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Abstract: Little work has been done on the information flow in functional brain imaging and 
none so far in fNIRS. In this work, alterations in the directionality of net information flow 
induced by a short-duration, low-current (2 min 40 s; 0.5 mA) and a longer-duration, high-
current (8 min; 1 mA) anodal tDCS applied over the Broca’s area of the dominant language 
hemisphere were studied by fNIRS. The tDCS-induced patterns of information flow, 
quantified by a novel directed phase transfer entropy (dPTE) analysis, were distinct for 
different hemodynamic frequency bands and were qualitatively similar between low and 
high-current tDCS. In the endothelial band (0.003–0.02 Hz), the stimulated Broca’s area 
became the strongest hub of outgoing information flow, whereas in the neurogenic band 
(0.02–0.04 Hz) the contralateral homologous area became the strongest information outflow 
source. In the myogenic band (0.04–0.15 Hz), only global patterns were seen, independent of 
tDCS stimulation that were interpreted as Mayer waves. These findings showcase dPTE 
analysis in fNIRS as a novel, complementary tool for studying cortical activity reorganization 
after an intervention. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Transcranial direct current stimulation (tDCS) is a non-invasive electrical stimulation 
technique used to modulate cortical activity in the human brain by delivering weak currents 
through a pair of anode-cathode electrodes (up to 2mA for up to 20 mins) [1,2]. TDCS has 
been applied to enhance physical performance in healthy subjects [3–5] and facilitate 
neurorehabilitation during stroke recovery [6]. Several studies have suggested that anodal 
tDCS over either Broca’s area or Wernicke’s area could improve naming accuracy or speed 
both in stroke-induced aphasia patients [7–9] and in healthy subjects [5,10,11]. 

Recent resting-state functional magnetic resonance imaging (fMRI) studies [12,13] 
explored the altered connectivity strength within large-scale functional networks related to 
tDCS stimulation over language cortical regions. However, little is known about the 
directionality of cortical interactions in functional language networks when tDCS is applied. 
To the best of our knowledge, only one study [14] to date has investigated the direction of 
information flow, which was done by use of Dynamic Causal Modelling (DCM) during a 
concurrent tDCS-fMRI study of overt picture naming. Nevertheless, DCM requires 
complicated a priori parameters and strong assumptions on the underlying neuronal 
interaction mechanisms [15,16]. Here, we used Phase Transfer Entropy (PTE) [15,17], which 
is a computationally efficient and data-driven method, to estimate changes in the direction of 
information flow affected by tDCS, quantified by a directional PTE (dPTE) metric. 

In this study we used functional near-infrared spectroscopy (fNIRS) to investigate 
directionality in cortical interactions involving the language processing areas. FNIRS can 
detect changes in the concentration of oxyhemoglobin (ΔHbO) and deoxyhemoglobin (ΔHb) 
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resulting from neurovascular coupling secondary to neuronal activation [18]. The higher 
temporal resolution of fNIRS and its easier implementation in a compatible setup with tDCS, 
relative to fMRI, makes it advantageous for studying alterations in functional connectivity 
induced during tDCS [19,20]. Previous studies [21,22] have shown that vasomotion-induced 
oscillations measured by fNIRS, which lead to improved perfusion [23] and local tissue 
oxygenation [24], could be divided into three frequency bands: an endothelial component 
(0.003-0.02Hz) related to microvascular activity [25–27], a neurogenic component (0.02-
0.04Hz) linked to intrinsic neuronal activity [28] and a myogenic component (0.04-0.15Hz) 
attributed to the activity of smooth muscles of arterioles [25–27]. In this study, we explored 
how tDCS affected the directionality of information flow, encoded by changes in dPTE, in 
these three individual frequency bands and in the entire fNIRS frequency band. 

One additional aspect we explored in this work was the effect of tDCS current intensity on 
the information flow patterns of language-processing networks. A subdivision of information 
flow analysis into endothelial, neurogenic and myogenic frequency band contributions to the 
information flow computed by dPTE analysis was performed with the aim of helping clarify 
the relative roles of neuronal versus vascular physiological responses to different tDCS 
current intensities. Furthermore, we wanted to evaluate whether alterations of information 
flow due to anodal tDCS over the left Broca’s area for a brief duration (2 min 40 s) and low 
intensity tDCS current (0.5 mA), henceforth referred to as Low Current tDCS, could produce 
qualitatively similar information flow directionality patterns to those occurring after a longer 
duration (8 min) and higher intensity tDCS current (1 mA), henceforth referred to as High 
Current tDCS, mimicking a common intervention choice in the literature. The aim of this 
latter part of the work was to test whether Low Current tDCS, whose hemodynamic effects 
wash away within minutes, could be used as a rapid way to produce qualitatively similar 
cortical maps of information flow directionality as those occurring at therapeutic level 
currents, which have long-lasting effects. The findings of this work are intended to contribute 
towards a better understanding of cortical plasticity in language networks induced by tDCS. 

2. Method and materials 
2.1 Subjects 

Thirteen healthy right-handed subjects (2 Females, 11 Males, mean ± SD age = 35.4 ± 8.4) 
participated in this study. Subject handedness was determined by the Edinburgh Handedness 
Inventory [29]. None of them had a history of neurological disorders. Written informed 
consent was obtained from each participant before the experiments. The studies were 
conducted under the approval of the University of Texas at Arlington Institutional Review 
Board protocol (UTA #2015-0819). 

2.2 fNIRS imaging setup combined with tDCS 

Figure 1(a) demonstrates the overall experimental setup. A continuous-wave fNIRS imaging 
system (LABNIRS, Shimadzu, Japan) was used to collect signals. Figure 1(b) illustrates the 
fNIRS source-detector geometry, which consisted of 26 sources and 28 detectors with a 
separation of 3 cm, resulting in 83 source-detector channels. The optical fiber bundles of 
sources and detectors were inserted into the optode holder on the subject’s head. Light was 
emitted at wavelengths of 780nm, 805nm, and 830nm simultaneously from each source. 
FNIRS signals were sampled at a frequency of 12.35 Hz. This probe geometry covered 
language-related cortical regions, including the Broca’s and Wernicke’s areas as well as some 
prefrontal cortical regions including the frontopolar, dorsolateral prefrontal cortex (DPFLC) 
and premotor areas, all for both hemispheres. 

A co-registration procedure was applied to measure the covered cortical regions based on 
cranial landmark measurements on all the subjects [30]. Five reference cranial landmarks 
(nasion, inion, left and right preauricular points and vertex) and the locations of all source and 
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2.6 Data processing steps for dPTE analysis 

DPTE analysis was applied to calculate information flow for the entire physiologically 
relevant range of hemodynamic fluctuation frequencies, and the individual endothelial, 
neurogenic and myogenic frequency bands for the four stimulation sessions described above 
(Before tDCS, Low Current tDCS, High Current tDCS and After High Current tDCS). 
Specifically, for each subject, PTE analysis was performed to determine the causality between 
every two channels among all 83 channels. Then PTE values were normalized into dPTE 
values. This generated a 83 × 83 dPTE matrix determining information flow between all 
channel pairs. The value at Xth row and Yth column determined the scale of information flow 
from Y to X. Then dPTE was averaged along rows to produce a 1 × 83 matrix, which was the 
mean dPTE between each one channel and all other channels. If the mean dPTE of one 
channel was >0.5, then the average information flow between this channel and all the other 
channels was outgoing. If the mean dPTE of one channel was <0.5, then the average 
information flow was incoming. The group-averaged mean dPTE was calculated by averaging 
the mean dPTE by subject. The above procedures were repeated for all hemodynamic 
frequency bands for each of the four stimulation sessions. Next, a set of paired t-tests among 
the 13 subjects was performed on dPTE between the four stimulation sessions for each 
frequency band. Significant enhancements of information flow (p<0.05) from selected seeds, 
i.e. the left stimulated Broca’s area and the right contralateral Broca’s homologue, were 
identified. Lastly, the group-averaged mean dPTE values for each channel were interpolated 
on a standard MRI brain template by EasyTopo software [46], and the significant changes in 
information flow from selected seeds were displayed topographically on the standard MRI 
brain template by BrainNet View software [47]. 

3. Results 

3.1 Direction of information flow in the entire fNIRS frequency band (0.003–0.15 Hz) 

Figure 4 shows the map of average information flow between each channel and all other 
channels over the cortical regions being mapped by fNIRS by use of dPTE analysis for the 
four stimulation sessions (Before tDCS, Low Current tDCS, High Current tDCS and After 
High Current tDCS). The color-coded map illustrates a single estimate of net direction of 
information flow (outgoing or incoming) for each channel. Figures 4(a)-4(d) show top views, 
Figs. 4(e)-4(h) lateral left views, Figs. 4(i)-4(l) lateral right views and Figs. 4(m)-4(p) frontal 
views. Figures 4(f)-4(h) show that, compared to the Before tDCS session, the stimulated left 
Broca’s area (BA44/45) indicated by black circles became an outgoing information flow hot 
spot during Low Current tDCS, High Current tDCS and After High Current tDCS. In 
addition, the left middle temporal gyrus (MTG, BA 21) indicated by a pink circle in Fig. 4(g) 
became an additional hot spot of outgoing information only during High Current tDCS. 
Figures 4(j)-4(l) illustrate the cortical areas contralateral to the stimulated hemisphere, 
including right Broca’s homologue (BA44/45), superior temporal gyrus (STG, BA22) and 
MTG (BA21) collectively circumscribed by blue ovals, that also became hot spots of 
outgoing information during Low Current tDCS, High Current tDCS and After High Current 
tDCS. Overall, tDCS stimulation induced an increase in outgoing information both from the 
stimulated area and the contralateral hemisphere region that was distant from the anodal 
stimulation patch, as noted by the higher dPTE values over these areas in Fig. 4. Individual 
subject dPTE maps for the entire fNIRS frequency band are also shown in the Appendix, Fig. 
10 for the subset of dPTE views including the stimulated Broca’s area. Though individual 
variations are seen, not unlike to what is typically observed in activation images, the 
stimulated Broca’s area is consistently identifiable as a dPTE source post-stimulation. The 
cortical locations of fNIRS channels receiving the information emanating from individual 
seed fNIRS channels located near the center of the hot spots identified in this section were 
analyzed next. 
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Cortex (BA 7) regions indicated by black ovals, which are part of the default model network 
(DMN) [48]. In contrast, during and after stimulation the Broca’s area (BA 44/45), MTG 
(BA21) and STG (BA 22), all circumscribed within a blue oval in Figs. 7(f)-7(h) became the 
hot spots for outgoing information. In addition, in the non-stimulated contralateral 
hemisphere, shown in Figs. 7(i)-7(l), dPTE increases were seen in the vicinity of the 
contralateral right Broca’s homologue for the endothelial frequency band during all 
stimulation sessions. 

Subsequently, the Broca’s area, MTG and STG hot spots in the left hemisphere were 
chosen as the seeds for determining where the outgoing information was directed out of these 
regions on the cortex. Only Brodmann areas with significant increases in outgoing 
information from all the seeds, compared to Before tDCS, were illustrated in Table 3. For 
Low Current tDCS and After High Current tDCS, increased information flow was directed 
into the same Brodmann areas, while for High Current tDCS, increased information flow 
occurred into additional cortical regions, which are also part of the language-processing 
network [49–51]. 

Table 3. Brodmann areas with significantly increased information influx originating 
from hot spots in the left hemisphere 

Hot spots on left hemisphere Low Current tDCS High Current tDCS After High Current tDCS 
Ipsilateral Hemisphere 
Brodmann Area 6 Yes 
Brodmann Area 9 Yes 
Brodmann Area 40 Yes Yes Yes 
Contralateral Hemisphere 
Brodmann Area 40 Yes Yes Yes 
Hot spots: Left Broca’s area, MTG and STG. BA 6: Premotor Area; BA 9: Dorsolateral Prefrontal Cortex; BA 10: 

Frontopolar Area; BA 22/39/40: Wernicke’s area. 

3.5 Information flow in the neurogenic frequency band (0.02–0.04 Hz) 

Figure 8 shows information flow in the neurogenic frequency band between any channel 
location and all other cortical regions by applying dPTE analysis to each of the four sessions 
(Before tDCS, Low Current tDCS, High Current tDCS and After High Current tDCS). The 
color-coded map illustrates a single estimate of direction of information flow (outgoing or 
incoming) for each channel. Figure 8(i) shows that during the initial Before tDCS session the 
outgoing information hot spots were located over the DPFLC (BA 9), indicated by black 
ovals, which is part of the DMN [48]. In contrast, during and after stimulation the hot spots 
shifted to the Broca’s area (BA 44/45), MTG (BA21) and STG (BA 22) of the left 
hemisphere, indicated by blue ovals in Figs. 8(j)-8(l). It is noteworthy that when comparing to 
the left hemisphere, Figs. 8(e)-8(h), where the anodal stimulation over Borca’s area was 
applied, it appears that higher changes in dPTE occurred in the right hemisphere for the 
neurogenic frequency band. It is suspected that these information flow changes occurring in 
the hemisphere contralateral to the stimulation were facilitated by interhemispheric 
connections through the corpus callosum [52]. 
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between Before tDCS and each one of the other stimulation conditions for all fNIRS channels 
belonging to each BA. Interestingly, we found that the number of fNIRS channels mapping 
the stimulated Broca’s area and the associated language processing cortical regions (STG – 
BA 44/45, MTG – BA 21, STG – BA 22, and contralateral Broca’s homologue – BA 44/45) 
retained their identity as sources or sinks between stimulation conditions. The only thing that 
changed was that, on average, their dPTE weight increased for all stimulation conditions, 
compared to baseline. Nevertheless, the number of channels mapping these regions did not 
show statistically significant differences between pre- and post-stimulation. It is therefore 
concluded that the size of sources related to language processing areas did not change 
significantly with tDCS, at least within the spatial sampling limits of our fNIRS setup. 
However, the average value of dPTE outflow increased (Before tDCS versus Low Current 
tDCS, p=0.043; Before tDCS versus High Current tDCS, p<0.001; Before tDCS versus After 
High Current tDCS, p=0.031). In contrast, the dPTE patterns of some cortical regions that are 
part of the DMN [48] (DLPFC – BA 9 and Somatosensory Association Cortex – BA 7) and 
not overlapping with language-processing BAs changed from sources before stimulation to 
sinks after stimulation. 

4. Discussion 
This study explored the impact of anodal tDCS applied over the left Broca’s area on the 
direction of information flow deduced from hemodynamic fluctuations in the fNIRS signal as 
a whole and in three distinct frequency sub-bands that are known to be attributed to 
endothelial, neurogenic and myogenic activity. Despite the lower spatial resolution and tissue 
depth probed compared to fMRI, the higher temporal resolution of fNIRS and its ability to 
easily collect data during electrical stimulation has enabled us to demonstrate different 
patterns of information flow induced by tDCS for different frequency bands. 

4.1 dPTE analysis of all fNIRS frequencies (0.003-0.15 Hz) 

Anodal stimulation over the left Broca’s area made not only that region, but also its non-
stimulated counterpart in the contralateral hemisphere strong emitters of information flow 
towards other language-processing areas. This is evident in the Fig. 4 hot spots for the three 
tDCS stimulation conditions, where the cold spots are the cortical areas of reception of 
information efflux from the hot spots. These results are consistent with a prior EEG study 
where TMS was applied alternately over the left and right anterior temporal lobes, and the left 
and right superior parietal lobes [56]. That study found that TMS applied on all four 
stimulation sites evoked a consistent increase of information flow around the stimulation site 
and its contralateral cortical region in the broad EEG frequency band of 3-45Hz. That study 
reported that the direction of stimulation affects cortical areas with established neuronal 
connections through two main commissural fibers [57]. 

The effect of stimulation on information flow across both hemispheres is shown in Table 
1 and Table 2 that identify the cortical areas receiving information from the left Broca’s area 
and its homologue, respectively. For the ipsilateral hemisphere to the stimulation, those 
cortical areas are not only structurally connected with Broca’s area through white matter 
tracts in the Arcuate Fasciculus (AF) [58,59], but also are language-related regions [49–
51,60–64]. The AF is thought to connect Broca’s area to Wernicke’s area (BA 22/39/40) 
[65,66], but the temporal projections of the AF could also reach the STG (BA 22) and the 
MTG (BA 21). These latter regions have projections that reach the premotor cortex (BA 6) 
and the middle frontal gyrus (BA 9 and BA 10) [58,59]. For the contralateral hemisphere to 
the stimulation, communication with the stimulated area could be achieved through the 
corpus callosum and its projections to those areas [67]. Therefore, given those known 
structural connections it is not surprising that outgoing information from the Broca’s area also 
flowed into ipsilateral and contralateral regions for BA 6, BA 9, BA 10, BA 21 and 
BA22/39/40. Wernicke’s area (BA 39/40) is involved in language comprehension [61], the 
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STG (BA 22) is part of Wernicke’s area and is related with prosody comprehension [63], the 
premotor cortex (BA 6) is related with maintenance and execution of speech [49,50], the 
DLPFC (BA 9) is related with speech planning [51] and frontopolar area (BA 10) is related 
with memory [62,64]. Further support for the observed patterns of information flow comes 
from the perspective of the topological properties of brain networks [17]. Highly connected 
regions, known as network hubs, possess the highest levels of neuronal activity [68,69]. 
Broca’s area and its contralateral hemisphere homologue are known hubs [70], so it is 
reasonable to hypothesize that they could become sources of net information outflow due to 
an increase in firing rates [71] induced by anodal tDCS. 

Another noteworthy point is that during High Current tDCS the MTG (BA 21), identified 
by the pink circle in Fig. 4, had significant changes in information influx identified from 
pairwise t-tests in dPTE compared to the Before tDCS condition. Table 1 shows that the MTG 
had increased information flow from the left Broca’s area while it also had information efflux 
itself towards other areas (Ipsilateral hemisphere: BA6, 9, 10, 22/39/40; Contralateral 
Hemisphere: BA 6, 9, 10, 22/39/40). Therefore the MTG became a secondary information 
transfer connector, which is supported from previous literature [72]. 

Finally, Fig. 4 suggests that information flow patterns appearing during Low Current 
tDCS are qualitatively similar to those appearing during the High Current tDCS and After 
High Current tDCS sessions. However, when it comes to the question of whether Low 
Current tDCS is predictive of the information flow pattern changes between Brodmann areas 
created by higher currents, Tables 1 and 2 suggest that it is not. Nevertheless, some 
interesting frequency band specific resemblances in information flow patterns between 
stimulation sessions were noted and are discussed below. 

4.2 Information flow in the endothelial frequency band (0.003-0.02 Hz) 

TDCS created greater changes in outgoing information on the left hemisphere, over and 
around the stimulation area. As shown in Fig. 4, hot spots before tDCS in the left DLPFC and 
Somatosensory Association Cortex, which are part of the DMN [48], disappeared after 
stimulation even for Low Current tDCS. At the same time with stimulation, outgoing 
information hot spots appeared over key language areas such as Broca’s area, STG and MTG 
and persisted during the After tDCS session. The fact that information flowed out of these 
hotspots towards other cortical regions including Wernicke’s area, DPFLC and premotor area 
is not surprising since these regions are known to be involved in pathways that activate for 
several speech-related tasks, such as picture naming [73] and overt speech production [74]. 

Hemodynamic fluctuation changes in the endothelial frequency band, reflect endothelial 
cell activity mediated by the release of nitric oxide (NO), a vasodilator [25,27,75]. It is 
possible that tDCS could increase NO production so as to increase brain perfusion [76]. 
However, the fact that there were significant increases in information efflux in the 
contralateral hemisphere also (Fig. 7), indicates that hemodynamic changes in this frequency 
band were at least in part related to changes in neuronal connectivity. Nevertheless, the 
largest increase in information efflux was observed locally, in the vicinity of the stimulation 
area. This local dependence is unlikely to be related to tDCS-induced heating at the current 
intensities used and were well below the known limits of current induced heating during 
tDCS [77,78]. A NO-based mechanism of endothelial response to stimulation would be 
consistent with the findings summarized in Table 3, where the flow information patterns 
during Low Current tDCS were similar to the After High Current tDCS session, whereas 
higher dPTE values were observed during the High Current tDCS session. A positive 
relationship between the amount of NO release with the current density of tDCS has been 
previously reported [76]. 

In addition, in Table 3, Wernicke’s area became an information receiver not only during 
High Current tDCS but also during Low Current tDCS and After High Current tDCS. Since 
Broca’s area and Wernicke’s area are the two main language areas [79], we hypothesize that 
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the baseline connection between them is stronger compared to other cortical regions, which is 
why information flow between them was seen even during the Low Current tDCS session. 
Furthermore, in this frequency band and during Low Current tDCS the same Brodmann areas 
received increased information flow as in the After High Current tDCS session (Table 3). 

4.3 Information flow in the neurogenic frequency band (0.02-0.04 Hz) 

Interestingly, tDCS created stronger changes in outgoing information on the non-stimulated 
right hemisphere, over and around the contralateral stimulation area. As shown in Fig. 8, the 
hot spots before stimulation occurred in right dorsolateral prefrontal cortex regions, which are 
part of the DMN [48]. After stimulation, these hot spots disappeared and new ones appeared 
over key language areas: Broca’s area, STG and MTG, which became information efflux 
spots towards other cortical regions including Wernicke’s area, DPFLC, the frontopolar and 
premotor areas. These latter cortical regions are known to activate in speech-related tasks, 
such as picture naming [73]. 

Hemodynamic oscillations in the neurogenic frequency band are attributed to intrinsic 
nervous activity [28]. Since tDCS could induce a sustainable response in the form of LTP-like 
plasticity within and across structurally connected brain regions [54,55], it is possible that the 
right Broca’s homologue and related areas became information efflux hot spots due to the 
increased neuronal activity induced by the pre-existing connections with the left Broca’s area. 
An LTP-like plasticity mechanism of neurogenic response to stimulation would be consistent 
with the findings summarized in Table 4, where the flow information patterns during Low 
Current tDCS were similar to the After High Current tDCS session. These results are in 
contrast to those listed in Table 3 for the endothelial frequency band, where the Low Current 
tDCS sessions shared the same increased information influx regions as the After High Current 
tDCS session. An LTP-like plasticity hypothesis is also consistent with findings in the 
literature [1], indicating that during a 1 mA 5 min application of tDCS over the motor cortex, 
there was a significant increase in motor-evoked potential amplitude representing the 
excitability of the motor system, and this effect still persisted after tDCS. 

4.4 Information flow in the myogenic frequency band (0.04-0.15 Hz) 

TDCS appeared to have little effect on the information flow patterns of the myogenic 
frequency band, as there was no significant difference in dPTE for hot spots between 
stimulation sessions. As shown in Fig. 9, hot spots were located in the frontopolar areas 
(BA10) that are related to prospective memory. The left BA 10 is involved in verbal 
prospective memory, while right BA 10 is involved in visual-spatial prospective memory 
[64]. The non-dependence of information flow patterns on tDCS may be due to Mayer waves 
existing in the same frequency range (~0.1 Hz) from the supraorbital artery located on top of 
these Brodmann areas [54] and therefore may not be directly related to their function. 

4.5 dPTE versus functional connectivity metrics 

Finally, it should be clarified that the net information flow change defined by the dPTE metric 
does not represent one-way information flow, but rather net directional flow, and dPTE is also 
known to be independent of steady-state connectivity strength [17]. We have recently 
reported resting-state functional connectivity pattern changes induced by tDCS for the same 
subjects and fNIRS data [80]. The main finding in that work was that anodal stimulation 
enhanced the connectivity strength with cortical areas in the immediate vicinity of the 
stimulated Broca’s area, while suppressing longer distance connections. In this work it was 
found that the number of dPTE source channels over BAs involved in language processing 
did not change significantly between stimulation conditions, implying that the physical size of 
dPTE sources did not increase measurably with this fNIRS setup. Nevertheless dPTE values 
did increase significantly relative to baseline for these channels for all stimulation conditions, 
even for cortical locations remote to the stimulated area. Comparison between results from 
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prior analyses and this work confirms that there is no resemblance between changes in 
information flow patterns and changes in connectivity strength induced by tDCS. 

4.6 Limitation of the study and future work 

Several potential limitations in the study should be noted. Firstly, only two female subjects 
were recruited. However, we have found only very minor differences in connectivity pattern 
changes between males and females in our previous work [80] and no observable differences 
in dPTE patterns in this work. A larger number of subjects would be needed to demonstrate 
with statistical significance any possible gender-specific differences on language network 
modifications induced by tDCS. To our knowledge there are no studies of this kind in current 
literature although there is evidence of gender-specific differences in language processing 
networks, e.g [81,82]. Secondly, the participants were not measured twice, so data obtained in 
this study could not determine the test-retest reliability of dPTE patterns, which needs to be 
studied in future work. Thirdly, there exist several ways to remove global interference due to 
the scalp and skull hemodynamics in addition to the PCA method used in this work. 
Superficial hemodynamics removal methods include (i) adding short-separation channels and 
using them to regress extra-cerebral effects [83-87], (ii) calculating the mean signal over all 
channels and using the mean as the superficial regressor [88, 89], or (iii) combining both of 
these approaches [90]. In addition, data-driven approaches other than PCA [39, 40], such as 
ICA [91, 92], can be used for this removal. It is unknown which approach is optimal in this 
regard [93]. In this study, we chose PCA as a method to regress the extra-cerebral effects. A 
quantitative comparison using different methods is needed in future studies in order to 
optimally remove the extra-cerebral signals from fNIRS measurements. 

5. Conclusion 
This study demonstrates the feasibility of using resting-state fNIRS to map changes in the 
direction of information flow induced by tDCS in the language-processing cortical networks 
of healthy subjects. While dPTE analysis showed that language-processing cortical regions in 
both hemispheres became sources of outgoing information flow after tDCS when the entire 
fNIRS signal was considered, specific differences in those patterns were seen when the 
detected hemodynamic fluctuations were studied in distinct frequency bands. We found that 
tDCS induced higher changes in outgoing information in the vicinity of the stimulated 
Broca’s area for the endothelial frequency band, although significant information efflux was 
also seen for the contralateral Broca’s homologue area. We hypothesized that a contributing 
factor to the higher information outflow over the stimulated area was the known correlation 
between tDCS current density and NO release levels in brain tissue. On the other hand, for the 
neurogenic frequency band higher changes in outgoing information were induced in the 
vicinity of the right Broca’s homologue, in the contralateral hemisphere to the stimulation 
location. We hypothesized that this increase in outgoing information was related to tDCS 
effects on LTP-like plasticity in established neuronal connections for the language-processing 
network. Finally, the Before tDCS patterns seen in the myogenic frequency band persisted 
during all stimulation sessions, which likely relates to Mayer waves created by arterial blood 
vessels on the cortical surface. It also worthwhile pointing out the potential utility of Low 
Current tDCS as a method to create short-lived, transient changes in information flow patterns 
that are qualitatively similar to the longer lasting patterns seen during High Current tDCS. 
This similarity could enable using Low Current tDCS as a way to form a rapid, qualitative 
preview of possible information flow patterns seen during a therapeutic tDCS intervention. 
The methods described in this work for identifying changes in hemodynamic frequency-
specific patterns of information flow induced by tDCS could complement and help enhance 
data analyses in future studies of stimulation-based therapeutic interventions. 
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Appendix 

 

Fig. 10. Mean dPTE for each channel of entire frequency band displayed as a color-coded map 
viewed from left for the four stimulation sessions of 13 subjects: Before tDCS [first column], 
Low Current tDCS [second column], High Current tDCS [third column] and After High 
Current tDCS [fourth column]. Hot (yellow – red) and cold (blue – green) colors indicate 
information outflow and inflow, respectively. 
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