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Abstract

Bayesian Additive Regression Trees (BART) is a statistical sum of trees model. It can be 

considered a Bayesian version of machine learning tree ensemble methods where the individual 

trees are the base learners. However for datasets where the number of variables p is large the 

algorithm can become inefficient and computationally expensive. Another method which is 

popular for high dimensional data is random forests, a machine learning algorithm which grows 

trees using a greedy search for the best split points. However its default implementation does not 

produce probabilistic estimates or predictions. We propose an alternative fitting algorithm for 

BART called BART-BMA, which uses Bayesian Model Averaging and a greedy search algorithm 

to obtain a posterior distribution more efficiently than BART for datasets with large p. BART-

BMA incorporates elements of both BART and random forests to offer a model-based algorithm 

which can deal with high-dimensional data. We have found that BART-BMA can be run in a 

reasonable time on a standard laptop for the “small n large p” scenario which is common in many 

areas of bioinformatics. We showcase this method using simulated data and data from two real 

proteomic experiments, one to distinguish between patients with cardiovascular disease and 

controls and another to classify aggressive from non-aggressive prostate cancer. We compare our 

results to their main competitors. Open source code written in R and Rcpp to run BART-BMA can 

be found at: https://github.com/BelindaHernandez/BART-BMA.git

1 Introduction

Advances in technology and data collection have meant that many fields are now collecting 

and analysing bigger datasets than ever before (Lynch, 2008). This has brought the analysis 

of high-dimensional data to the forefront of statistical analysis (Bühlmann and Van De Geer 

2011 ; Fujikoshi et al. 2011; Zhao et al. 2012). In many areas of research, especially 

biomedical applications, it is common to have very detailed data on a relatively small set of 

observations, resulting in what is known as a “small n large p” problem, where the number 

of variables p is much larger than the number of observations n. This precludes the use of 

many standard statistical techniques (Hernández et al., 2014).

Random forests (RF), first proposed by Breiman (2001), is a popular method for dealing 

with high-dimensional data, mainly because of its computational speed and high accuracy. It 
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is a non-parametric method and so does not make any major distributional assumptions 

about the data. RF automatically allows for nonlinear interaction effects, a desirable property 

in many high-dimensional datasets (Nicodemus et al. 2010; Archer and Kimes 2008). The 

standard output of the RF method not only reports the accuracy of the algorithm, but also 

gives a variable importance measure for each variable which tells the user which variables 

were the most predictive. However, as RF is a machine learning algorithm and does not use a 

statistical model, it does not provide probability-based uncertainty intervals.

Bayesian methods have proven popular in many areas of research, in part because they are 

robust to overfitting in the presence of small sample sizes and can handle missing or 

incomplete data (Beaumont and Rannala 2004; Wilkinson 2007; Hernández et al. 2015). 

They allow the inclusion of external information from previous experiments, scientific 

literature or other sources in a principled manner, which is an advantage over non-Bayesian 

statistical and machine learning techniques (Wilkinson, 2007). They also permit known 

experimental and biological variability to be incorporated into a prior probability distribution 

(Harris et al., 2009). A key benefit of using model-based approaches is that they give access 

to the full posterior distribution of all unknown parameters in the model, which can be useful 

in decision-making. Machine learning algorithms by default usually provide point estimates 

only and so decisions are made ignoring the uncertainty surrounding these estimates.

Bayesian Additive Regression Trees (BART) Chipman et al. (2010) is a Bayesian tree 

ensemble method similar in idea to gradient boosting (Friedman, 2001a), which combines 

the advantages of Bayesian models with those of ensemble methods such as RF. The advent 

of a parallelised R software package called bartMachine (Kapelner and Bleich, 2014a) and 

the R package dbarts (Chipman et al., 2014) has made BART a feasible option for the 

analysis of a wide range of datasets. As BART is a model-based approach, it yields credible 

intervals for predicted values, in contrast to the default output of machine learning 

algorithms such as RF. However as explained later in Section 2.3, the algorithm for BART 

can become computationally inefficient for data sets with large numbers of variables.

In this article we propose an alternative fitting algorithm for BART which we refer to as 

Bayesian Additive Regression Trees using Bayesian Model Averaging (BART-BMA). 

BART-BMA modifies the original BART method in a number of ways to make the algorithm 

more efficient for high-dimensional data. BART-BMA can be seen as a bridge between RF 

and BART in that it is model-based yet will run on high-dimensional data. One of the main 

reasons of BART can struggle in high dimensions is that it uses Markov Chain Monte Carlo 

(MCMC) to sample from the posterior distribution of the tree space. Rather than using 

MCMC and saving every iteration of the MCMC chain for each tree to memory, BART-

BMA greedily grows sums of trees models and uses an efficient variant of Bayesian model 

averaging called Occam's window to average over the set of sums of trees which are most 

probable (Madigan and Raftery, 1994). The method discards models with low posterior 

probability and focuses final predictions on the subset of models with the highest posterior 

probabilities. In order to improve model selection speed, BART-BMA uses a greedy search 

algorithm to find predictive split points, so only high quality splits are proposed when 

growing tree models. Thus BART-BMA is computationally feasible for high-dimensional 
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datasets, does not require specialised hardware or software and brings with it the advantages 

of a model-based approach.

In this paper we showcase BART-BMA using a simulated example as well as two real 

applications to proteomic experiments. The article is organised as follows. Section 2 reviews 

existing tree-based variable selection models such as RF (Breiman, 2001) and BART 

(Chipman et al., 2010). Section 3 describes our proposed model and explains the differences 

between it and BART. Section 4 compares BART-BMA to BART, RF and Extremely 

Randomised Trees (ERT) for a number of simulated datasets and applies these methods to 

two proteomics datasets. We conclude with discussion in Section 5.

2 Tree-Based Models

In this section we review the existing methods RF and BART. Tree-based models have long 

been used for prediction and classification, going back to 1963 for the analysis of survey 

data (Morgan and Sonquist 1963; Morgan 2005). Tree-based modelling came to the fore 

with the seminal work of Quinlan (1979, 1986), and particularly the Classification and 

Regression Tree (CART) method of Breiman et al. (1984).

Decision trees consist of internal nodes and splitting rules of the form xp ≤ c, where xp refers 

to the pth explanatory variable in design matrix X and c is a threshold value within the range 

of values of variable xp. Observations which satisfy the splitting rule are sent to the left hand 

daughter node and those which do not are sent to the right hand daughter node. An 

illustration of this process is given for one of our examples in Figure 3. Observations are 

further iteratively split into left and right hand daughter nodes as they pass through each 

internal node in turn until a terminal node is reached.

One of the main reasons for the popularity of tree models over standard statistical models 

such as linear regression is that decision trees automatically search for and include nonlinear 

interaction effects. It was later noted however that individual decision trees tend to overfit 

and to be sensitive to the training data they were built on. To counteract this, ensemble 

methods were proposed where multiple models are aggregated or averaged over to give a 

more stable and generalisable solution (Breiman 1996a; Breiman 1996b; Friedman 2001b).

2.1 Random Forests (RF)

RF (Breiman, 2001) is one of the most popular tree-based ensemble algorithms and has been 

used in many fields (Ham et al. 2005; Svetnik et al. 2003; Daz-Uriarte and Alvarez de 

Andrés 2006). RFs use an average of multiple CART decision trees. Each decision tree in 

the RF algorithm is based on a bootstrap sample of observations and trees are grown by 

splitting on a random sample of variables in each internal node. In this way RFs avoid 

overfitting by reporting accuracy on the out of bag samples that were not used to build the 

tree model and so give a cross-validated estimate of model performance.

Rather than using a statistical model, RF performs an exhaustive search for split points on 

various subsets of data. Each tree in the RF is grown to maximal depth such that each 

terminal node in the tree contains a minimum of one observation for classification and a 
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minimum of 5 observations for regression. Therefore individual trees tend to be quite large 

and complex. The main reasons for the popularity of RFs are that they are generally 

accurate, are computationally fast and work for large datasets. Also, the algorithm provides a 

variable importance score for each variable used. The two main variable importance scores 

used are the decrease in Gini impurity, which is generally used for classification problems, 

and the mean decrease in accuracy, which is generally used for regression problems. Thus 

the RF can be used for interpretation and explanation, unlike other black box algorithms 

such as support vector machines and neural networks which do not provide variable 

importance scores by default.

Extremely Randomised Trees (ERT) are a related tree ensemble method (Geurts et al., 

2006). The main difference between the two is that individual trees are built on the full 

training data rather than a bootstrap sample as in RF. Also, trees are grown by choosing a 

split variable and split point at random from the set of split rules available at each internal 

node rather than performing an exhaustive search as in RF. In Section 4 we compare RF and 

ERT to their Bayesian counterparts BART and BART-BMA.

2.2 Bayesian Additive Regression Trees (BART)

2.2.1 BART likelihood—BART is a Bayesian tree ensemble model where the response 

variable Y is estimated by a sum of Bayesian CART trees (Chipman et al., 2010). Given an n 
× p matrix of explanatory variables X, let xk = [xk1, …, xkp] be the kth row (i.e. the kth 

observation) of X. The basic BART model is

Yk = ∑
j = 1

m
g(xk; T j, M j) + ɛk, (1)

where g(xk; Tj, Mj) is a CART decision tree as described in Chipman et al. (1998), Tj refers 

to decision tree j = 1 … m (where m is the total number of trees in the model), Mj are the 

terminal node parameters of Tj, and ɛk
iidN(0, σ2) where σ2 is the residual variance. Each tree 

Tj also contains a set of splitting variables and split points; one for each internal node in the 

tree.

2.2.2 BART priors—To form the Bayesian model, prior distributions are required for the 

parameters. In Chipman et al. (2010), these are set by assuming prior independence of the 

trees Tj, and similarly the terminal node parameters Mj = (μ11 … μij) (where I = 1 … bj 

indexes the terminal nodes of tree j). With judicious choices for these probability 

distributions which exploit conjugacies, many of the parameters can be marginalised out of 

the model; this greatly speeds up model fitting (see Section 2.2.4). In particular this 

marginalisation avoids the need for reversible jump type algorithms. The form of the prior 

used by Chipman et al. (2010) is:
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p(M1, …, Mm, T1, …, Tm, σ) ∝ ∏
j

∏
i

p(μi j |T j)p(T j) p(σ) . (2)

The prior distribution of the terminal node parameters μij for a given tree Tj is

μi j |T j
iidN(0, σ0

2),

where σ0 = 0.5
e m  and e is a user-specified hyper-parameter (usually fixed) with recommended 

values between 1 and 3. To set the prior distribution of the μij, Chipman et al. (2010) noted 

that (Y|X) is modelled as a sum of m μij parameters. Chipman et al. (2010) then use an 

empirical Bayes prior for the μij so that (Y|X) lies within the range of values of Y with high 

probability. Here the response variable Y is centered at zero and scaled to have minimum 

and maximum values at −0.5 and 0.5 respectively before analysis, yielding a scaled variable 

Yscaled. For this reason the prior mean of μij is usually set to 0. The prior terminal node 

standard deviation parameter σ0 is set such that e√mσ0 = 0.5, and e is chosen such that the 

prior implies that (Y|X) lies between −0.5 and 0.5 with high probability. For example e = 2 

sets a 95% prior probability that the (Yscaled|X) lies between -0.5 and 0.5.

Chipman et al. (2010) place a regularisation prior on the tree size and shape p(Tj) to 

discourage any one tree from having undue influence over the sum of trees (Chipman et al., 

2010). The probability that a given terminal node within a tree Tj is further split into two 

children nodes is α(1 + di)−β, where di is the depth of internal node i and α and β are 

parameters (usually fixed) which determine the size and shape of tree Tj respectively 

(Chipman et al., 1998). Thus p(T j) = ∏i = 1
u j α(1 + di)

−β, where ui indexes the internal nodes 

of tree Tj. The default values recommended by Chipman et al. (2010) are α ∈ (0, 1) and β > 

0. This puts high probability on bushy trees where all the terminal nodes end at a similar 

depth.

Chipman et al. (2010) assume that the model precision σ−2 has a conjugate prior distribution 

σ−2 Ga( ν
2 , νλ

2 ), with degrees of freedom ν and scale λ respectively.

2.2.3 BART posterior—Combining equations (1) and (2) we obtain the posterior 

distribution:

p(𝒯, M, σ | X, Y) ∝ p(Y | X, 𝒯, M, σ) ∏
j

∏
i

p(μi j |T j)p(T j) p(σ), (3)

where p(Y|X, , M, σ) is the likelihood for a given sum of trees, and  is the set of all 

trees, i.e.  = {T1, …, Tm}.
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2.2.4 BART Model Fitting—Chipman et al. (2010) use a Markov chain Monte Carlo 

(MCMC) sampler to obtain a posterior distribution of the set of trees , terminal node 

parameters M, and residual standard deviation σ. New trees in the BART algorithm are 

proposed using a Metropolis-Hastings sampler which selects from one of four proposal 

moves: GROW (node birth), PRUNE (node death), CHANGE (changing splitting rules) and 

SWAP (swapping internal nodes). An overview of the algorithm used by Chipman et al. 

(2010) is shown in Algorithm 1. Chipman et al. (2010) show that a backfitting algorithm, 

whereby individual trees are updated whilst all others are held constant, has some desirable 

computational properties.

The Chipman et al. (2010) algorithm involves calculating the full conditionals p(Tj, Mj|X, Y, 

σ, (j),M(j)) and p(σ|X, Y, , M), where (j) refers to the set of all trees except that of tree 

j (similarly M(j)). Chipman et al. (2010) note that p(Tj, Mj|X, Y, σ, (j), M(j)) depends on 

( (j), M(j), Y, X) only through Rj = Y – Σl≠j g(x; Tl, Ml), the vector of partial residuals of 

the model excluding tree j. Thus the draws from the full conditionals p(Tj, Mj|Rj, σ) can be 

obtained through two separate steps:

1. calculating p(Tj|Rj, σ) ∝ p(Tj)p(Rj|Tj, σ), i.e. proposing and accepting/rejecting a 

new tree from the current partial residuals; then

2. drawing from p(Mj|Tj, Rj, σ), i.e. sampling a new set of terminal node parameters 

for the new tree.

The conjugate prior on the terminal node parameters p(μij|Tj) (as previously introduced in 

Section 2.2.2) allows the μij parameters to be marginalised out of the full conditional for Rj|

Tj, σ−2:

p(R j |T j, σ−2) = ∏
i = 1

b j ∫
−∞

+∞
p(Ri j | μi j, σ−2)p(μi j)p(σ−2)dμi j . (4)

Integrating out the μij parameters greatly reduces the fitting complexity as the calculation of 

the conditional distribution of the partial residuals for each tree Tj does not have to take 

account of the changing dimensionality of the terminal node parameters as trees are grown 

and pruned. The analytic form of p(Rj|X, Tj, σ−2) can be seen in Appendix A. An 

explanation of BART for classification problems can also be seen in Appendix B

Chipman et al. (2010) provide a posterior variable importance score which can be used for 

variable selection or to rank variables according to their importance. Chipman et al. (2010) 

use the variable inclusion proportion, equal to the proportion of times a variable was selected 

over all posterior MCMC samples in the sum of trees model.

2.3 Issues with current tree-based methods

A major advantage of RF is that it is fast enough to be applied to high-dimensional datasets 

on a standard laptop. One disadvantage is that in its default version it does not provide an 

assessment of uncertainty about the prediction. Only point predictions of Ŷ are given with no 
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estimate of the variability of these predicted values. Other extensions of the original RF 

algorithm have however been proposed which can provide estimates of the uncertainty using 

methods such as jackknife estimates (Wager et al., 2014), conformal prediction (Johansson 

et al., 2014) and quantiles (Meinshausen, 2006). Lakshminarayanan et al. (2016) and Hutter 

et al. (2014) also discuss forest algorithms which can estimate predictive uncertainty.

BART on the other hand is a fully specified Bayesian model and so can automatically 

provide estimates of model and predictive uncertainty. However two main bottlenecks are 

noted in the BART model where p is large. The first is that using a uniform prior to choose 

predictive splitting rules in each internal node of each tree may produce MCMC chains with 

high rejection rates for large p. Thus the MCMC algorithm becomes inefficient, especially if 

the number of truly predictive variables is small. The second is that for high-dimensional 

data the BART algorithm can become inefficient when the length of the MCMC chains and 

the size of each sum of trees is large, a by-product of p being large. This is because the set of 

trees  for each iteration of each MCMC chain must be saved to memory to enable 

prediction of an external dataset if it is not provided at the time of training the model.

The Bayesian CART models used in BART as described in Chipman et al. (1998) have 

previously been found to suffer from mixing issues as the CHANGE and SWAP steps of the 

MCMC algorithm only allow for local updates of proposed trees. Some alternative methods 

have been proposed such as in Wu et al. (2007) who propose a “restructure” step in the 

MCMC algorithm, whereby alternative tree structures are searched for which would result in 

the same terminal nodes as the current proposed model. They also suggest an alternative tree 

prior which focuses on the number of nodes in a tree and whether the tree is balanced or 

skewed. A number of alternative tree proposal algorithms have also been proposed to 

improve mixing of MCMC chains in individual Bayesian CART models for high 

dimensional data (Pratola, 2016; Lakshminarayanan et al., 2015).

In the next section we propose BART-BMA as a means of avoiding the issue of high 

rejection rates and large memory requirements with high dimensional data by greedily 
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growing trees which result in an improvement in predictive accuracy. We use a greedy 

implementation of Bayesian model averaging to ensure that we obtain suitably variable 

posterior trees.

3 BART-BMA

We define BART-BMA as an ensemble of BART models which uses a sum of Bayesian 

decision trees as its base learner. We use the same likelihood as the standard BART model 

(Chipman et al., 2010), and make one small change to the prior for computational 

convenience (see Section 3.2). The main difference between BART-BMA and standard 

BART is the model fitting algorithm. Rather than using MCMC we perform a greedy search 

for predictive splitting rules and only grow sum of trees models based on this set of most 

predictive splits. We then use an efficient implementation of Bayesian Model Averaging to 

average over multiple sum of trees models (multiple sets of trees) and keep those with high 

posterior probability.

Each set of trees in BART-BMA is treated as a single model. We create multiple sets of trees 

in a greedy fashion which are averaged over to produce our final predictions. In other words 

BART-BMA averages over the L sets of trees with the highest posterior probability. Each set 

of trees averaged over by BART-BMA contains m trees which are greedily grown using a 

greedy search method for finding predictive splitting rules as described in Section 3.4. The 

BART-BMA method is described in this section and the BART-BMA algorithm is shown in 

Appendix C.

3.1 BART-BMA Likelihood

We use the same likelihood as the Chipman et al. (2010) BART model. However, we re-

write it in matrix form for ease of later calculation. We now write Y as the vector (Y1, …, 

Yn) and let Y|𝖯, M, σ−2 N(∑ j = 1
m J jM j, σ2I), where Jj is an n × bj binary matrix whose (k, i) 

element denotes the inclusion of observation k = 1 … n in terminal node i = 1…bj of tree j. 

We let W = [J1 … Jm] be an n × ω matrix, where ω = ∑ j = 1
m b j, and O = [M1

T…Mm
T ]T be a 

vector of size ω of terminal node means assigned to trees T1, …, Tm. We can then write Y|

O, σ−2 ∼ N(WO, σ2I). As in Chipman et al. (2010) we shift and scale the response variable 

to have mean 0 and standard deviation 1, so that YTY = n.

3.2 BART-BMA priors

Our only change to the standard BART set of priors is to revert to the original terminal node 

prior p(μij) suggested in Chipman et al. (1998). This is:

μi j |T , σ N 0, σ2
a ,

which contrasts with the Chipman et al. (2010) terminal node prior:
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μi j |T j N(0, σ0
2) .

The reason we change back to this older version is that the conditional distribution of p(Rj|

Tj, σ) in the BART algorithm requires the residual standard deviation σ (or rather the 

precision σ−2) for every update in the MCMC algorithm, as shown in Appendix A. Since we 

are trying to marginalise analytically over as many parameters as possible, we revert to the 

earlier standard conjugate prior used in Chipman et al. (1998). The fundamental advantage 

of this prior for μij is that computational simplicity. We now marginalise out both the 

terminal node means and the model precision of the sum of trees likelihood. We expand on 

the mathematics below in Equation (5).

3.3 BART-BMA fitting

The matrix setup of the likelihood together with the priors given above allows us to calculate 

a marginal likelihood as:

p(Y | X, 𝒯) = ∫ ∫ p(Y |O, σ−2)p(O)p(σ−2)dOdσ−2,

which yields:

p(Y | X, 𝒯) ∝ νλ − (YTW)(WTW + aI)−1(WTY) + YTY
− n + ω + ν

2 . (5)

This allows us to specify the marginal likelihood p(Y|X, ) for each set of trees summed 

over  rather than for each individual tree as in BART. The marginal likelihood is similar to 

that of the original BART model (Chipman et al., 2010); the only slight difference is our 

terminal node prior. The consequence of this change of prior is that we can marginalise over 

both the terminal node parameters O and the model precision σ−2, unlike BART which 

includes an update for σ−2 as part of the MCMC algorithm.

3.4 Greedily Growing Trees

As discussed in Section 2.3, uniformly proposing splitting rules for tree internal nodes, as 

used by BART, can become inefficient as the number of variables increases. With high-

dimensional data we argue for adopting a greedier search in order to focus the algorithm 

towards predictive splitting rules, and so we use a greedy search method for finding 

predictive split points. We then only grow trees Tj within each set of trees  using this set of 

most predictive split rules. We suggest the use of two methods for finding predictive splitting 

rules which will be discussed here.

3.4.1 PELT—Univariate change point detection algorithms in general search for 

distributional changes in an ordered series of data. Searching for predictive split points for a 
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single variable in a decision tree has an equivalent goal i.e. it is desirable to find split points 

which maximise the separation of the response variable between daughter nodes. Hawkins 

(2001) showed that searching for individual split points using a single variable in a decision 

tree is equivalent to searching for change points in a univariate stochastic process (See also 

Appendix E.1). Building on this, we use a change point detection algorithm called Pruned 

Exact Linear Time (PELT) to search greedily for predictive split points (Killick et al., 2012).

We use PELT to find good splitting rules for each tree Tj in  rapidly. The PELT algorithm 

allows us to detect changes in the mean or variance of the tree response variable Rj with 

respect to each variable xp in turn, where each change point is treated as a potential splitting 

rule to grow a tree. Here Rj is ordered with respect to xp. PELT and its use in the BART-

BMA model is summarised and described in detail in Appendix E.1.

3.4.2 Grid Search—An alternative search algorithm offered by BART-BMA is the grid 

search. Here each variable xp in dataset X is split into grid_size + 1 equally spaced 

partitions within the range of xp and each partition value is then used as a potential split 

point. Increasing grid_size finds better solutions but makes the algorithm slower. We 

found that grid_size = 15 struck a good balance and gave good performance in most 

cases.

Regardless of the method used to find predictive split rules, trees are greedily grown using 

the best numcp% of the total splitting rules based on their residual squared error. By default 

this set of numcp% predictive splits are identified before the tree is grown. Therefore only 

trees using this set of most predictive splitting rules are considered for inclusion in the 

BART-BMA model. However, splitting rules can also be searched for as trees are being 

grown (within each internal node of each tree) which may improve the accuracy of the 

BART-BMA model. See Appendix E.2 for more details.

Once a tree has been greedily grown using one of the methods discussed above, the 

predicted values for observations falling in each terminal node RiJ are set to the mean of the 

full conditional of p(μij|…), as shown in Appendix D.1.

3.5 Averaging over sums of trees

Rather than use MCMC to fit the above model (which would give simmilar results to 

standard BART) we propose to use a greedier algorithm which finds good sums of trees, and 

subsequently weights them according to their likelihood and tree complexity. The algorithm 

we propose is greedy in two senses. First, it builds trees by finding optimal splits, and 

second, it discards poorly performing sets of trees by keeping only those within a reasonable 

multiplicative window of the best performing set of trees.

3.5.1 Occam's Window—As it is not possible to perform an exhaustive search of the 

model space especially when p is large, we use a greedy and efficient version of BMA called 

Occam's window (Madigan and Raftery, 1994). Here only the models which fall within 

Occam's Window are averaged over using
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BICℓ − argminℓ (BICℓ) ≤ log (o) . (6)

where ℓ indexes the sets of trees accepted into Occam's Window (the set of sum of trees 

models with the highest posterior probabilities to date). As BART-BMA searches the model 

space, it approximates the posterior probability of each set of trees using the BIC (7). The 

lowest (best) BIC of any set of trees encountered so far is saved and any set of trees whose 

BIC falls within a given threshold log(o) of the best model is saved to memory, while those 

outside of Occam's window are discarded. Hence only those models for which there is high 

support from the data are maintained and those whose predictions are considerably worse 

than the best model are eliminated from consideration. Our experience has led us to use o 
=1,000 as a general default value, however this value could also be chosen by cross 

validation.

For each set of trees  in Occam's window, the posterior probability of  is approximated 

using the BIC, defined as

BICℓ = − 2( log (p(Y | X, 𝒯ℓ))) + B log (n) (7)

(Schwarz, 1978). In equation (7), p(Y|X, ℓ) is the marginal likelihood for the set of trees 

ℓ as described in Section 3.1, B is the number of parameters in ℓ.

Each set of trees ℓ initially accepted in Occam's window is iteratively fit until either a user-

specified number of iterations is reached or no more sets of trees are accepted in Occam's 

window. It should be noted that as models with better (lower) BIC are added to Occam's 

Window, this may eliminate some models which were previously within Occam's Window. 

Thus Occam's window constantly updates the best list of sets of trees as the algorithm 

proceeds. We have found that setting the number of trees in the sum, namely m in Equation 

(1), to 5 generally works well. One possible consequence of this approach is that although 

each individual model outside of Occam's window has very low posterior probability, if 

there are multiple such models this may combined account for a large section of the model 

space. Ignoring models with low posterior probability is therefore the tradeoff when an 

exhaustive model search is not possible as is the case with the examples shown in Section 4.

Once the sets of trees within Occam's window have been selected with the BART-BMA 

model, the predicted response values are then calculated as a weighted average of the 

predicted values from the selected sets of trees ℓ. Each set of trees is weighted by its 

approximate posterior probability, wℓ/Σkwk, where wℓ is the model weight for sum of trees ℓ 
in Occam's window, defined as

wℓ = exp ( − 0.5BICℓ) . (8)
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3.6 Variable Importance

We provide a variable importance score, which is simply the estimated posterior expectation 

of the number of splitting rules involving the variable. For each sum of trees model ℓ with 

posterior probability wℓ as calculated in (8), let κpℓ be the number of splitting rules 

containing variable xp in model ℓ. Our variable importance score is then

Imp(xp) =
∑ℓ = 1

L wℓκpℓ
∑p = 1

P ∑ℓ = 1
L wℓκpℓ

. (9)

Whilst many different important scores exist this variable importance score is directly 

analagous to that proposed by Chipman et al. (2010).

We provide the full algorithm for BART-BMA in Appendix C. In order to provide credible 

and prediction intervals for Ŷ, we use a post-hoc Gibbs sampler, the details of which are 

given in Appendix D.

3.7 BART-BMA for Classification

BART-BMA can also be used for binary classification. We follow the same strategy as 

Chipman et al. (2010) (described in Appendix B) by introducing the latent variables 

Zk N(∑ j = 1
m g(xk; T j, M j), 1), where

Yk =
1 ifZk > 0

0 otherwise,

Our method requires estimates of Zk so that the previously introduced BART-BMA 

algorithm for continuous responses can be run without modification. We simply fix the Zk 

for all k at the start of the algorithm. In practice we have found that this approach works well 

if we set all Zk = Φ−1(0.001) ≈ −3.1 if yk = 0 and Zk = Φ−1(0.999) = 3.1 if yk = 1

Once the Zk values are set, BART-BMA uses these as the new response for the tree, updates 

the residuals Rj and iteratively fits trees as before. In order to set predicted Rȃj values in the 

terminal nodes, BART-BMA uses the mean of the full conditional for Mj, as shown in 

Appendix D.1.

4 Results

We compare BART-BMA to RF, ERT and BART for a number of simulated datasets and 

also for two real proteomic data sets for the diagnosis of cardiovascular disease and 

aggressive versus non-aggressive prostate cancer.

All analyses reported in this section were computed using a HP Z420 Workstation with 

32GB RAM. To allow for comparison of the two most used software packages for BART, 

we use both the bartMachine R package (version 1.2.3; Kapelner and Bleich, 2014b) as 
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well as the dbarts R package (version 0.8-7; Chipman et al., 2014). RF was run using the 

randomForest R package (version 4.6-12; Liaw and Matthew, 2015). ERT was also 

included as a benchmark tree ensemble method using R package extraTrees (version 

1.0.5). All methods and results were obtained using R version 3.2.0 (https://cran.r-

project.org/bin/windows/base/old/3.2.0/).

4.1 Friedman Data

As in Chipman et al. (2010) we use simulated data based on Friedman (1991) to compare the 

results of BART-BMA, RF and BART. The original simulated dataset of Friedman (1991) 

had 5 uniform predictor variables x1 … x5 where

y = 10 sin (πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ɛ . (10)

In order to see how RF, ERT, BART and BART-BMA compared over various dataset sizes, 

seven datasets were constructed by appending random noise variables to the truly important 

variables shown in (10) above, such that the total number of variables in each data set was p 
= (100, 1000, 5000, 10000, 15000, 100000, 500000) where x1 … xp are uniform random 

variables and ε∼N(0, 1). Each method was compared across the seven datasets using five-

fold cross-validation and the cross-validated root-mean squared error (RMSE) was recorded. 

At first, default values for all model parameters were used to allow for a fair comparison 

between the methods. For the original version of BART using the dbarts package, the 

parameters were also tuned to show the best result for each dataset. This was done as in 

many cases default versions of dbarts and bartMachine performed poorly because the 

MCMC algorithm did not converge. Hence for each of the seven datasets, the number of 

samples after burn-in ( ndpost) was varied using three different values (1000, 5000, 10000) 

and the number of trees in the BART model was varied for three different values ntree = 

(50, 200, 500) so nine different models were run for each of the seven datasets tested. All 

other parameters were left at their default values.

In each case, the best model with respect to the RMSE was chosen and convergence was 

checked by inspecting the trace plots for the post burn in samples of the residual variance 

parameter σ2 as was also done in Chipman et al. (2010) and Kapelner and Bleich (2014a). 

BART using bartMachine was not tuned as there were memory issues when increasing the 

length of the MCMC chain past the default value of 1,000. Note ERT and bartMachine 

could not run for p =100,000 or p =500,000. Non-default dbarts also could not be run for 

the largest dataset with p = 500, 000. For the Friedman datasets BART-BMA results are 

shown using the GRID search, as in all cases the number of observations is n = 500 (see 

Appendix E.1 for default recommendations) all other parameters for BART-BMA and RF 

remained at their default settings.

4.1.1 Friedman Data: Model Accuracy—Figure 1 shows the results for the model 

accuracy of the four methods for the simulated Friedman data. Note that BART was run 

using both the bartMachine and dbarts packages for comparison. Here we can see that 
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the non-default BART model using the dbarts package performed the best with regards to 

RMSE for small datasets where p ≤ 15, 000. However, once the number of variables was 

increased past p = 15,000, BART-BMA outperformed RF, ERT and all BART models. In fact 

BART-BMA outperformed RF, ERT and BART models in all cases where p > 15,000, 

regardless of the method used for finding splits or whether the splitting rules were updated 

before or during the tree growing process. It should be noted that for p =100,000 the tuned 

dbarts model did not converge with its best setting where the length of the MCMC chain 

was 10,000 iterations (shown in Figure 1). Increasing the length of the chain to 50,000 

iteration was attempted in this case but would not run.

For p ≥ 100,000 ERT, bartMachine and non-default versions of dbarts (for p =500,000) 

gave memory errors and became computationally infeasible. Because BART-BMA uses a 

greedy approach rather than MCMC, however, it performed well for p =500,000 and even 

outperformed RF in terms of model accuracy.

4.1.2 Friedman Data: Model Calibration—In order to assess the calibration 

performance of the prediction intervals from all four models, we show the average coverage 

of the out-of-sample 95% prediction intervals and the average interval width for each of the 

simulated datasets in Table 1. As the standard RF and ERT do not provide confidence 

intervals, we used conformal prediction intervals as described in Johansson et al. (2014) and 

Norinder et al. (2014) using the conformal package (Cortes, 2014) in R to allow for a 

comparison across all four methods. If the method is calibrated, on average we would expect 

95% of the intervals to contain the true value of y. The results for ERT are not shown in 

Table 1 as the confidence intervals could not run for p > 5000 and intervals for datasets 

where p ≤ 5,000 were much wider and had less coverage than RF.

From Table 1 it can be seen that BART-BMA is the best calibrated across the 5 simulated 

datasets shown, as its coverage is as close or closer to 95% than the other models in all 

cases. Blank entries in Table 1 indicate that either the model could not be run for these 

datasets (as for bartMachine and dbarts) or that the algorithm was stopped after it failed 

to run within a time limit of 5 days as for conformal.

The right hand side of Table 1 shows the average interval width for BART-BMA, RF using 

conformal intervals, bartMachine and dbarts. For all six datasets for which it ran, the 

tuned BART model using the dbarts package had the shortest interval width. However this 

should be seen in the context of the fact that dbarts was the worst calibrated of all four 

methods and in none of the cases reaches close to 95%. For this reason the interval widths 

for dbarts are not highlighted in Table 1. For larger datasets where p > 1000, BART-BMA 

had a much shorter mean interval width than either bartMachine or RF using conformal 

intervals and had the most accurate coverage. Overall BART-BMA was more accurate (for 

larger datasets) and better calibrated than RF or either BART method.

The interval widths of the BART-BMA prediction intervals in Table 1 are robust with respect 

to the number of irrelevant variables p, which may seem surprising at first glance. This does 

make sense however, because, as we will see later, BART-BMA attaches relatively high 

posterior probability to the important variables, and almost zero total posterior probability to 
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the unimportant variables, even when p is extremely large. It substantially outperforms the 

other methods in this regard. As a result, the BART-BMA prediction interval is determined 

almost exclusively by the five important variables and so it makes sense that it would be 

insensitive to the number of unimportant variables.

Appendix F shows the average coverage and interval width for the 50% and 75% out-of-

sample prediction intervals. With respect to the 50% intervals, the BART-BMA model was 

well calibrated when p ≤ 1000, but it was slightly undercalibrated for larger datasets, as was 

RF using conformal intervals. dbarts was the worst calibrated across all datasets assessed. 

bartMachine on the other hand was overcalibrated for p ≤ 10,000 and undercalibrated for p 
= 15000. For 75% intervals, the BART-BMA model outperformed the other methods for all 

except p =100 and 15,000 where had only marginally worse coverage. For larger datasets (p 
≥ 15000) the BART-BMA model not only had the best coverage but also had the shortest 

interval width.

4.1.3 Friedman Data: Variable Importance—These data are simulated, so it is known 

that variables x1 … x5 are truly important and all other variables are random noise. The 

average importance for variables x1 … x5 over the five cross-validation folds is reported in 

Figure 2. Whilst the BART and BART-BMA models provide direct access to the variable 

inclusion probabilities, the mean decrease in accuracy provided by RF had to be converted to 

a scale of 0-1 in order to allow for a fair comparison between the size of the variable 

importance scores assigned to each variable. Importance scores for ERT were not included 

here as they are not provided as standard output from the extraTrees package in R.

The BART-BMA method had much larger average variable importance scores than RF, 

bartMachine and dbarts for variables x1, x2 and x5 for all values of p. For x4, BART-

BMA had substantial variable importance scores, as did RF. For x3, BART-BMA had larger 

variable importance scores than the all other methods except the dbarts best method for 

p ≤ 1,000, and all four methods had low variable importance scores for p ≥1,000. Across all 

methods variables 1, 2 and 4 were consistently ranked higher than variables 3 or 5. Both 

bartMachine and the dbarts default method had strikingly low variable importance 

scores for the truly important variables, regardless of the numbers of noise variables. The 

tuned dbarts best method performed slightly better than bartMachine for all datasets 

where it ran, however it still assigned low importance to these variables when compared to 

RF or BART-BMA.

Table 2 shows the sum of the variable importance scores assigned to the random variables x6 

… xp. Across all seven datasets BART-BMA correctly selected only the truly important 

variables in its model and except where p =500,000 never included any of the random noise 

variables. RF outperformed both bartMachine and default and tuned versions of dbarts 

in terms of accurate variable importance scores.

In order to further assess the overall quality of the variable importance scores assigned 

across all variables we used the Brier score = 1
P ∑p = 1

P (I p − VISp)2 where Ip = 1 for the truly 

important variables x1 … x5, and Ip = 0 otherwise. Hence the model with the lowest Brier 
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score is considered the best. Brier scores for all seven simulated datasets are shown in Table 

3. The variable importance scores from BART-BMA gave the best overall performance 

across all seven datasets, and RF came second, outperforming both implementations of 

dbarts and bartMachine for each of the datasets with regards to the Brier score.

Overall, BART-BMA outperformed RF and BART in terms of the quality of its variable 

importance score, and did not include any random noise variables in its models regardless of 

the size of the dataset.

Bleich et al. (2014) discuss various ways of choosing appropriate thresholds for the variable 

inclusion proportions to use BART for variable selection such as the “local” and “global 

max threshold” options. Both of these involve permuting the response variable and running 

the BART model a number of times. The variable importance scores for each run using the 

permuted response are then used to generate a null distribution of variable inclusion 

proportions for each variable. The local threshold selects the (1 – α) quantile for each 

variable over P permutations and selects the predictor variable xk if its (1 – α) quantile 

exceeds this threshold. The Global max threshold on the other hand chooses the maximum 

inclusion proportion generated for each variable over all permutations in the null 

distribution. The threshold for selecting a variable is then given by getting the (1 – α) 

quantile across the P permutations of the maximum values for each null variable inclusion 

proportion. These thresholds were not assessed for all datasets shown here, as especially for 

large data sets the BART models were computationally demanding and required a lot of 

memory and so running BART multiple times for these datasets was not practical. Indeed in 

Figure 1 it can be seen that bartMachine would not run for p >15,000 and non-default 

dbarts would not run for p =500,000 even on a workstation with 30Gb RAM.

4.2 Prostate Cancer Data

Prostate cancer is a heterogeneous disease. In some men it manifests itself as an acute, 

aggressive and rapidly advancing condition, and in other men as a slowly progressing 

disease that is responsive to existing treatment regimes for significant periods of time. It is 

widely recognised that existing methods to classify the grade of the disease (using serum 

PSA levels, digital rectal examination and Gleason score) are not well suited for monitoring 

its progression or establishing the optimal timing of treatment interventions (Logothetis et 

al., 2013). It is therefore important to be able to distinguish between aggressive and non-

aggressive forms of the disease in a timely manner.

Here we show the results of an experiment where the expression levels of 51 peptides were 

measured using multiple reaction monitoring (MRM) on 63 patients with prostate cancer. Of 

these patients, 21 had extra capsular extension which is a surrogate for aggressive disease, 

while the remaining 42 had localised disease which had not spread beyond the boundaries of 

the prostate gland.

To access model performance we use the precision recall curve (Raghavan et al., 1989). The 

precision of a model is another term for the positive predictive value and measures the 
∑True Positives

∑True Positives + ∑Flase Positives . Here it measures the probability of a patient having extra 
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capsular extension given that the model predicted they had extra capsular extension. The 

recall of a model is another name for the specificity and measures 
∑True Negatives

∑True Negatives + ∑False Positives . In this case the recall measures the probability of a patient 

being diagnosed as extra capsular extension by the model given they actually had extra 

capsular extension. The precision recall curve shows the precision of a model over varying 

thresholds of the recall and the area under this curve is known as the area under the precision 

recall curve (AUPRC), for which the higher the value the better.

Table 4 shows the comparison of BART-BMA, RF, ERT and BART using the bartMachine 

and dbarts packages for this dataset in terms of the classification rate and the AUPRC. All 

results are based on out of sample data using five-fold cross-validation. Here all methods 

have been set to their default values. Non-default options for bartMachine and dbarts 

were also run as described in Section 4.1 however the tuned models did not improve the 

classification of AUPRC over the default model. From Table 4 it can be seen that BART-

BMA using the PELT search performed best in terms of classification accuracy, identifying 

79% of the cases correctly. The BART-BMA model took a weighted average over 100 sum 

of tree models which were included in Occam's window. It also performed best in terms of 

AUPRC with an area of 0.68. Here the PELT rather than the GRID search was used as the 

sample size for this experiment was small (n ≤ 200).

Table 5 shows the five most important variables chosen across the three models considered. 

Again as a VIM is not provided for ERT using the extraTrees package ERT is not 

included here. From Table 5 it can be seen that BART-BMA, RF and both versions of BART 

agreed that variables 50 and 18 were the two most important for this dataset. RF, 

bartMachine and dbarts all chose variables 50, 18, 2 and 3 in their top five. BART-BMA 

tended to assign higher inclusion probabilities to a smaller number of variables than RF or 

either version of BART which tended to assign lower inclusion probabilities across a larger 

number of variables. In this case BART-BMA assigned a high variable importance score to 

variable 50 showing that this variable was present in 22.5% of the total splits across sum of 

trees models. If variables were chosen at random we would expect each variable to have an 

inclusion probability of 0.019 for this dataset and so across all cases a higher than random 

importance was assigned to the most important variables.

Like RF, BART-BMA gives access to the sum of trees models in Occam's window at the end 

of the algorithm. This makes the results of BART-BMA easy to interpret. To illustrate, 

Figure 3 shows the sum of trees model for the prostate cancer data which had the highest 

posterior probability. BART-BMA chose a sum of five trees, where each tree split on only 

one variable. Here the set of proteins analysed in this experiment were chosen based on the 

outcome of a previous experiment and are not expected to interact, so it is interesting to note 

that the individual trees in the most probable sum of trees model did not include any variable 

interactions.

4.3 Cardiovascular Disease

This section describes an experiment to distinguish patients with cardiovascular disease from 

control patients. This experiment was undertaken on 498 patients, 150 of whom had a 
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cardiovascular disease and 348 of whom were healthy. A total of 36 proteins were measured 

by a targeted approach (MRM) in each patient sample. Table 6 shows the cross-validated 

results for this experiment with respect to the classification rate and the AUPRC for each 

method. BART-BMA, ERT and dbarts were slightly more accurate than either RF or 

BART using bartMachine and correctly predicted 70% of the patients. With respect to the 

AUPRC however, BART-BMA did not perform as well as the other methods (see Table 6) 

with BART using the bartMachine package performing the best by this measure. The 

BART-BMA method averaged over 3 sets of trees in this case. For this data, tuning the 

bartMachine and dbarts methods beyond their default values did not lead to an increase 

in accuracy or AUPRC.

Table 7 shows the five most important variables chosen by each of the methods. As can be 

seen, all four models chose quite similar proteins in this case with BART-BMA and RF 

agreeing on four of their top five, and bartMachine and dbarts agreeing on three of their 

top five. BART-BMA tended to assign a higher inclusion probability to a smaller set of 

proteins whereas RF and BART using the default number of trees tended to spread the 

probability across a larger number of variables. If the model were assigning probabilities 

uniformly across variables we would expect a probability ∼ 0.03 which is the probability 

assigned to 4 of the top 5 variables included by both versions of BART and two of those 

included by RF. BART-BMA in all cases assigned a much higher than random inclusion 

probability to its most important variables.

5 Discussion

We have proposed a Bayesian tree ensemble method called BART-BMA which modifies the 

BART method of Chipman et al. (2010) and can be used for datasets where the number of 

variables is large. Instead of estimating the tree node parameters using MCMC, BART-BMA 

uses a different fitting algorithm which involves greedily searching for predictive splitting 

rules to grow predictive trees and also using a greedy implementation of Bayesian model 

averaging. This greedy fitting algorithm has been found to be quite efficient, especially for 

high dimensional data, as only a subset of the best splitting rules are considered for growing 

trees and only the subset of most predictive sum of trees models are averaged over and saved 

to memory. Changing the terminal node priors to those used in Chipman et al. (1998) means 

that the model precision is needed only for calculation of the prediction credible intervals 

and not in the calculation of the likelihood. As such, a fast post hoc Gibbs sampler can be 

run, yielding estimates of predictive uncertainty in addition to point predictions.

BART-BMA proposes an efficient strategy for finding good splitting rules which works 

particularly well for high-dimensional data, where the uniform prior used by BART can 

become computationally intensive. BART-BMA borrows elements of both BART and RF in 

that it is a sum of trees ensemble model which averages over multiple sums of trees and as 

such offers a model-based alternative to machine learning methods for high-dimensional 

data.

BART-BMA can be seen as a bridge between RF and BART in that it is a model-based sum 

of trees method like BART and therefore can provide estimates of predictive uncertainty, but 
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BART-BMA also averages over multiple sum of trees models in a similar way to RF. Like 

RF, BART-BMA not only provides a variable importance score but also provides access to 

the sums of trees chosen in the final model. In general BART-BMA tends to choose 

shallower and more interpretable trees than RF, as only splits which result in a high posterior 

probability are included.

We have showcased BART-BMA using both simulated and real life proteomic datasets and 

have shown its usefulness for high-dimensional data. We have found that BART-BMA is 

competitive with RF and BART in terms of speed and accuracy.

We envisage future applications and extensions for BART-BMA including dealing with 

missing data as well as for use on longitudinal data and extending this model to the family of 

generalised linear models. BART-BMA could also be parallelised to reap further gains in 

computational speed.
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Appendix

A BART full conditional distribution p(Rj|X, Tj, σ−2)

Using the forms of p(μij) and p(σ-2) described in Section 2.2.2 gives rise to the following full 

conditional distribution of the partial residuals for the BART model:

p(R j | X, T j, σ−2) ∝ ∏
i = 1

b
niσ

−2 + 0.5
e m

−2 − 1
2
σ

−2n + ν
2 − 1

× exp − σ−2

2 ∑
ι = 1

ni
Rιi j

2 + νλ

exp
ni

2Ri j
2 σ−4

2 niσ
−2 + 0.5

e m
−2

(11)

where ni is the number of observations in terminal node i of tree j and R̄
ij is the mean of the 

partial residuals Rj for terminal node i in tree j.
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B BART for Classification

For binary classification Chipman et al. (2010) follows the latent variable probit approach of 

Albert and Chib (1993). Latent variables Zk are introduced so that

Yk =
1 ifZk > 0

0 otherwise.

The sum of trees prior is then placed on the Zk so that Zk (∑ j = 1
m g(xk; T j, M j), 1). It follows 

that Yk is Bernoulli with

P(Yk = 1| xk) = Φ ∑
j = 1

m
g(xk; T j, M j) , (12)

where Φ is the standard normal cumulative distribution function (CDF), used here as the link 

function. Note that there is no residual variance parameter σ2 in the classification version of 

the model.

Using the same prior distribution structure as in Section 2.2.2, the full posterior distribution 

of this version of the model is:

p(T , M, Z | X, Y) ∝ p(Y |Z, T , M) ∏
j

∏
i

p(μi j |T j)p(T j) , (13)

where the top level of the likelihood (i.e. the first term on the right hand side) is a 

deterministic function of the latent variables. The conditional prior distributions of the 

terminal node parameters μij|Tj are set exactly as described in Section 2.2.2 except that 

σ0 = 3
e m  instead of σ0 = 0.5

e m . This is in order to assign high prior probability to the interval 

(Φ[−3], Φ[3]) which corresponds to the 0.1% and 99.9% quantiles of the normal CDF.

The fitting algorithm proposed by Chipman et al. (2010) for the classification model is 

nearly identical to that of their standard algorithm. The only difference is that the latent 

variables Zk introduce an extra step in the Gibbs algorithm. The full conditional distributions 

of Zk| … are:

Zk |…
min N ∑ j g(xk; T j, M j), 1 , 0 ifYk = 1,

max N ∑ j g(xk; T j, M j), 1 , 0 ifYk = 0.
(14)
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The partial residuals in the tree updates are of course now based on the latent variables Zk 

for updating of individual trees.

C BART-BMA Algorithm overview

D BART-BMA Posthoc Gibbs Sampler

In order to provide credible intervals for the point predictions, Ŷ, provided by BART-BMA, 

we run a post-hoc Gibbs sampler. For each sum of trees model ℓ in Occam's window a 

separate chain in the MCMC algorithm is run. For each model ℓ, each terminal node 

parameter μij in each tree Tj is then updated followed by an update of σ2. The details of the 

updates for the full conditional of p(μij|Tj, Rj, σ2) and of p(σ2) are explained in further detail 

in the following sections. The Gibbs sampler yields credible and prediction intervals for 

each set of sum of trees models accepted by BART-BMA along with the updates for σ−2 for 

each set of trees accepted in the final BART-BMA model. The final simulated sample from 

the overall posterior distribution is obtained by selecting a number of iterations from the 

Gibbs sampler for each sum of trees model proportional to its posterior probability, and 

combining them. The post-hoc Gibbs sampler used by BART-BMA is far less 

computationally expensive than that of BART as it requires only an update for μij and σ from 

the full conditional of each sum of trees model, which is merely a draw from a normal 

distribution and an inverse-Gamma distribution respectively (see Sections D.1 and D.2 

respectively).

D.1 Update of p(Mj|Tj, Rιji, σ2)

Let Mj = (μ1j … μij) index the bj terminal node parameters of tree Tj, and Rkij be the partial 

residuals for observations k belonging to terminal node i used as the response variable to 

grow tree Tj. BART-BMA assumes that the prior on terminal node parameters is μij|Tj, 
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σ N(0, σ2
a ), as in Chipman et al. (1998). The prior distribution of the partial residual is Rj|…

∼N(μij, σ2).

The full conditional distribution of Mj is then

p(M j |T j, Rki j, σ) ∝ p(Rki j |T j, M j, σ)p(M j |T j)

∝ ∏
k = 1

ni
p(Rki j |T j, M j, σ)p(M j |T j),

(15)

where k indexes the observations within terminal node i of tree Tj and ni refers to the 

number of observations which fall in terminal node i.

The draw from the full conditional of p(Mj| …) is then a draw from the normal distribution

M j |T j, Rki j, σ N
∑k = 1

ni Rιi j
ni + a , σ2

ni + a . (16)

The full conditional of Mj| … depends only on σ in the variance parameter, making it 

slightly more efficient than the update of Mj using the BART prior which depends on σ in 

both the mean and variance parameter.

D.2 Update of p(σ2)

BART-BMA performs the update for p(σ) in the same way as (Chipman et al., 2010). The 

full conditional distribution of σ2 is:

p(σ2 | R j, T j, M j) ∝ ∏
k = 1

n
p(R j |T j, M j, σ2)p(σ2), (17)

where R j N ∑ j = 1
m g(xk . T j, M j), σ2  and 1

σ2 Gamma(ζ, η), where ζ and η are equal to ν
2  and 

νλ
2 , respectively.

BART-BMA makes the draw for σ2 in terms of the precision σ−2 = 1
σ2  where p(σ−2|Rj, Tj, 

Mj) is calculated as:
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σ−2 | R j, T j, M j Gamma ζ, 1
2 , P

2 + 1
η , (18)

where P = Σk [Yk – Σj g(xk, Tj, Mj)]2. The next value of σ−2 is then drawn from (18) and the 

value of σ is calculated by getting the reciprocal square root of that value.

E Greedy Tree Growing Extra Details

E.1 The PELT Algorithm

Univariate change point detection algorithms in general search for distributional changes in 

an ordered series of data. For example if normality is assumed then such an algorithm may 

look for changes in the mean or variance of the data. Searching for predictive split points for 

a single variable in a tree has an equivalent goal i.e. it is desirable to find split points which 

maximise the separation of the response variable between the left and right hand daughter 

nodes. For this reason we use a change point detection algorithm called PELT (Pruned Exact 

Linear Time) in BART-BMA to find predictive split points and greedily grow trees.

PELT was originally proposed to detect change points in an ordered series of data y1:n =(y1, 

…, yn) by minimising the function

min
δ ∑

θ = 1

Θ + 1
[C(y(δθ − 1 + 1):δθ

) + D] . (19)

Here there are Θ change points in the series at positions δ1:Θ = (δ1, …, δΘ) which results in 

Θ + 1 segments. Each changepoint position δθ can can take the value 1… n – 1. For example 

if a change point occurs at position δ1 = 5 and another occurs at position δ2 = 12 the second 

segment where θ = 2 will contain the values for y(6:12). The function C(·) is a cost function 

of each segment θ containing observations y(δθ–1+1):δθ. In the results which follow, the cost 

function used is twice the negative log likelihood assuming that y has a univariate normal 

distribution. Finally, D is a penalty for adding additional change points, default values for 

which are discussed below.

PELT extends the optimal partitioning method of Yao (1984) by eliminating any change 

points which cannot be optimal. This is achieved by observing that if there exists a candidate 

change point s where δ < s < S which reduces the overall cost of the sequence, then the 

change point at δ can never be optimal and so is removed from consideration (Killick et al., 

2012). An algorithm describing how we use PELT to greedly grow trees is described in 

Algorithm 3:
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One disadvantage to using PELT for large datasets is that the number of change points 

detected by the PELT algorithm is linearly related to the number of observations, which can 

reduce the speed of the BART-BMA algorithm for large n. Our experience is that D = 10 

log(n) performs well as a general default for the PELT penalty when n < 200. For larger 

values of n we recommend using a higher value for D or the grid search option instead (see 

Section 3.4.2) in order to limit the number of split points detected per variable. We 

implement a version of PELT which is equivalent to the PELT.meanvar.norm function 

from the changepoint package in R (Killick et al., 2014). This function searches for 

changes in the mean and variance of variables which are assumed to be normally distributed. 

Additional change points are accepted if there is support for their inclusion according to the 

log likelihood ratio statistic.

E.2 Updating Splitting Rules

By default we choose the best numcp% of the total splitting rules before the tree is grown 

and only trees using the most predictive splitting rules are considered for inclusion. However 

the best splitting rules can also be updated for each internal node i in each tree Tj, similarly 

to how RF creates trees. We have found that updating splitting rules at each internal node 

generally results in fewer trees Tj being included in each sum of trees model, however, each 

tree Tj within the sum of trees models averaged over in the final model tends to be deeper 

and to choose splits that are similar to the primary splits of trees in the RF. We have found 

that updating the splitting rules at each internal node can in some cases increase the 

predictive accuracy, but generally at the expense of computational speed.

F Out of sample prediction intervals

This appendix shows the results for the calibration of the Friedman example using 50% and 

75% prediction intervals.

G Choice of Default Values for BART-BMA

This section will show some of the preliminary investigations which guided the choice of 

default settings for the BART-BMA algorithm such as the choice of the size of Occam's 

Window, the penalty on the PELT parameter and the size of sum of tree models to be 

averaged over. In the results that follow the following datasets are shown: Ozone, 

Compactiv, Ankara and Baseball datasets. These were also used as the benchmark datasets 

for the bartMachine package Kapelner and Bleich (2014b).
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For each for the four datasets shown, varying amounts of random noise variables were 

appended to test the sensitivity of the parameters to the dimensionality of the dataset. In all, 

17 different values for the number of random noise variables appended were tested ranging 

from 100 to 15, 000 so each parameter value of interest was run/tested a total of 68 times.

For the value of Occam's Window, 20 values were evaluated ranging from 100 to 100, 000. 

A contour plot showing the relative RMSE for the Baseball, Ankara, Compactiv and Ozone 

datasets can be seen in Figure 4. Here the RMSE value for each dataset has been divided by 

its minimum value which allows for fair comparison across datasets.

In general we recommend a default value of OW = 1000 as it seems to work well on the 

majority of datasets tested as can be seen here (and in other datasets not shown). It was 

decided that the additional computational complexity involved in setting OW = 10000 was 

not worth the marginal gain in accuracy for the datasets tested.

Figure 5 shows the same experiments conducted by ranging the multiple pen used in the 

PELT penalty D = pen log(n) from 1 to 20. Here we can see that a value of D = 10 log(n) 

works well in the majority of the datasets shown.

Figure 6 shows the same datasets where Occam's window is fixed at its default value of 

OW=1000 and the PELT penalty parameter is fixed at D=10Log(n). Here 7 increments for 

numcp were chosen ranging from 5% to 100%.
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Figure 1. 
Friedman example: Comparison of RMSE for the 7 simulated Friedman datasets where p = 

100, 1000, 5000, 10000, 15000, 100000, 500000. As n = 500 the GRID method was used to 

search for the subset of best splits.
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Figure 2. 
Friedman example: variable importance scores for the truly important variables x1 … x5 for 

each of the 7 Friedman datasets. As n = 500 the GRID method was used to search for the 

subset of best splitting rules in BART-BMA, where all splitting variables had equal prior 

probability of being selected. BART-BMA and BART ( bartMachine and dbarts) scores 

show the mean variable inclusion probability, RF scores show the mean decrease accuracy 

expressed as a probability.
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Figure 3. 
Prostate cancer Data: BART-BMA sum of trees model with the highest posterior probability.
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Figure 4. 
Example of experiments to guide default value chosen to determine the size of Occam's 

Window o = 1000
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Figure 5. 
Example of experiments conducted to guide default value chosen to determine the size of the 

PELT parameter pen where D = pen log(n) given Occam's Window o = 1000
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Figure 6. 
Example of experiments conducted to guide default value chosen to determine the numcp
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Table 5

Prostate cancer data: Top five most important variables for each method. BART-BMA and BART scores show 

the mean variable inclusion probability, RF scores show the mean decrease in Gini index expressed as a 

probability. As n < 200 the PELT method was used to search for the subset of best splitting rules.

Variable BART BMA RF bart Machine dbarts

50 0.225 0.082 0.025 0.022

18 0.168 0.052 0.024 0.021

2 0.035 0.021 0.021

3 0.042 0.022 0.021

4 0.021

30 0.103

31 0.071 0.021

25 0.050

44 0.037
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Table 7

Cardiovascular disease data: Top five most important variables for each method. BART-BMA and BART 

scores show the mean variable inclusion probability, RF scores show the mean decrease in Gini index 

expressed as a probability. As n > 200 the GRID method was used to search for the subset of best splitting 

rules.

Variable BART BMA RF bartmachine dbarts

14 0.33 0.05 0.04 0.035

4 0.16 0.03 0.030

24 0.14 0.05 0.03

3 0.06 0.03 0.03

34 0.06

2 0.03

10 0.03

13 0.03 0.029

12 0.031

18 0.030
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ℓ in Occam's window a separate chain in the MCMC algorithm is run. For each model 
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ℓ, each terminal node parameter μij in each tree Tj is then updated followed by an update of σ2. The details of the updates for the full conditional of p(μij|Tj, Rj, σ2) and of p(σ2) are explained in further detail in the following sections. The Gibbs sampler yields credible and prediction intervals for each set of sum of trees models accepted by BART-BMA along with the updates for σ−2 for each set of trees accepted in the final BART-BMA model. The final simulated sample from the overall posterior distribution is obtained by selecting a number of iterations from the Gibbs sampler for each sum of trees model proportional to its posterior probability, and combining them. The post-hoc Gibbs sampler used by BART-BMA is far less computationally expensive than that of BART as it requires only an update for μij and σ from the full conditional of each sum of trees model, which is merely a draw from a normal distribution and an inverse-Gamma distribution respectively (see Sections D.1 and D.2 respectively).D.1 Update of p(Mj|Tj, Rιji, σ2)Let Mj = (μ1j … μij) index the bj terminal node parameters of tree Tj, and Rkij be the partial residuals for observations k belonging to terminal node i used as the response variable to grow tree Tj. BART-BMA assumes that the prior on terminal node parameters is μij|Tj, 
, as in Chipman et al. (1998). The prior distribution of the partial residual is Rj|…∼N(μij, σ2).The full conditional distribution of Mj is then(15)where k indexes the observations within terminal node i of tree Tj and ni refers to the number of observations which fall in terminal node i.The draw from the full conditional of p(Mj| …) is then a draw from the normal distribution(16)The full conditional of Mj| … depends only on σ in the variance parameter, making it slightly more efficient than the update of Mj using the BART prior which depends on σ in both the mean and variance parameter.D.2 Update of p(σ2)BART-BMA performs the update for p(σ) in the same way as (Chipman et al., 2010). The full conditional distribution of σ2 is:(17)where 
 and 
, where ζ and η are equal to 
 and 
, respectively.BART-BMA makes the draw for σ2 in terms of the precision 
 where p(σ−2|Rj, Tj, Mj) is calculated as:(18)where P = Σk [Yk – Σj g(xk, Tj, Mj)]2. The next value of σ−2 is then drawn from (18) and the value of σ is calculated by getting the reciprocal square root of that value.E Greedy Tree Growing Extra DetailsE.1 The PELT AlgorithmUnivariate change point detection algorithms in general search for distributional changes in an ordered series of data. For example if normality is assumed then such an algorithm may look for changes in the mean or variance of the data. Searching for predictive split points for a single variable in a tree has an equivalent goal i.e. it is desirable to find split points which maximise the separation of the response variable between the left and right hand daughter nodes. For this reason we use a change point detection algorithm called PELT (Pruned Exact Linear Time) in BART-BMA to find predictive split points and greedily grow trees.PELT was originally proposed to detect change points in an ordered series of data y1:n =(y1, …, yn) by minimising the function(19)Here there are Θ change points in the series at positions δ1:Θ = (δ1, …, δΘ) which results in Θ + 1 segments. Each changepoint position δθ can can take the value 1… n – 1. For example if a change point occurs at position δ1 = 5 and another occurs at position δ2 = 12 the second segment where θ = 2 will contain the values for y(6:12). The function C(·) is a cost function of each segment θ containing observations y(δθ–1+1):δθ. In the results which follow, the cost function used is twice the negative log likelihood assuming that y has a univariate normal distribution. Finally, D is a penalty for adding additional change points, default values for which are discussed below.PELT extends the optimal partitioning method of Yao (1984) by eliminating any change points which cannot be optimal. This is achieved by observing that if there exists a candidate change point s where δ < s < S which reduces the overall cost of the sequence, then the change point at δ can never be optimal and so is removed from consideration (Killick et al., 2012). An algorithm describing how we use PELT to greedly grow trees is described in Algorithm 3:
One disadvantage to using PELT for large datasets is that the number of change points detected by the PELT algorithm is linearly related to the number of observations, which can reduce the speed of the BART-BMA algorithm for large n. Our experience is that D = 10 log(n) performs well as a general default for the PELT penalty when n < 200. For larger values of n we recommend using a higher value for D or the grid search option instead (see Section 3.4.2) in order to limit the number of split points detected per variable. We implement a version of PELT which is equivalent to the 
PELT.meanvar.norm function from the 
changepoint package in R (Killick et al., 2014). This function searches for changes in the mean and variance of variables which are assumed to be normally distributed. Additional change points are accepted if there is support for their inclusion according to the log likelihood ratio statistic.E.2 Updating Splitting RulesBy default we choose the best numcp% of the total splitting rules before the tree is grown and only trees using the most predictive splitting rules are considered for inclusion. However the best splitting rules can also be updated for each internal node i in each tree Tj, similarly to how RF creates trees. We have found that updating splitting rules at each internal node generally results in fewer trees Tj being included in each sum of trees model, however, each tree Tj within the sum of trees models averaged over in the final model tends to be deeper and to choose splits that are similar to the primary splits of trees in the RF. We have found that updating the splitting rules at each internal node can in some cases increase the predictive accuracy, but generally at the expense of computational speed.F Out of sample prediction intervalsThis appendix shows the results for the calibration of the Friedman example using 50% and 75% prediction intervals.G Choice of Default Values for BART-BMAThis section will show some of the preliminary investigations which guided the choice of default settings for the BART-BMA algorithm such as the choice of the size of Occam's Window, the penalty on the PELT parameter and the size of sum of tree models to be averaged over. In the results that follow the following datasets are shown: Ozone, Compactiv, Ankara and Baseball datasets. These were also used as the benchmark datasets for the bartMachine package Kapelner and Bleich (2014b).For each for the four datasets shown, varying amounts of random noise variables were appended to test the sensitivity of the parameters to the dimensionality of the dataset. In all, 17 different values for the number of random noise variables appended were tested ranging from 100 to 15, 000 so each parameter value of interest was run/tested a total of 68 times.For the value of Occam's Window, 20 values were evaluated ranging from 100 to 100, 000. A contour plot showing the relative RMSE for the Baseball, Ankara, Compactiv and Ozone datasets can be seen in Figure 4. Here the RMSE value for each dataset has been divided by its minimum value which allows for fair comparison across datasets.In general we recommend a default value of OW = 1000 as it seems to work well on the majority of datasets tested as can be seen here (and in other datasets not shown). It was decided that the additional computational complexity involved in setting OW = 10000 was not worth the marginal gain in accuracy for the datasets tested.Figure 5 shows the same experiments conducted by ranging the multiple pen used in the PELT penalty D = pen log(n) from 1 to 20. Here we can see that a value of D = 10 log(n) works well in the majority of the datasets shown.Figure 6 shows the same datasets where Occam's window is fixed at its default value of OW=1000 and the PELT penalty parameter is fixed at D=10Log(n). Here 7 increments for 
numcp were chosen ranging from 5% 
to 100%.
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