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Abstract: Prior work demonstrated significant contrast in visible wavelength Mueller matrix
images for healthy and pre-cancerous regions of excised cervical tissue. This work demonstrates
post-processing compressions of the full Mueller matrix that preserve detection performance. The
purpose of this post-processing is to understand polarimetric measurement utility for computing
mathematical observers and designing future imaging protocols. The detection performance of
the full Mueller matrix, and both linear and non-linear parameters of the Mueller matrix will be
compared. The area under the receiver operating characteristic (ROC) curve, otherwise known as
the AUC, is the gold standard metric to quantify detection performance in medical applications.
An AUC = 1 is perfect detection and AUC = 0.5 is the performance of guessing. Either the
scalar retardance or the 3 smallest eigenvalues of the coherency matrix yield an average AUC
of 0.94 or 0.93, respectively. When these four non-linear parameters are used simultaneously
the average AUC is 0.95. The J-optimal Channelized Quadratic Observer (J-CQO) method for
optimizing polarimetric measurements demonstrates equivalent AUC values for the full Muller
matrix and 6 J-CQO optimized measurements. The advantage of this optimization is that only 6
measurements, instead of 16 for the full Mueller matrix, are required to achieve this AUC.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The most widely used method for reliable cancer diagnosis is excisional tissue biopsy. This
process is invasive, time-consuming, and expensive and has motivated the development of
optical biopsy techniques [1]. Optical coherence tomography, non-linear microscopy, confocal
microscopy, Raman spectroscopy, diffuse optical spectroscopy and others, have become popular
because of their non-destructive and minimally invasive features [2]. Of course, each diagnostic
test has shortcomings associated with time, cost, reliability, or patient discomfort. For example,
high-resolution imaging modalities typically possess a small field of view that can often only be
extended through a time-consuming scanning process.

Among other optical imaging techniques Mueller polarimetry has demonstrated sensitivity to
the structural and morphological microscopic transformations of biological tissue [3, 4]. These
transformations are potentially related to the presence of pathology, and contrast between healthy
versus cancerous excised tissue has been shown in prior Mueller imaging studies [5–7]. Moreover
this polarimetric technique provides a macroscopic field of view (≈10 cm2), and the delineation
of suspicious areas can be imaged without any tissue contact. Through the integration of this
technology into conventional instruments (e.g., colposcope, endoscope), polarimetric imaging is
a promising tool for in vivo cancer detection and staging [8–10].
A minimum of sixteen independent measurements are required to obtain a full-rank linear

system from which to reconstruct a Mueller matrix [11]. For many imaging applications,
polarimetry is useful, but a full Mueller matrix measurement is not necessary. Using both

                                                                      Vol. 9, No. 11 | 1 Nov 2018 | BIOMEDICAL OPTICS EXPRESS 5691 

#337790 https://doi.org/10.1364/BOE.9.005691 
Journal © 2018 Received 9 Aug 2018; revised 5 Oct 2018; accepted 8 Oct 2018; published 25 Oct 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.005691&domain=pdf&date_stamp=2018-10-25


knowledge of the samples’ optical properties and a well-defined scientific task to reduce the
measurement requirement is known as ‘adaptive polarimetry’ [12] or ‘partial polarimetry’ [13,14].
Measurement utility relates the individual polarimetric measurements to the performance of a
scientific task as an empirical method for exploring a samples’ relevant optical properties [15].
This paper reports data analysis to quantify polarimetric measurement utility and to evaluate
the use of adaptive polarimetry for high grade cervical intraepithelial neoplasia (CIN 2-3 or
pre-cancer) detection.
In prior work on Mueller polarimetry of cervical tissue, scalar retardance was used as a test

statistic [7]. The high detection performance of scalar retardance demonstrates that Mueller
polarimetry data contains valuable information for cervical cancer detection but is not well-suited
for adaptive polarimetry, since this parameter depends non-linearly on a full Mueller matrix. An
important contribution of this work is demonstrating equivalent detection performance between:
1) polarimetric parameters calculated from the depolarizing part of the Mueller matrix (i.e., the 3
smallest eigenvalues of the coherency matrix) and 2) the scalar retardance which is computed
from the non-depolarizing part of the Mueller matrix. This discovery is novel since it has not
been demonstrated before that both the depolarizing and the non-depolarizing parts of the Mueller
matrix are discriminatory for cervical pre-cancer screening. Cervical tissue is very depolarizing
so this equivalent metric is potentially useful in measurement and calibration protocols.

In this paper maximum detection performance is achieved using polarimetric parameters (e.g.,
scalar retardance and the eigenvalues of the coherency matrix) which are non-linear functions
of the full Mueller matrix. It is not possible to measure these parameters directly. Instead,
these parameters are computed in post-processing from the full Mueller matrix. This work
demonstrates a method to maximize the detection performance given a linear constraint between
the parameters and the Mueller matrix. An even stricter constraint is also imposed: linear
parameters of the Mueller matrix that can be optically measured directly. Equivalent detection
performance when using the full Mueller matrix or only 6 coefficients of the Mueller matrix is
also demonstrated. This result indicates that adaptive polarimetry is a viable optical technique
for cervical cancer detection.
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Fig. 1. Radiance images of 24 excised cervical specimens labeled with results from
histopathology: CIN 2-3 (red), healthy (green) tissue. In total, 59,000 CIN 2-3 and 135,000
healthy pixels are labeled. Patient IDs are counted column-major. Three images contain both
CIN2-3 and healthy pixels, these Patient IDs are: 18, 19, and 22. The size of the background
square grid cell is 5mm x 5mm.
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Table 1. AUC estimates of polarimetric parameters or sets of parameters that are linear
or non-linear functions of the Mueller matrix. Standard deviations are computed from
three permutations of testing and training sets among 24 patients. Within ±1σ the AUC
of: Scalar Retardance, 4 eigenvalues of the coherency matrix, 3 smallest eigenvalues of
the coherency matrix, and 3 smallest eigenvalues of the coherency matrix together with the
scalar retardance are all equivalent. These parameters are non-linear functions of the Mueller
matrix and require measurement of the full Mueller matrix. Linear transforms of the Mueller
matrix do not exceed an average AUC of 0.91. J-CQO parameters do not require a full
Mueller Matrix measurement and the maximum average AUC is 0.90 for 6 measurements.

AUC σAUC

Linear Polarimetric Parameter(s)

Mueller Matrix 0.90 0.05

Mueller elements: m00, m20, m21 0.90 0.05

Coherency Matrix 0.90 0.07

Coherency elements: c11, c22, real(c12), imag(c02) 0.91 0.05

J-CQO 3 PSA/PSG measurements 0.88 0.07

J-CQO 6 PSA/PSG measurements 0.90 0.03

Non-linear Polarimetric Parameter(s)

Scalar Retardance 0.94 0.03

Depolarization Index 0.49 0.06

4 Eigenvalues of coherency matrix 0.93 0.03

3 Smallest Eigenvalues of coherency matrix 0.93 0.02

3 Smallest Eigenvalues + Scalar Retardance 0.95 0.02

Entropy of coherency Eigenspectrum 0.48 0.10

2. Experimental methods

A full description of the multispectral imaging Mueller polarimeter used for the ex vivo analysis
of uterine cervix specimens is in prior work [7]. This Mueller imaging polarimeter operates in a
backscattering configuration. An incoherent white light used to illuminate the sample delivered
by a LED source is collimated by a convex lens and then passes through a Polarization State
Generator (PSG). This latter consists of a linear polarizer followed by two tunable ferroelectric
liquid crystal cells (FLCs) with a quarter waveplate inserted in between [16]. Each FLC has the
effect of a fixed retardance waveplate with a fast axis orientation that switches between ≈ 0◦
and ≈ 45◦. Thereafter, the light backscattered by the sample passes through a Polarization State
Analyzer (PSA) made of the same elements in a reverse order compared to PSG assembly. Four
linearly independent states of polarization generated by PSG are projected on four identical states
of PSA after interaction with a sample. The sample is imaged through the PSA onto a CCD camera
(Stingray F080B, 800 × 600 pixels). The stability of the emitted light during the measurement
is monitored by a photodiode. The detection arm is set at normal to sample surface, while the
illumination arm is set at ≈ 15◦ to the normal. By using 20 nm bandpass interference filters, we
chose the measurement wavelength between 450 and 700 nm in steps of 50 nm. The Mueller
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Fig. 2. Histogram of LC decomposition parameters for labeled pixels in the population of
24 patients: red (healthy), blue (CIN 2-3). The y-axis is probability of occurrence and for
brevity is unlabelled.

matrix of the sample at each wavelength is reconstructed from sixteen images acquired at all
sixteen unique combinations of four different input and output polarization states. The acquisition
of these 16 images takes less than 2 seconds due to the rapid polarization modulation of the FLCs.
Calibration of the multispectral imaging Mueller polarimeter was performed pixelwise and at
each wavelength using the Eigenvalue Calibration Method (ECM) [17]. This Mueller polarimeter
was installed at the pathology department of the University Hospital Kremlin-Bicêtre, France.

Monochromatic (550 nm) radiance images of excised cervical tissue are shown in Fig. 1 with
green and red labels of healthy squamous epithelium and high-grade cervical intraepithelial
neoplasia (CIN 2-3) regions, respectively. Precancerous transformation of the cervix starts in the
cells near the basal membrane at the bottom of the squamous epithelium, and then progresses
toward the surface. The lesion is classed as CIN1 or CIN2 if this transformation affects one-third
or two-thirds of the epithelium thickness, respectively, and CIN3 if the entire thickness of the
epithelium is affected. Results from histopathology are used to label these selected pixels, and
the method to register the two modalities has been described in [7]. In our prior studies the first
statistical analysis was performed for specimens measured at 450 nm, 550 nm, and 600 nm [7].
The data acquired at 550 nm and 600 nm were quite similar but the best sensitivity and specificity
of the optical diagnostics was achieved at 450 nm. In the current paper we present the extended
statistical analysis for larger set of specimens measured at wavelength 550 nm. We have chosen
this wavelength, because the variability of signal-to-noise ratio from patient to patient was much
higher at 450 nm compared to the two other measurement wavelengths.

3. Mathematical and computational methods

Consider the relationship between an image and an object as g = H f + n. Here g is an M × 1
vector of measurements made by an imaging system that is represented as a continuous-to-discrete
operatorH. The measurements of the continuous object f are corrupted by measurement noise
n. In imaging polarimetry a Mueller matrix (a 16× 1 vector denoted m) is reconstructed from the
raw measurements at each pixel [18]. Functions of the elements of m, or a subset of the elements
of m, can be used to perform the detection task. In pattern-recognition, these functions are called
features, and the transformation from data elements to features is called feature extraction. If the
functions are linear transformations of the data, they are called linear features. In this work, the
detection performance will be compared for: 1) a full Mueller matrix denoted as a 16 × 1 vector
m; 2) a linear transformation or compression of the Mueller matrix, denoted Tm where T is a
full rank L × 16 matrix where L < 16; 3) a constrained linear reduction of the Mueller matrix
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where the rows of T are constrained to satisfy PSA and PSG states on the Poincaré sphere [19];
and 4) parameter(s) derived from the Mueller matrix through a non-linear function.
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Fig. 3. Histogram of (a) Mueller and (b) coherency matrix elements for labeled pixels in
the population of 24 patients: red (healthy), blue (CIN 2-3). The y-axis is probability of
occurrence and for brevity is unlabelled.

One of the most conventional methods of data processing in Mueller polarimetry (and an
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example in the 4th category) is the Lu-Chipman (LC) decomposition [20]. Here theMueller matrix
is expressed as a product of Mueller matrices from a series of optical elements: a diattenuator,
followed by a retarder, then followed by a depolarizer. Figure 2 shows the histogram of the
depolarization index and scalar retardance values calculated pixel-wise using LC decomposition
for all labeled regions of 24 patients.
A mathematical observer computes a scalar-valued test statistic, for the binary classification,

from the polarimetric parameter(s). The ideal observer computes this test statistic using the log
of the ratio of the likelihoods, which can be written as

λ (v) = ln [pr1 (v)] − ln [pr2 (v)] (1)

where v are the parameter(s) used for the classification and pr1 and pr2 are the conditional
probability density functions (pdfs), also called the likelihoods, of the vector v given each binary
classification. Eq. (1) maximizes the area under the receiver operating characteristic (ROC)
curve, otherwise known as the AUC, as well as other task-based figures of merit (FOM) [21].
AUC is the gold standard FOM to quantify detection performance [21]. The AUC ranges from
1.0 (i.e., classifier never makes a mistake) to 0.5 (i.e., classifier is guessing a decision).

In this work the likelihoods pri (v) are modeled as either normal, or when the variable
is positively-constrained, log-normal. It is notable that the likelihoods are not always well-
approximated by a Gaussian fit (e.g, in Figs. 3 and 4, some subplots look more normal then
others). The normal model is selected for simplicity. Assuming that prn (v) is a normal pdf with
mean v̄n and covariance matrix Kn, Eq. (1) becomes

prn (v) =
[
(2π)L det (Kn)

]− 1
2 × exp

[
−1

2
(v − v̄n)† (Kn)−1 (v − v̄n)

]
(2)

for n = 1, 2. A normal pdf results in the log likelihood ratio in Eq. (1) being quadratic in v and
denoted as a quadratic classifier or quadratic observer.
In prior work we introduced a mathematical method, called the J-optimal Channelized

Quadratic Observer (J-CQO), to optimize the PSA/PSG measurement strategy [19]. J-CQO is a
constrained linear reduction of the Mueller matrix of the form

i = Ttm. (3)

Here i is a vector of intensity measurements and the rows of T are constrained to satisfy PSA/PSG
states on the Poincaré sphere [19]. If T, is a 16 × L matrix, where L is the number of intensity
measurements made then each row of T can be written as a Kronecker product between the l th

PSA/PSG state as in

T =

©«

a1 ⊗ g1

a2 ⊗ g2

...

aL ⊗ gL

ª®®®®®®®¬
. (4)

Here al is a 4× 1 vector of Stokes parameters describing the l th PSA, gl is a 4× 1 vector of Stokes
parameters for the l th PSG. If A is an m × n matrix and B is a p × q matrix, then the Kronecker
product A ⊗ B is the mp × nq block matrix

A ⊗ B =
©«

a11B . . . a1nB

. . .
. . . . . .

am1B . . . amnB

ª®®®®¬
. (5)
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The J-CQO optimizes Jeffrey’s divergence (J) between two normal distributions: pr1 (i) and
pr2 (i), with respect to the PSA/PSG states and associated matrix T. Denote the mean of
the non-Gaussian distribution on the Mueller matrix prn (m) as a 16 × 1 vector mn and the
covariance as a 16 × 16 matrix Kn for n = 1, 2. Assume the intensity measurements are normally
distributed where the mean of the nth class is an L × 1 vector in and the L × L covariance matrix
is Cn = TtKnT.

The value of J between the L-dimensional normal distributions pr1(i) and pr2(i) is

2J (T) = −2L + tr
[
C−1

2 C1
]
+ 4itC−1

2 4i + tr
[
C−1

1 C2
]
+ 4itC−1

1 4i (6)

where 4i = i1 − i2 = Tt (m1 −m2). The dependence between the covariance matrix of the
intensity measurements on the PSA/PSG could be made explicit by denoting Cn (T), but in the
above expression this dependence has been dropped for brevity.
An important advantage of Eq. (6) as a merit function is that the scalar-value of J for two

Gaussian distributions has a closed-form gradient [19]. The Bhattacharyya distance has also
been used to optimize a single PSA/PSG measurement without a closed-form gradient [12].
The mathematical and empirical relationship between J and AUC has been described in prior
work [22].

Instead of optimizing eight numbers (i.e., four elements of the vector a and four elements
of the vector g) the optimization can be reduced to six numbers. Stokes parameters can be
transformed to a total radiance I and three coordinates on the Poincaré sphere: for example
a = [Ia, ρa cos(2ψa) cos(2χa), ρa sin(2ψa) cos(2χa), ρa sin(2χa)]; similarly for g. In the J-CQO
optimization Ia and Ig are set to unity since any increase in total radiance would always increase
J for an otherwise fixed PSA and PSG. The Poincaré coordinates are elements of the vector
θ = [ρ, ψ, χ] with constraints 0 ≤ ρ ≤ 1, −π/2 ≤ ψ ≤ π/2, and −π/4 ≤ χ ≤ π/4. The elements
of θa and θg are six constrained numbers which are optimized for J-CQO measurements. For
many applications setting ρa = ρg = 1 will reduce the optimization to four numbers without
compromising detection performance, see the Results section.
Statistical independence between training and testing sets is required to ensure an unbiased

estimate of AUC. Patient data are required in three distinct steps of the computation of the
quadratic log likelihood ratio: 1) estimate v̄i and Ki in Eq. (2), i.e train the quadratic classifier,
2) patient data to test the performance of the classifier, i.e., the vector v in Eq. (1), and 3)
when linear compression of the form v = T†m is used (see Equation 3) patient data is needed
to optimize T. For steps 1 and 2 the patient data must be independent from one another
to ensure an unbiased estimate of AUC [23]. In practice we have found that independence
between patient data in steps 2 and 3 increases AUC by incorporating intraclass variability
into the likelihood estimates. Pixels within a single patient image are correlated and pixels
from different patient images are independent. Three non-overlapping sets are formed from
patients 1-24; set A = {4, 5, 7, 10, 12, 18, 20, 22}, set B = {2, 3, 9, 13, 14, 15, 19, 24}, and set C =
{1, 6, 8, 11, 16, 17, 21, 23}. Other choices for these sets are possible; this particular choice yields
approximately equal quantities of labeled pixels (healthy and CIN 2-3) across the three sets. The
variability in assigning sets A, B, and C to steps 1, 2, and 3 yields 6 estimates of AUC from
which the mean and standard deviation are computed and reported in Table 1.

4. Results

Table 1 is a summary of the AUC estimates for 16 different polarimetric parameters and/or sets
of parameters. This table is separated into parameters that are linear or non-linear functions of
the Mueller matrix. The LC decomposition is a popular method which yields scalar retardance
and depolarization index; both are non-linear parameters of the Mueller matrix [20]. The AUC
for scalar retardance is 0.94 ± 0.03 and 0.49 ± 0.06 for depolarization index (see Fig. 2 for
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Fig. 4. Histogram of sorted (λ1 > λ2 > λ3 > λ4) coherency matrix eigenvalues for labeled
pixels in the population of 24 patients: red (healthy), blue (CIN 2-3). The y-axis is probability
of occurrence and for brevity is unlabelled.

histograms of these quantities). The scalar retardance AUC is high but is not guaranteed to be a
global maximum.

Histograms of all 16 elements of the Mueller matrix are shown in Fig. 3(a). When all elements
of the Mueller matrix are used in the classifier the AUC is 0.90 ± 0.05 which, although less
than for scalar retardance, shows the detection performance with minimal post-processing. Next,
one-by-one, each element is discarded and the AUC of the reduced dataset is estimated. The
element is retained only if the average AUC decreases greater than or equal to 0.01. Using
this procedure an AUC of 0.90 ± 0.05 is maintained using only elements: m00, m20, and m21;
see subplot labels in Fig. 3(b). A non-polarimetric measurement yields m00 but the other two
elements cannot be measured individually. This demonstration, that using the full Mueller matrix
or only 3 elements yields the same detection performance, indicates that adaptive polarimetry is
indeed promising.
The coherency matrix is linearly related to the Mueller matrix and contains an equivalent

amount of polarimetric information. The relationship between coherency and Mueller matrices
has been studied by many authors [11, 24]. The coherency matrix is a 4 × 4 Hermitian matrix of
complex-values and 16 of these values are unique; see histograms in Fig. 3(b). The diagonal
values of the coherency matrix are positively-constrained, therefore a log-normal likelihood
model is used. The AUC using all 16 unique values of the coherency matrix is the same as the
full Mueller matrix: 0.90 ± 0.05. Using the same procedure as described above the AUC is
equivalent when only 4 elements: C11, C22, imaginary part of C02, and real part of C12 are
retained. This results demonstrates that not all elements are equally informative, and that in
consequence, there is room for simplifying the measurement strategy. However, we could not
find any simple physical interpretation of the selected coefficients.
The eigenvalues of the coherency matrix are real and positive since it is Hermitian; see Fig.

4. Analysis of the eigenvalues of the coherency matrix has been studied by other authors [25].
For non-depolarizing samples the three smallest eigenvalues of the coherency matrix are zero
by definition. Measurements of non-depolarizing samples will result in non-zero values for 2,
3, or all 4 eigenvalues. Since tissue is highly depolarizing (see Fig. 2) the average values of
all four eigenvalues are non-zero (see Fig. 4). The average-value of each eigenvalue is only
slightly different for healthy and CIN 2-3 populations in Fig. 4. Visual inspection of this figure
alone is not enough to conclude whether these parameters are useful to discriminate these two
populations. The correlation between these parameters is also important. Correlation between
the parameters creates the population separation in Fig. 5 when the difference of a pair the
parameters is plotted versus the difference in another pair.
The AUC using all four eigenvalues is 0.93 ± 0.03. The entropy of the eigenspectrum is a

popular test statistics in select polarimetric applications [26]. The entropy of the eigenspectrum
is related to the depolarization index. The depolarization index yielded low AUC estimates (see
Table 1), so as expected the AUC of entropy was also low: 0.48 ± 0.10. As shown by Cloude’s
decomposition [24], the largest coherency matrix eigenvalue, and its associated eigenvector,
define the nondepolarizing part Mnd of the generally depolarizing Mueller matrix M. The other
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eigenvalues and eigenvectors account for the depolarizing part Mdep, and M = Mnd +Mdep.
The largest eigenvalues, and associated eigenvector, dominates the LC decomposition parameters
such as scalar retardance. The AUC using only the three smallest eigenvalues is also 0.93 ± 0.02.
This result indicates that the discriminating qualities of the depolarizing part of the polarimetric
measurement are just as high as the nondepolarizing part. This is an important result which
can be explored in optical diagnostics of tissue pathology. In applications where the sample is
not highly depolarizing the three smallest eigenvalues can be very close to zero and very noisy.
In this application, the high AUC from the three smallest eigenvalues is evidence that these
measurements are informative and not dominated by noise. Fig. 5(a) is 2-D plots of differences in
the 3 smallest eigenvalues for the three patients in this population with both CIN 2-3 and healthy
regions. The difference λ4 − λ2 is plotted versus λ2 − λ3. Distinctive differences between healthy
and CIN 2-3 distributions are visible for each patient although the distribution patterns change for
each patient. When scalar retardance and the three smallest eigenvalues of the coherency matrix
are used together in the classifier the AUC increases slightly, relative to the separate values, to
0.95 ± 0.02. This is the highest AUC value reported in this work. This increase in AUC may
look quite small. Nevertheless, we would like to emphasize that this improvement is achieved by
an appropriate data post-processing and does not require any modifications of the measurement
protocol. The next part of the discussion is dedicated to studies on optimal measurement protocol
for adaptive polarimetry.

The detection performance for J-CQO versus number of measurements is shown in Fig. 6(a).
Three J-CQO measurements yield an AUC of 0.88 ± 0.07 and 6 measurements yield an AUC
of 0.90 ± 0.03 which is equivalent to the performance using the entire Mueller matrix. The
optimal PSA/PSG states, for 3 measurements, are plotted on the Poincaré sphere in Fig.6(b-c)
where numerical labels are given to each PSA/PSG pair. The optimal PSA/PSG states are always
on the surface of the Poincaré sphere indicating that the optimal value for this dataset is ρ = 1.
This result has been predicted in prior work and could be used as an a priori constraint to
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Fig. 5. Plots of differences in: (a) 3 smallest coherency matrix eigenvalues and (b) intensity
output of 3 J-CQO PSA/PSG states for patients 18, 19, and 22. Red (healthy), blue (CIN
2-3).
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sphere, red (PSA) and green (PSG). At a given measurement, the PSA/PSG pair appears
approximately cross-polarized in the top-view shown in (c). The side-view in (b) shows that
all PSA/PSG states deviate from purely linearly states towards right circular-polarization
(RCP).

reduce the number of parameters in the J-CQO optimization [27]. At a given measurement, the
PSA/PSG pair appears approximately cross-polarized in the top-view shown in Fig.6(c). The
side-view in Fig.6(b) shows that all PSA/PSG states deviate from purely linearly states towards
right circular-polarization (RCP). Although it is faint, this deviation is significant since even
small perturbations to the Poincaré coordinates can change the AUC. Measurements 1 and 2 are
very close to one another on the Poincaré sphere, and it is difficult to distinguish these markers in
Fig.6(b-c). Plots of the intensity measurements from these PSA/PSG states, for three patients,
are shown in Fig. 5(b). Here the difference between the first and second measurement (i1 − i2) is
plotted versus the difference between the third and the second measurement (i3 − i2). These three
measurements are different in both the mean and covariance and quadratic observers are sensitive
to both of these differences. Although i1 − i2 is approximately an order of magnitude less than
i3 − i2 the separation between the two classes along this dimension is evident. The mean values
of i1 and i2 are more similar for CIN 2-3 labelled pixels (i.e., centroid of the blue points is close
to zero along i1 − i2 axis) as compared to the small but non-negligible difference in i1 − i2 for
healthy labelled pixels (i.e., centroid of the red points is farther from zero along i1 − i2 axis). A
similar centroid separation is evident on the i3 − i2 axis. The differences in the variances and
covariances of i1, i2, and i3 define the distribution of scattered points in Fig. 5(c).

5. Conclusion

This paper has demonstrated linear post-processing reductions of the full Mueller matrix that
preserve detection performance and non-linear post-processing of the full Mueller matrix that
increases detection performance. Element-by-element reductions of the Mueller or coherency
matrix do not have direct interpretations concerning a sample’s optical properties or measurement
protocols. These reductions, which preserve detection performance, motivate the development of
adaptive polarimetry for neoplasia diagnostics since not all elements are useful for the detection
task. J-CQO optimization of PSA/PSG states achieves equivalent detection performance as the
full Mueller matrix using only 6 measurements instead of the full 16. Reducing the number and,
consequently, the time of measurements is of paramount importance for the future development
of in vivo diagnostics. It will reduce the acquisition artifacts related to the patient’s movements.
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Experimental verification of the detection performance on reduced polarimetric measurement
sets will be the subject of future work. A mathematical relationship between optimal PSA/PSG
measurements and eigenanalysis of the coherency matrix will also be considered.
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