more significant with partial rotations (low 

velocities). Using the OCT scanning speed of 147,000 A-scan/s and 8 A-scans per (x,y) 

position, the partial rotations of   - 2  correspond to axial flow velocities of 5.1 – 10.2 mm/s, 

which are within the known physiological blood flow speed range [5,24,25]. When noise is as 

large as 10% of the ROR, the accuracy of the variance minimization method drops to ~90% in 

the partial rotations, but the offset extrapolation method maintains near 100% accuracy. 

 

Fig. 7. Accuracy in COR determination. The example velocity values correspond to the rotation 
values when 147,000 Ascan/s and 8 Ascan/position are used. SD, standard deviation of 

simulated random noise; ROR, radius of rotation. 
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The performance of the three methods was also tested in terms of the accuracy of velocity 

determination, in conjugation with different Doppler analysis algorithms: the Kasai [4,25], the 

autocorrelation function fitting, and the maximum likelihood estimation (MLE). In short, the 

Kasai algorithm focuses on the phase change in the autocorrelation function at the first time 

lag, the autocorrelation function fitting algorithm performs linear fitting on multiple phase data 

of the autocorrelation function to determine the rotation rate (specifically up a lag of half of the 

total time), and the MLE finds the maximum amplitude frequency in the signal power spectrum 

with no autocorrelation. As can be seen in Fig. 8, compared to the high-pass filtering method, 

both the variance minimization and offset extrapolation methods result in up to 60% higher 

accuracy, although the variance minimization method shows ~5% lower accuracy than the 

offset extrapolation in large-noise signals. The Kasai method is least affected by the COR 

determination accuracy, so we used it in the following in vivo data analysis. 

 

Fig. 8. Accuracy in velocity measurement. The example velocity values correspond to the 

rotation values when 147,000 Ascan/s and 8 Ascan/position are used. SD, the standard deviation 

of simulated random noise; ROR, the radius of rotation. 

3.5 Application to in vivo Doppler OCT imaging 

We tested how the proposed clutter rejection methods work on in vivo data acquired from the 

rodent cerebral cortex. First, compared to the high-pass filtering method, the proposed methods 

are expected to be more robust against noise as shown in Fig. 8. To visually confirm this, we 

compared en face Doppler OCT velocity maps at various depths between the high-pass filtering 

and variance minimization methods. As can be seen in the example of Fig. 9 (dashed white 

boxes), the proposed method results in much less noise, especially in the deeper cortex (Fig. 

9(c)) where the Doppler OCT signals are believed to have larger noise due to the multiple 

scattering and overall signal attenuation. In addition, the proposed methods are expected to 

produce more accurate results especially for low velocities (i.e., smaller rotations as shown in 
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Fig. 8), which in turn leads to better visualization of small blood vessels in Doppler OCT 

velocity maps. The example of Fig. 9 also qualitatively shows this tendency; small blood 

vessels like arterioles (white arrow in (a)) or even some capillaries (white arrow in (b)) were 

visible with the variance minimization method. 

 

Fig. 9. Examples of en face OCT angiogram and Doppler OCT velocity maps. Every en face 

map was obtained by either maximum intensity projection (angiogram) or mean intensity 

projection (Doppler) over ± 35 μm depth. Scale bar, 100 μm. 

To evaluate the clutter rejection methods in a more quantitative manner, we tested how the 

absolute blood flow is conserved within the same blood vessels, because it is difficult to obtain 

the exact values for blood flow velocities in such animal data. The absolute blood flow can be 

obtained in the unit of μL/min via an area integral from an en face slice of the 3D Doppler OCT 

velocity map [26]. The flow should be conserved within the same vessel segment. Flow 

conservation checks were carried out by comparing blood flow values at two different locations 

(depths) of a penetrating artery or draining vein, for 5 veins and 5 arteries in each of the 5 mice 

(50 vessel segments in total). Different algorithms result in different Doppler OCT velocity 

maps and thus different flow values, as shown in the example of Fig. 10. 
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Fig. 10. Examples for en face Doppler OCT velocity maps and blood flow values, for different 

clutter rejection methods. Scale bar, 100 μm. 

From the two flow values measured at different locations, the conservation error was 

quantified by {(larger value) – (smaller value)}/(larger value). Statistically, no clutter rejection 

produces the highest error for flow conservation (Fig. 11(a)). The statistical result also suggests 

that the offset extrapolation and variance minimization methods outperform the currently-used 

high-pass filtering method. Although the offset extrapolation method was slightly more 

accurate than the variance minimization in the numerical simulation (Fig. 8), they produce 

statistically insignificant differences in performance when applied to the animal data. 

Figure 11(b) shows the underestimation of absolute blood that occurs when no clutter 

rejection filter is used. We can also see the overestimation present in the high-pass filtering and, 

to a lesser extent, variance minimization. Overestimation is less pronounced for the offset 

extrapolation method. However, as the exact true values are unknown in the in vivo data, it is 

difficult to quantify the degree of these biases or to know whether the offset extrapolation 

method produces an overestimation or underestimation of the flow velocities. 

 

Fig. 11. Statistics of the flow conservation error (a) and the absolute flow (b). *p<0.05, 

***p<0.001 (paired t-test). Data are presented as mean ± SE. NS, Not Significant. 

4. Discussion and conclusion 

This study describes two novel methods for Doppler OCT clutter rejection and demonstrates 

the improved accuracy in both numerical tests and in vivo imaging. As can be seen in the 

numerical test (Figs. 7 and 8), the proposed methods are specifically accurate in lower velocities 

(partial rotations; corresponding to lower than 7.6 mm/s in our OCT system), improving both 
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COR and velocity accuracies by up to 60%. Higher accuracy may become increasingly 

important with recent advances in OCT speed, as faster OCT scanning will lead to smaller 

rotations in the Doppler signal when the other parameters are identical. The improved accuracy 

in low velocities (i.e., extended dynamic range) may allow for more robust detection of 

peripheral blood vessels whose flow velocities tend to be lower, and thus help avoid the blood 

vessel size underestimation that is currently observed [12]. In addition, when noise is as large 

as 10% of the ROR (which is common in real in vivo Doppler OCT data), the offset 

extrapolation always, though slightly, outperforms the variance minimization method in the 

numerical tests but not significantly with the in vivo imaging data (Fig. 11(a)), perhaps due to 

the higher variance of the offset extrapolation estimator leading to a greater overall MSE. 

Finally, while no clutter rejection leads to velocity underestimation and the high-pass filtering 

method tends to lead to overestimation, our methods produced intermediate flow values (Fig. 

11(b)), which might be associated with the improved accuracy. 

With a longer acquisition time, the complex OCT signal will tend to rotate more than 2π (a 

full cycle) so that one can expect the high-pass filtering to work better. However, “longer” here 

can be a relative concept. More accurately speaking, a longer acquisition time will lower the 

bottom limit of the velocity range for which the high-pass filtering works accurately, but the 

HP filtering still would not work well for lower velocities than the new limit. Meanwhile, a 

shorter acquisition time is generally advantageous in many aspects; for example, it allows for 

faster dynamic imaging (i.e., more volume data) with repeating scans to trace temporal changes 

in CBF against time for functional studies. Thus, there is a tradeoff between acquisition time 

and dynamic range. It is noteworthy to mention that even with a longer acquisition time, there 

always exists a velocity range for which the variance minimization and offset extrapolation 

methods work more accurately than the high-pass filtering method. 

Although the offset extrapolation method produces the most accurate results in all of our 

numerical tests, it is based on the iterative search which requires the calculation of the high-

pass filtering and variance minimization CORs and thereby is the most computationally 

intensive of the three algorithms. Given this, along with the statistically insignificant difference 

in the in vivo imaging result, the variance minimization method may be a fair compromise 

between accuracy and computational intensity. If one wants to reduce the computational 

overhead of offset extrapolation, various ideas could be tested, such as fitting the mismatch of 

the provisional and extrapolated CORs to a quadratic function, and using the zeros of that 

function to produce a better estimate of the locations of the extrapolated CORs, instead of using 

the simple bisection method adopted here. 

Offset extrapolation also showed the greatest variance in the determined COR in our 

numerical test. It might be attributed to biases that we observed in the numerically determined 

offset function, especially at low noises. A more accurate determination of the offset function 

may improve the precision for very small rotations. Also, the blood flow conservation test might 

not be ideal for in vivo determination of the accuracy. There is a chance for a method to falsely 

produce high flow conservation accuracy when the method has a systemic error (e.g., 

consistently overestimate the flow). However, since a recent study validated the overall 

accuracy of Doppler OCT measurements by utilizing the traditional hydrogen clearance method 

to measure cerebral blood flow [17], we do not expect that the proposed two methods for COR 

determination would specifically produce a systematic error. 

Finally, of particular note was that the Kasai method, even when combined with the 

previous high-pass filtering method, resulted in relatively robust accuracy in our numerical test 

(Fig. 8), despite large inaccuracies in the COR (Fig. 7). In our numerical test, we first removed 

the COR from the signal and then obtained the autocorrelation function from the COR-

corrected signal. It seems that, for very large biases in the determined COR, the autocorrelation 

function with a single time lag (used for Kasai) eliminates the large jump that occurs in the 

phase angle. This might help to mitigate the velocity overestimation otherwise present in the 

method. The variance minimization and offset extrapolation methods, however, are much more 
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robust to the autocorrelation time lag chosen; for instance, they perform similarly at the unit 

lag as well as the half lag. 

Even in conjunction with Kasai, the three methods exhibited a difference in their 

performance. Although an exact theoretical basis underlying the difference should be further 

studied, the large phase angle jump due to incorrect COR estimation in the high-pass filtering 

method might be mitigated when using an autocorrelation with unit lag. Nonetheless, the 

improvement by that mitigation was less pronounced, apparently due to the lower bias of the 

variance minimization and offset extrapolation methods in determining the true COR. 

In conclusion, we have demonstrated new clutter rejection methods for Doppler OCT. 

While the old algorithms exhibit biases, our methods are designed to eliminate the source of 

this bias. This should make Doppler OCT robust to different circumstances where the static 

component makes a stronger or weaker contribution to the signal, an advantage over simple 

high-pass filtering of OCT signals. We expect our algorithms to enable Doppler OCT to present 

a truer picture of the absolute blood flow measurements made across different in vivo scenarios. 
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