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Abstract: Blood clotting is a serious clinical complication of many medical procedures and 
disorders including surgery, catheterization, transplantation, extracorporeal circuits, 
infections, and cancer. This complication leads to high patient morbidity and mortality due to 
clot-induced pulmonary embolism, stroke, and in some cases heart attack. Despite the clear 
medical significance, little progress has been made in developing the methods for detection of 
circulating blood clots (CBCs), also called emboli. We recently demonstrated the application 
of in vivo photoacoustic (PA) flow cytometry (PAFC) with unfocused ultrasound transducers 
for detection of CBCs in small vessels in a mouse model. In the current study, we extend 
applicability of PAFC for detection of CBCs in relatively large (1.5-2 mm) and deep (up to 5-
6 mm) blood vessels in rat and rabbit models using a high pulse rate 1064 nm laser and 
focused ultrasound transducer with a central hole for an optic fiber. Employing phantoms and 
chemical activation of clotting, we demonstrated PA identification of white, red, and mixed 
CBCs producing negative, positive, and mixed PA contrast in blood background, 
respectively. We confirmed that PAFC can detect both red and white CBCs induced by 
microsurgical procedures, such as a needle or catheter insertion, as well as stroke modeled by 
injection of artificial clots. Our results show great potential for a PAFC diagnostic platform 
with a wearable PA fiber probe for diagnosis of thrombosis and embolism in vivo that is 
impossible with existing techniques. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The genesis of circulating blood clot (CBC) formation called also emboli usually starts as a 
response to a blood vessel injury. Even in the absence of injury, many diseases and medical 
procedures may provoke the formation of CBCs that eventually block vessels at different 
locations [1–9]. Every year in the United States, over 795,000 individuals have a new or 
recurrent stroke often as a result of non-valvular atrial fibrillation, carotid disease, left 
ventricular dysfunction, or prosthetic valves. Pulmonary embolism (PE), the third most 
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common cause of hospital-related deaths, occurs as a result of a blood clot from a lower-
extremity thromboembolism getting wedged into an artery in the lungs. Thus, 
thromboembolism (TE) typically occurs in the veins of the extremities, lungs (PE), brain 
(ischemic stroke), heart (myocardial infarction), kidney (acute renal failure), and the 
gastrointestinal tract [10–12]. TE is also a common complication of infection, inflammation, 
catheters, transplantation, extracorporeal circuits and surgery, including carotid 
endarterectomy and coronary artery bypass grafting [12–14]. 

Thrombotic events are also the second leading cause of death in cancer patients [15–19]. 
During the postoperative period, cancer patients showed a three-fold increase in venous 
thromboembolism (VTE) as compared with non-cancer patients, with at least 50% prevalence 
of postoperative thrombosis in the absence of proper prophylaxis. 

Due to the lack of in vivo CBC detection methods, many CBCs remain undetectable, 
unless they result in a clinical phenomenon [20–21]. A significant number of patients die 
because of a failure in diagnosis rather than inadequate therapy. Additionally, no real-time 
monitoring of response to therapy has been developed that would allow an individualized 
treatment strategy. Existing diagnostic techniques in vivo can only detect static or slowly 
moving CBCs [22,23]. Fluorescence techniques can distinguish CBCs in blood microvessels 
(30–50 μm) in the animal model, but its translation to use in humans is problematic due to the 
cytotoxicity of fluorescent tags, difficulties with direct labeling of CBCs in the bloodstream, 
and the ability to only superficially assess microvessels with slow flow rates due to the strong 
autofluorescent background. 

In a previous study, we demonstrated that in vivo PAFC can detect CBCs triggered by 
melanoma and microsurgical invasion. This study was focused on detection of CBCs in small 
(30-50 µm) peripheral blood vessels in a thin mouse ear [5,24]. 

In this article, we describe an advanced PAFC schematic using the customized focused 
ultrasound transducer for detection of CBCs in relatively deep (up to 5-6 mm) and large (up 
to 2 mm) vessels in rat and rabbit models. The obtained results demonstrate the translational 
potential of a PAFC diagnostic platform to be used in clinics to prevent PE and some strokes 
by early detection of CBCs followed by well-timed therapy. 

2. Materials and methods 

2.1 Principles of in vivo acoustic resolution PAFC platform 

The underlying principle of in vivo PAFC is described elsewhere [24–32]. Briefly, the use of 
short laser pulses to irradiate selected vessels containing circulating absorbing objects leads to 
the generation of acoustic waves (referred to as PA signals) which are detected in a time- 
resolved mode with an ultrasound transducer attached to the skin (Fig. 1(a)). The physical 
mechanism of PAFC is based upon the PA effect associated with fast (picosecond scale) non-
irradiating relaxation of absorbed laser energy into heat and then the thermoelastic generation 
of acoustic waves. PAFC, as a combination of laser and ultrasound techniques, has the high 
sensitivity and spectral specificity of optical methods along with the high spatial resolution 
and the high depth penetration of ultrasound methods. 

Laser irradiation of blood vessels creates a constant PA background determined by the 
absorption of many red blood cells (RBCs) randomly distributed in the irradiated detection 
volume [33–35]. Depending on the size of the vessels, hematocrit (Ht), as well as PAFC 
spatial resolution, the number of RBCs in the detected volume could vary, from one or a few 
RBCs in the capillary to thousands in larger vessels. When an RBC-rich red CBC passes 
through the irradiated blood volume, a transient increase in the local absorption, which is 
associated with a high concentration of hemoglobin (Hb), results in a sharp positive PA peak. 
Red Hb-rich CBCs can be detected when they have a higher local absorption than the normal 
RBC background in the detected volume. When weakly absorbing platelet-rich and/or fibrin-
rich and/or white blood cell (WBCs)-rich white CBCs pass through the laser-irradiated vessel 
volume, a transient decrease in the local absorption results in a sharp negative PA signal. 
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Finally, in case of mixed red-white CBCs, patterns of positive and negative PA signals are 
produced (Fig. 1(b)). 

 

Fig. 1. The principle of PA detection of red, white and mixed CBCs producing positive, 
negative and combined PA contrast peaks in blood background, respectively. (a) Schematic of 
acoustic resolution PAFC diagnostic platform using a high pulse-repetition-rate laser and 
focused ultrasound transducer with a central hole to deliver laser light through a fiber. (b) PA 
trace showing PA peaks with positive (red CBC), negative (white CBC) and combined (mixed 
CBCs) contrast in the blood background. 

Negative contrast depends on the absorption of the CBCs and the blood background, the 
vessel size, and the transducer acoustic resolution. In small vessels, blood background 
fluctuation is determined by random changes in the number of RBCs in the detection volume. 
In larger vessels containing hundreds or thousands of RBCs in the detection volume, RBCs-
related fluctuations are minimized. The instability of the PA baseline is determined by laser 
pulse energy fluctuation (typically ≤ 2-4%), electrical and acoustic noise, vibration, and 
physiological rhythms (e.g., heartbeat or breathing). The duration of the transient PA signals, 
both positive and negative, is short (~10−3 s), while the motion and other artifacts lies in the 
longer period of time >0.01s [5,24,32]. In the current study we have used a laser with 
relatively low energy fluctuation (<3%). Other sources produced relatively slow baseline 
fluctuation (time scale >10 ms) compared to a signal duration (0.1-2 ms), which allowed their 
effective filtration in the current work and as described in our recent paper [32]. All in vivo 
experiments were performed by delivery of laser light to the skin through an optical fiber in 
the central hole of a focused ultrasound transducer. Because of low optical resolution (OR) in 
deep tissue, we used the acoustic resolution (AR) PA probe, in which the lateral AR at the 
depth of 6-8 mm was estimated down to 45 µm. 

2.2 PAFC setup 

The ytterbium fiber laser YLPM-0.3-A1-60-18 (IPG Photonics Corp.) emitted 1064 nm 
wavelength pulses with a pulse repetition rate of 10 kHz and pulse width of 10 ns. Maximum 
pulse energy measured at a distal optical tip was 240 μJ, although we reduced this level by 
orders of magnitude due to the high sensitivity of PAFC. A red pilot laser CPS180 (Thorlabs, 
Inc.) with 635 nm wavelength was used to navigate the 1064 nm laser beam. The laser beam 
spot was produced by a 330-μm optical fiber (CeramOptec Industries, Inc.) mounted inside a 
customized focused transducer. Therefore, both lasers were initially adjusted to the same 
pathway by using a dichroic mirror. 

Laser power and pulse energy were monitored by USB meter PM100USB with head 
S302C (Thorlabs, Inc.). PAFC data acquisition was performed using the digitizer ATS9350 
(Alazar Technologies, Inc.). Related software to record and process the data was developed in 
MATLAB (MathWorks, Inc.). Synchronization of laser pulses with data acquisition is 
provided by a 150 MHz bandwidth photodetector (PDA10A, Thorlabs, Inc.). 
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2.3 Animal models 

All protocols of animal-related experiments were approved by the University of Arkansas for 
Medical Sciences, Institutional Animal Care and Use Committee. The in vivo capabilities of 
the PA probe were tested in a rat model involving the carotid artery with a diameter of ~2 mm 
at a depth of 3–4 mm, and the tail vein with a diameter of ~0.5 mm at a depth of 0.3 mm. We 
also used a rabbit model involving an ear vein with a diameter of 0.6 mm at a depth of 0.5-1 
mm, and the femoral vein with a diameter of 1–2 mm at a depth of 4.5–5 mm (Table 1). The 
transducer was placed above the skin at a point of vessel detection and were adjusted in real-
time by maximizing PA signal amplitudes (Fig. 2(a)-2(d)). Ultrasound gel (Aquasonic Clear, 
Parker Labs, Inc.) was used for acoustic coupling between transducer and skin. Ultrasound 
images of the analyzed vessels were periodically acquired with a medical ultrasound system 
(M7, Mindray DS, Inc.). 

Table 1. The parameters of blood vessels tested with PAFC 

Animal Vessel Diameter (mm) Depth (mm) 

Rat 
Carotid artery 2 3-4 

Tail vein 0.5 0.3 

Rabbit 
Ear vein 0.6 0.5-1 

Femoral vein 1-2 4.5-5 

In the rat model, Sprague-Dawley rats were anesthetized by isoflurane inhalation (1.5%) 
and placed on a temperature-controlled stage (37°C). First, to determine the effects of needle 
injury on CBC dynamic, we inserted a 20-gauge needle into a rat tail vein and later into the 
left side of the heart and monitored the same vein at a distance of ~1 cm from the injection 
site tail vein or the carotid artery, respectively. To model white CBCs, injections of a single 
100-µm-diameter transparent (i.e., low light absorbing) glass beads (Bio Spec Products, Inc.) 
mixed in 1 mL of phosphate buffered saline (PBS) (Sigma-Aldrich, Inc.) were administered 
into the rat’s tail vein and into the rat heart (intracardiac). Noninvasive monitoring of PA 
signals occurred at the same tail vein at a distance of ~1 cm from the injection site, and in the 
carotid artery, at a distance of ~1 cm from the heart, after the intracardiac injection. We also 
used well-established chemicals to activate the formation of clots [4–6]. Specifically, the PA 
probe monitored the blood response in the carotid artery. After 30 minutes of continuous PA 
monitoring of the blood background, we injected collagen (0.2 mg/kg, Chrono-log-Corp.) into 
the heart of a rat, which simulated leukocyte/platelet-rich (white) clot formation. Later, 
Dextran 500, an activator of RBC aggregation (red CBCs), was injected into the heart of a rat 
after disappearance of the PA signals caused by collagen injection, and return of PA signals to 
the blood background level. Each rat was monitored using the PAFC for approximately 3 
hours. 

                                                                      Vol. 9, No. 11 | 1 Nov 2018 | BIOMEDICAL OPTICS EXPRESS 5670 



 

Fig. 2. Photos of animal model fragments and experimental schematics. (a) Picture of a rat tail 
during needle insertion. The PA probe was located on the same tail vein. (b) Picture of a rat 
neck after shaving the skin. The PA probe was located on the carotid artery. (c) Picture of the 
rabbit’s right ear. (d) Pictures of the in vivo PAFC setup in a rabbit model. The PA probe was 
located on the femoral vein after shaving the skin. 

In the rabbit model, a New Zealand White rabbit (the weight of 5.1 kg) was sedated with 
intramuscular ketamine (30mg/kg; Ketaset, Fort Dodge Animal Health, Inc.) and xylazine 
(3mg/kg, AnaSed, Lloyd Laboratories, Inc.) and maintained under anesthesia by mask 
ventilation with 1–1.5% isoflurane (Novaplus; Hospira-Inc.). To verify the PA probe’s 
performance in large and deep vessels, real-time in vivo PAFC monitoring of microbubbles 
and CBCs phantoms in blood flow was performed on an ear vein and on a shaved inguinal 
area above the femoral vein. For this purpose, 3-French catheter (1 mm in diameter) was 
inserted inside the femoral artery and moved to the internal carotid artery. Then, a suspension 
of 900-µm-diameter spheres in 3 mL of PBS as large-clot phantoms was injected to produce 
stroke in the rabbit model. We also injected the perflutren lipid microbubbles (an ultrasound 
contrast agent) with an average of 2-3-µm-diameter and a small percentage at 10-20-µm-
diameter (Definity; Lantheus Medical Imaging). During these procedures, the PA probe was 
placed on the rabbit’s ear above vein or on skin above the femoral vein. 

2.4 Data processing 

All the measurements were performed at least three times. The PA signals were acquired and 
points at least 3-sigma above the blood background were considered. PA signal rate is 
described as a number of signals per minute. Collected data (M counts) are presented as M ± 
SD. Signal and statistical analysis were utilized with a help of MATLAB (MathWorks, Inc.) 
software. 
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3. Results 

3.1 Specificity and sensitivity 

To determine the sensitivity of the in vivo PAFC technique, three rats in the control group 
were monitored for over 30 minutes, for which the PA probe was placed on the carotid artery. 
As a result of this procedure, no PA signals were observed (i.e., no false-positivity). To verify 
these data, the rats were monitored additionally at the area of carotid artery for next 30 min 
again, and no false-positive signals were acquired either (Fig. 3(a)). 

 

Fig. 3. (a) Example of PA trace from a carotid artery of rat in control group. Example of 
formation of red, white and mixed CBCs after vessel wall damage through needle insertion in 
tail vein (b) and carotid artery (c). 

3.2 Correlation between vessel wall damage through needle insertion and CBC 
formation 

To determine the effect of needle insertion on the CBC dynamic, a 20-gauge needle was 
inserted into a tail vein, and later into the heart of a rat. The PA probe was placed on skin 
above the tail vein and the carotid artery, respectively. Around 1 minute after needle 
insertion, red, white and mixed CBCs were observed during 2 minutes of monitoring (Fig. 
3(b), 3(c)). 

3.3 Intravenous and intracardiac injection of collagen and Dextran 500 

After 30 minutes of continuous PA monitoring of the blood background in the carotid artery, 
collagen was injected directly into the rat’s heart. One minute later, we observed the 
appearance of an average of 69 ± 15 mimic white CBCs per 30 minutes (Fig. 4(a)). After 
disappearance of the PA signals from mimic white CBCs (~90 min after injection), we 
injected Dextran 500 into the heart of the rat. In this case, we observed an average of 19 ± 6 
mimic red CBCs per 30 minutes (Fig. 4(b)). The rate of PA signal appearance gradually 
decreased over 1 hour. 

In particular, the PA amplitude distributions (mean ± SD) for positive peaks (typical for 
dextran injection) was 110.87 ± 30.59 (28%), 95.64 ± 36.34 (38%) and 79.18 ± 32.60 (41%), 
while the PA amplitude distributions for negative peaks (typical for collagen injection) was 
91.08 ± 18.58 (20%), 107.46 ± 29.95 (28%), and 84.44 ± 36.52 (43%) (Fig. 4(c)). 
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Fig. 4. Examples of PA traces from the vessels in rats after collagen (a) and Dextran 500 (b) 
injection. (c) Comparison of PA peak amplitude fluctuations of positive (red) and negative 
(blue) contrast for three rats. 

3.4 Injection of a single 100-µm-diameter low-absorbing glass bead 

To demonstrate the ability of the focused PA probe to detect a single white CBC both in 
superficial and deep vessels, single 100-µm-diameter low-absorbing glass beads were 
repeatedly injected. On average, 1–2 seconds after each single-bead injection into the rat’s tail 
vein, a PA negative-contrast signal corresponding to the passage of this bead through the laser 
beam was observed in the same vein at a distance of approximately 1 cm from the injection 
site (Fig. 5(a)). Similar results were obtained by single-bead injections into the rat’s heart and 
noninvasive monitoring of PA signals in the carotid artery (Fig. 5(b)). 

3.5 Injection of 900-µm-diameter spheres and gas-filled microbubbles 

A few white CBCs appeared 10-15 seconds after the PA probe was placed on the rabbit ear 
vein and a 3-French catheter (1 mm in diameter) was inserted inside the right femoral artery 
(Fig. (5c)). We also noninvasively monitored the rabbit ear vessels and a femoral vein during 
a stroke (confirmed by CT and ultrasound imaging), modeled by injection of artificial clots 
such as 0.9-mm-diameter beads through a catheter into the internal carotid artery. During this 
study, we observed both red and white CBCs in rabbit ear vessel. Specifically, a positive peak 
associated with red CBC was first observed (Fig. 5(d)). This appeared likely after the catheter 
insertion. Then, negative peak associated with white CBC was noticed after mimic clot 
injection. It was likely related to stroke-induced vessel injury, which can cause CBCs. 
Injection through a catheter of perflutren lipid microbubbles (an ultrasound contrast agent) led 
to the appearance of a few negative PA peaks (Fig. 5(e)), confirming PAFC’s capacity to 
detect small circulating microbubbles. 
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Fig. 5. Examples of PA traces in the rat model after transparent bead injection in rat tail vein 
and PA monitoring in tail vein (a) and carotid artery (b). Examples of PA traces in the rabbit 
model after catheter insertion (c), injection of transparent spheres (d) and microbubbles 
injections (e). 

4. Discussion 

In a previous study, we introduced a new diagnostic technique - in vivo PAFC platform for 
detection of circulating tumor cells (CTCs) (e.g., in melanoma patients), infections (e.g., 
malaria) and CBCs [24,25,28–30,32–34]. These pioneer results, however, were only 
demonstrated for small (30-50 µm) superficial vessels in small animal models (mice). In the 
present study, using new PA fiber-based probe with the focused transducer, we significantly 
extended application of PAFC platform on the analysis of CBCs in relatively large (1.5-2 
mm) and deep (up to 5-6 mm) vessels in larger animal models (rat and rabbit). Moreover, 
based on the identification of negative, positive, and combined PA contrast in the blood 
background, we were able to monitor white, red, and mixed (white-red) CBCs, respectively. 

The high sensitivity in vivo PAFC for detection of CBCs in deep and large vessels was 
confirmed by monitoring the carotid artery in a rat through injection of chemicals in the blood 
network. Specifically, collagen, which simulates leukocyte/platelet-rich (white) CBC 
formation, and Dextran 500, which is an activator of RBC aggregation (red CBCs clots), were 
injected into the rat heart. As expected, negative peaks associated with white CBCs appeared 
after injection of collagen, and positive peaks associated with red CBCs were observed after 
injection of Dextran 500. In both cases, the PA probe was located on skin above the carotid 
artery. The presented data (e.g., in Fig. 4) are indicative for a relatively good PA signal 
amplitude’s consistency, taking into account it dependence on the reproducibility of the 
animal physiological parameters and the injection procedure consistency – in addition its 
dependency on PAFC device reproducibility. For comparison, according to our recent data 
obtained with a stable vessel phantom (i.e. no influence of the animal and injection 
parameters) the reproducibility of the PAFC device itself was found at a level of 14.8% [35]. 

After we confirmed proof of the concept, we inserted a catheter inside large vessels. The 
goal of this procedure was to understand the physiological vessels response on injury and 
vessel wall damage. We observed in vivo that the vessels, blood and immune systems respond 
through appearance of red CBCs as reaction to repair the wall damage, white CBCs appear as 
reaction to inflammation, and combined red and white CBCs to both processes. We also 
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demonstrated the ability of the in vivo PAFC with a focused ultrasound probe to detect single 
white CBC after injection of single 100-µm-diameter low-absorbing glass beads as well as 
900-µm-diameter transparent spheres in the stroke rabbit model. 

The major challenge for PAFC is to detect the rare circulating objects in large blood 
vessels to ensure screening of significant blood volumes. This goal dictates that PAFC design 
should have a wide field of view to monitor the whole vessel to minimize number of 
undetected targets, while narrow width of the detection area should minimize the PA level for 
blood background. We have demonstrated that high PAFC detection efficiency may be 
achieved in both cases: using unfocused transducer in OR-PAFC [24,33] or with focused 
transducer in AR-PAFC. In a prior study, we demonstrated that in vivo PAFC can detect 
CBCs triggered by melanoma and microsurgical invasion. Using an unfocused ultrasound 
transducer and focused laser beam (i.e., OR-PAFC mode) we were able to detect CBCs only 
in small (30-50 µm) peripheral blood vessels at depth of 100-150 µm in a mouse ear [24]. The 
OR-PAFC mode did not provide detection of the same targets circulating in deeper vessels 
because of the influence of strong optical scattering effect and strong absorption background. 

In this work, we applied AR-PAFC mode with the focused ultrasonic transducers for 
detection of CBCs in relatively deep (up to 5-6 mm) and large (up to 2 mm) vessels in rat and 
rabbit models. Compared to OR‐PAFC, this represents a 36‐fold increase in the penetration 
depth (5.5 mm vs 0.15 mm in average) and 40-fold in the vessel diameter (2 mm vs 0.05 mm 
in average). Similar observation was made using the AR photoacoustic microscopy [36–38]. 
Indeed, in case of OR-PAFC only the superficial vessels can be assessed because the spatial 
resolution is determined by the optical parameters, in particular, by the minimal width of a 
focused laser beam profile. Due to light scattering in tissue, the highest OR at level of 10 µm 
could be achieved only for the superficial vessels (30-70 µm in diameter) laying at the 
shallow depths (0.1-0.15 mm only). Therefore, monitoring of the small superficial blood 
vessels at good optical conditions (i.e., at low light attenuation due to tissue absorption) 
provides the highest PAFC sensitivity in vivo with the highest PA signal amplitude at a low 
laser energy requirement. In contrast to these conditions, the scattering and absorption of laser 
light in deep vessels leads to light intensity attenuation and beam blurring, which reduces the 
optical resolution. Nevertheless, laser energy is still enough to generate well-detectable PA 
signals from strongly absorbing objects like RBCs. In these conditions, AR-PAFC platforms 
have to be applied when the resolution is determined by acoustic parameters of the focused 
ultrasonic transducer (e.g. at level of 45-80 µm at transducer’s frequency of 30-60 MHz). 
Moreover, combining two PAFC modes (OR-PAFC and AR-PAFC) is definitely possible to 
make application of PAFC more universal for vessels with different sizes and depths. 

PAFC application in humans has to account for the vessel anatomy, thickness of the skin 
and various properties of tissue layers. For example, vessels with a size of at least 1 mm are 
usually located at depth of 0.9-1.3 mm at which the influence of light attenuation and 
scattering becomes notable [32]. Thus, AR-PAFC mode is required because ultrasound waves 
have lower attenuation and scattering compared to light. In a prior study, we demonstrated 
that blood background at this wavelength is only slightly higher than at 800-900 nm, 
however, better depth penetration of 1064 nm makes detection of large circulating targets 
(e.g., CBCs) in deep large vessels possible. 

This PAFC platform can also be used to understand the link between CBCs and CTCs 
during the progression of cancer and thrombosis [28,34]. Our future goal is to optimize the 
noninvasive PAFC diagnostic platform for in vivo label-free, real-time detection of cancer-
induced CBCs in the bloodstream of melanoma patients. 

In general, the PAFC platform can combine detection of CTCs with an analysis of CBCs, 
allowing for detection of clots before they have a clinical manifestation. This enables 
identifying patients at increased risk for TE complications which, in turn, could potentially 
prevent disease progression or recurrence after treatment. Additionally, the real-time 
monitoring of response to CBCs-therapy may allow an individualized treatment strategy. 
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Thus, early monitoring of the growth in size and number of small CBCs may predict PE or 
stroke and prevent it by timely application of therapy. 

5. Conclusion 

In this work we have demonstrated the high potential of in vivo PAFC using a fiber-based PA 
probe with the focused transducer for detection of CBCs of different origins in superficial and 
deep vessels. This technique definitely provides an increase in sensitivity that is in part due to 
its ability to monitor nearly the entire blood volume in the body. 
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