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ABSTRACT

The revolution in sequencing technology demands new tools to interpret the genetic code. As in vivo transcriptome-wide
chemical probing techniques advance, new challenges emerge in the RNA folding problem. The emphasis on one se-
quence folding into a singleminimum free energy structure is fading as a new focus develops on generating RNA structural
ensembles and identifying functional structural features in ensembles. This review describes an efficient combinatorially
complete method and three free energy minimization approaches to predicting RNA structures with more than one func-
tional fold, as well as two methods for analysis of a thermodynamics-based Boltzmann ensemble of structures. The review
then highlights two examples of viral RNA 3′′′′′-UTR regions that fold into more than one conformation and have been char-
acterized by single molecule fluorescence energy resonance transfer or NMR spectroscopy. These examples highlight the
different approaches and challenges in predicting structure and function from sequence for RNA with multiple biological
roles and folds. Morewell-defined examples and newmetrics for measuring differences in RNA structures will guide future
improvements in prediction of RNA structure and function from sequence.

Keywords: RNA folding; RNA conformational landscape; RNA free energy minimization; in vivo genome-wide chemical
probing; RNA structure prediction

INTRODUCTION

The blueprint for biological life is written in the sequence
of RNA nucleotides. As we begin to decipher this exqui-
sitely complex and evolving genetic code, we discover
multiple layers of information and gene regulation. The
primary structure, or sequence; the secondary structure
or pattern of base-pairing and noncanonical motifs; the
tertiary structure or three-dimensional shape of an RNA;
and the quaternary structure or molecular folding partners,
all play a role in information transfer and processes of
the genetic code. The quest to predict RNA structure
and function from sequence is increasingly inspired and
spurred onward with an abundance of data from new
sequencing technologies. Although only 1%–2% of the
human genome encodes proteins, approximately 80%
of the human genome encodes RNA (ENCODE Project
Consortium 2007, 2011). New RNA folding challenges
emerge as sequence databases grow.
The initial idea of one gene encoding one protein

and one function was disproven as alternative splicing, fra-
meshifting, and ambisense viral genomes that code for

proteins in both the sense and antisense directions were
discovered (Nguyen and Haenni 2003; Jangi and Sharp
2014; Caliskan et al. 2015). Similarly, the idea of one
RNA sequence folding into a single lowest energy struc-
ture is fading as new RNA structures and functions are
discovered. Riboswitches, amechanism of gene regulation
primarily known in prokaryotes that responds to metabo-
lites with an RNA conformational switch, are the simplest
case of an RNA sequence with two functional structures
(Antunes et al. 2018). A recent genome-wide study of
RNA base-pairing reveals that approximately 20% of eu-
karyotic RNA fold into multiple shapes in vivo, as evi-
denced by crosslinking pairs that are incompatible with a
single structure (Lu et al. 2016). RNA viral genomes must
adopt multiple functional RNA folds during the viral life
cycle as the RNA genome transcribes, translates, recruits
host molecular resources, evades host defenses, and pack-
ages into new virus particles (Schroeder 2009; Kutchko
et al. 2018). Thus, the goal of predicting RNA structure
and function is shifting from predicting a single lowest
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energy structure to the identification of functional struc-
tural features in an ensemble of RNA structures.

The traditional view of RNA folding funnels converging
to a single low free energy structure may be better repre-
sented for riboswitches by a funnel with two wells (Fig. 1).
A low broad folding basin with multiple low-energy folds
and low-energy barriers for conformational changes may
better describe RNA with multiple folds, such as viral
RNA genomes that must refold at different life cycle stag-
es. Different protein binding partners may selectively bind
and stabilize structures from such a low-energy ensemble.
Stabilization through protein binding may not require re-
folding the RNA but simply recognition of nucleotide
sequences or loop motifs that favor specific and tight
binding and thus shift the dynamic equilibrium of RNA
conformations.

This review focuses on current computational methods
that address RNA folding challenges for predictions of

RNA with multiple folds. Other recent reviews aptly pro-
vide an update on RNA folding tools (Fallmann et al.
2017; Lim and Brown 2018) and approaches specific for
RNA riboswitch aptamers (Antunes et al. 2018). In this
review, after a brief discussion of the RNA folding problem,
we describe a combinatorially complete approach, two
algorithms that analyze the Boltzmann ensemble to identi-
fy sequences with multiple folds, and three free energy
minimization approaches to predicting RNA structures
with more than one functional fold. All these approaches
incorporate experimental constraints for RNA folding.
Finally, we discuss two recent experimentally character-
ized viral RNA sequences that fold into more than one
functional conformation and thus pose challenges for
future RNA structure prediction development.

HIERARCHICAL RNA FOLDING

Because RNA typically follows a hierarchical folding path-
way (Tinoco and Bustamante 1999; Zhang et al. 2017;
Gracia et al. 2018; Šponer et al. 2018), prediction of RNA
secondary structure followed by RNA tertiary structure is
often a successful strategy. The pattern of Watson–Crick
pairing provides significant constraints that reduce the
complexity of tertiary structure prediction. The free ener-
gies of secondary structure motifs such as nearest neigh-
bor Watson–Crick pairs range from −0.9 to −3.4 kcal/mol
and are more stable than free energies of tertiary interac-
tions that range from −0.3 to −1.5 kcal/mol (Xia et al.
1998; Turner 2000; Bisaria et al. 2017). Thus, the free
energies of RNA secondary and tertiary structure motifs
support a model of modular, hierarchical folding in RNA.
In vivo-like folding conditions and molecular crowding
favor cooperative folding and differentially affect the sta-
bilities of secondary and tertiary structure motifs (Kilburn
et al. 2016; Leamy et al. 2017, 2018) and suggest a hierar-
chical model based on structure. Although in vivo folding
is dominated by nonequilibrium kinetic processes such
as cotranscriptional folding and RNA processing events
(Mahen et al. 2005, 2010; Kilburn et al. 2016; Hua et
al. 2018), hierarchical folding based on thermodynamic
stabilities remains an effective paradigm for RNA structure
prediction. All the participants in the recent RNA Puzzles
competition use this step-wise approach to folding RNA
structures (Miao et al. 2017). The advances in RNA tertiary
structure prediction can be applied to secondary structure
predictions of RNA with two or more folds, as demon-
strated by the RNA Puzzles participants’ approaches to
riboswitch prediction (Miao et al. 2017) and modular ener-
getic frameworks for RNA folding (Bisaria et al. 2017).

Figure 2 shows an example of the primary, secondary,
tertiary, and quaternary structure folding for a small non-
coding RNA in a bacteriophage packaging motor called
prohead RNA (pRNA). This 120-nt sequence folds into a
single secondary structure that is well predicted by
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FIGURE1. Models of the RNA folding problem. (A) A singleminimum
free energy structure is predicted for a single sequence in a traditional
folding funnel. The conceptual graph plots free energy (G) versus con-
formational space (X). (B) A bi-stable free energy structure model has
the two lowest energy structures with a high-energy barrier between
the two folds. This model extends the single minimum free energy
(MFE) model to riboswitches binding a ligand, for example. (C ) An en-
semble of low-energy structures resembles a low basin of possible
structures rather than a folding funnel that converges to a single con-
formation. There are low or no energy barriers between different con-
formations. The bottom curve may be bumpy rather than smooth,
although free energies may not distinguish very different structures.
(D) An ensemble of low-energy structures (gray dashed line) may be
selectively stabilized (magenta circles) by RNA binding a ligand or
protein that recognizes motifs within the low-energy ensemble of
structures.
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phylogenetic analysis and verified by chemical probing ex-
periments (Bailey et al. 1990; Hao and Kieft 2014, 2016).
Computational predictions for pRNA sequences have im-
proved over the past ten years as a result of improvements
in the thermodynamics database and an expanded num-
ber of test cases for a wider variety of RNA sequences
(Lorenz et al. 2011; Xu and Mathews 2016). The multi-
branch loops in the phi29 pRNA adopt more than one con-
formation in crystal structures (Ding et al. 2011; Zhang
et al. 2013), and the bulge loop in the GA1 pRNA adopts
multiple conformations unless a metal ion is bound (Gu
et al. 2016). pRNA molecules self-assemble to form di-
mers, trimers, and multimers in vitro and a ring in the con-
text of the prohead bacteriophage (Bailey et al. 1990;
Chen et al. 1999; Morais et al. 2008; Gu and Schroeder
2011; Hao and Kieft 2014, 2016). Thus, RNA may adopt
multiple conformations on many levels of RNA folding.
This review focuses on predicting multiple conformations
in RNA secondary structure formation. (See Table 1.)

TRADITIONAL RNA FOLDING APPROACHES

Phylogenetic analysis and free energy minimization are
two common approaches to generating an RNA secondary
structure. Phylogenetic analysis and identification of co-
variation inWatson–Crick base pairs remains the gold stan-
dard for RNA secondary structure prediction. Patterns of
covariation and sequence conservation are often used to
identify structural motifs in RNA transcriptome sequences
but require cautious interpretation and rigorous statistical
validation (Rivas et al. 2017). Phylogenetic analysis re-
quiresmultiple aligned sequences and sufficient sequence
diversity to identify covariation. If an RNA has multiple
folds, then nucleotide covariation may not be present.
However, high mutual information scores for nucleotides
can reveal evolutionary evidence for multiple folds for an
RNA sequence (Ritz et al. 2013). Covariation may also
not be observed in protein coding regions when the con-
servation of amino acid sequence and tRNA codon optimi-
zation influence the RNA primary structure more strongly
than RNA folding. mRNA and viral RNA, for example, often
show little nucleotide covariation. Evolutionary couplings
and maximum entropy models may better describe com-
plex RNA interaction networks in multiple folds, RNA ter-
tiary interactions, and RNA–protein interactions (Weinreb
et al. 2016).
Free energy minimization can provide a secondary

structure model for a single or multiple RNA sequences.
The thermodynamic database that forms the foundation
for free energy minimization is still being updated with
improved thermodynamic parameters for noncanonical
RNA loop motifs (Phan et al. 2017; Zuber et al. 2017).
One approximation of the Zuker–Steigler algorithm is
that substructures with suboptimal energies will not be
combined, which very efficiently reduces the search for
the minimum energy structure (Zuker and Stiegler 1981;
Mathews 2006). For example, in a region with two possible
suboptimal hairpins, each hairpin will occur in a structure
in the set of suboptimal structures, but no structure

FIGURE 2. Hierarchical RNA folding. The primary structure is the se-
quence; in this example, the sequence of GA1 prohead RNA. The
secondary structure is the pattern of Watson–Crick pairs and nonca-
nonical motifs, such as bulge loops, multibranch loops, and hairpin
loops. The primary and secondary structures for GA1 pRNA were first
reported in Bailey et al. (1990). The tertiary structure is the three-di-
mensional shape of the molecule. In this ball-and-stick model of
pRNA, the orientations of the helices (shown as black sticks) are flex-
ible around the loops (shown as balls). The dynamic helical angles
are represented by curly red arrows. The quaternary structure is inter-
actions of the RNA with other RNA, protein or ligands. In the case of
GA1 pRNA, the pRNA forms a ring (red circle) with a ring of ATPases
(blue circle) and connector proteins (green circle). The function of GA1
pRNA is to package the bacteriophage DNA genome (black line) into
a preformed capsid (blue hexagon).

TABLE 1. Programs for predicting or analyzing RNA ensembles with multiple conformations

Program Website Reference

MIBP algorithm https://github.com/wmckerrow/MIBP Lin et al. 2018

GTfold http://gtfold.sourceforge.net/profiling.html Rogers and Heitsch 2014
Shapemapper http://www.chem.unc.edu/rna/software.html Siegfried et al. 2014; Busan and Weeks 2018

Swellix https://github.com/SchroederLabOU/swellix Sloat et al. 2017

Sfold http://sfold.wadsworth.org/cgi-bin/index.pl Ding et al. 2004
Rsample in RNAstructure http://rna.urmc.rochester.edu/RNAstructure.html Spasic et al. 2018

REEFFIT https://ribokit.github.io/REEFFIT/ Cordero and Das 2015

Ensemble RNA http://ribosnitch.bio.unc.edu/software Woods et al. 2017
Vfold 3D http://rna.physics.missouri.edu/vfold3D/index.html Zhao et al. 2017

MCTBI http://rna.physics.missouri.edu/MCTBI/ Sun et al. 2017
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will include both hairpins (Mathews 2006). Free energy
minimization approaches for secondary structure predic-
tion do not yet fully consider RNA folding kinetics, cotran-
scriptional folding, changes with RNA tertiary interactions,
protein binding, quaternary interactions, and the com-
plex effects of in vivo conditions that include molecular
crowding and both diffuse and specific interactions with
metal ions and charged metabolites. Recent advances in
techniques to monitor cotranscriptional folding in vitro
also provide new challenges for RNA structure prediction
of multiple conformations and folding kinetics (Mahen
et al. 2005; Strobel et al. 2017, 2018; Hua et al. 2018).
Incorporation of experimental constraints from chemical
or enzymatic probing, NMR, or phylogeny can improve
RNA secondary structure prediction (Mathews et al. 2004;
Havgaard and Gorodkin 2014; Sloma and Mathews 2015;
Backofen et al. 2018). The ability to chemically probe
RNA structures in vivo and genome-wide using next gener-
ation sequencing technology has created an urgent need
for methods to better predict RNA structures with more
than one conformation, which is common in living cells.

A single lowest energy fold, however, may not represent
well the RNA folding landscape. Free energies may not
distinguish very different structures, especially for long
RNA sequences with many possible folds. For example,
the STMV RNA sequence has two possible structures
that share only 498 of 1058 nt in common base pairs but
differ by only 0.2 kcal/mol, which is well within experimen-
tal error of the thermodynamic parameters (Schroeder
2009; Stone et al. 2015). Base-pairing probabilities can
be computed with free energy-based prediction tools
and theMcCaskill algorithm (McCaskill 1990). Base-pairing
probabilities can identify regions with a high probability of
folding and regions with multiple energetically equivalent
structures. Using stochastic sampling methods, i.e., the
random sampling of the Boltzmann-weighted ensemble
of RNA structures, centroid structuresmaybetter represent
groupsof similarly folded structures (Dinget al. 2004, 2005;
Quarrier et al. 2010; Rogers et al. 2017). When the mini-
mum free energy structure and the centroid structure
predictions differ significantly, this may be an indicator
that free energy minimization approaches are limited and
additional experimental information or tools are necessary.

COMBINATORIALLY COMPLETE APPROACH

The first combinatorially complete approach to tRNA
structure prediction, i.e., the direct enumeration of every
possible secondary structure for a given RNA sequence
and Watson–Crick pairing rules, took so much computa-
tional time that the approach was deemed impractical for
solving the RNA folding problem (Pipas and McMahon
1975). Advances in computer power and parallelization
strategies, however, can overcome this limitation. Swellix,
a new computational tool (Sloat et al. 2017), generates a

complete set of secondary structures for a 76-nt tRNA
Phe sequence in <2 h on an XE6 node of the Blue Waters
supercomputer. Swellix is a combinatorially complete ap-
proach to computing all possible nonpseudoknotted com-
binations of helices for an RNA sequence without using
thermodynamics. Thermodynamic parameters can be
used to evaluate and score the RNA structures in Swellix
output, but Swellix does not use thermodynamics to ge-
nerate structures. Swellix counts helices rather than base
pairs and groups similar helices in bundles in order to effi-
ciently explore all possible structures. Experimental data
from crystallography, cryoelectron microscopy, chemical
probing, and phylogeny can be incorporated into Swel-
lix in order to reduce the conformational space for a
sequence.

Swellix can generate a profile of the frequency of motifs
for protein or small molecule binding. For example, a
Swellix computation of all possible structures for a 141-nt
HERV RNA revealed that a loop that binds HIV tat and
two loop sequences that bind HIV rev occur in 4.58%,
2.80%, and 4.58% of all possible nonpseudoknotted struc-
tures, respectively (Sloat et al. 2017). Loops that are known
to bind small molecule therapeutics can also be profiled
with Swellix. For example, two highly asymmetric loop se-
quences in hepatitis C viral RNA that bind drug molecules
also occur in 4.41% and 2.71% of the structures in the com-
plete set of possible structures for HERV RNA. The Swellix
analysis generated 12,518,055,094 structures in 6.65 h
on the Blue Waters supercomputer. Neither the minimum
free energy structure (MFE), predicted suboptimal struc-
tures, nor the centroid structure contained the loop motifs
that bind HIV proteins or hepatitis C drug candidates.
The MFE and the centroid were not similar at all for this
HERV RNA and no predicted base pairs were highly prob-
able, which all indicated that the assumptions of free
energy minimization approaches may not be applicable
to this RNA sequence. The assumptions of hierarchical
and thermodynamically driven folding are often reason-
able approximations. However, sometimes kinetics, pro-
tein binding, RNA tertiary structure formation, or motifs
that are not yet included in the thermodynamic database
have a significant impact on RNA folding. In these cases,
a complete enumeration approach that generates a profile
of frequencies for motifs of interest can be useful.

Although Swellix efficiently searches conformational
space of a sequence, the longest sequence studied
thus far is 418 nt within 48 h on an XE6 node of the Blue
Waters computer. The computational time generally
grows exponentially with sequence length. The average
size of the 5,391,569 RNA sequences in the RFAM data-
base is 435 (Nawrocki et al. 2015). Thus, Swellix could
be applied to many types of RNA in the RFAM database,
although some RNA would be too long. For example,
the untranslated regions (UTR) rather than the entire
mRNA or other small domains of noncoding RNA would
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be more tractable for Swellix analysis. Pairing constraints
from crosslinking or phylogenetic covariation and helix
constraints from cryoelectron microscopy or crystallogra-
phy are the most effective constraints for reducing confor-
mational space (Bleckley and Schroeder 2012), and more
experimental constraints enable longer sequences to be
computed with Swellix. However, computational resourc-
es are the only fundamental limit to combinatorially com-
plete approaches, and advances in computing power
and efficiency continue apace.

ANALYSIS OF BOLTZMANN ENSEMBLES TO
IDENTIFY SEQUENCES WITH MULTIPLE FOLDS

RNA sequences with a propensity for multiple folds can be
identified through analysis of the Bolztmann ensemble of
structures for a sequence to identify multimodal patterns
(Ding et al. 2004; Rogers and Heitsch 2014; Lin et al.
2018). Ding and Lawrence developed the sfold algorithm
to generate a statistical sampling of the Boltzmann-weight-
ed ensemble of structures for a given sequence and
thermodynamic parameter database (Ding et al. 2004).
The RNA profiling tool in the GTfold program uses a helix
abstraction to analyze the Boltzman ensemble of structures
(Rogers and Heitsch 2014). The selected profiles reveal the
most probable combination of helices and are useful
for identifying sequences with more than one probable
fold. The most informative base pair (MIBP) algorithm
(Lin et al. 2018) includes several metrics to identify se-
quences that have high propensity for multiple folds,
analyze the effects of SHAPE pseudoenergy terms on the
Boltzmann distribution, and provide insight on why some
sequences fold into mainly one structure and others fold
into multiple structures. Mutual information is the amount
of information one base pair contains about another base
pair, and the sum of a pair’s mutual information with every
other base pair provides information about the overall
RNA secondary structure. The base pair with the highest
sum of mutual information with every other base pair is
the MIBP. Interestingly, the most probable conflicting
pair has the most pairwise mutual information with the
MIBP and is a particularly useful metric for indicating that
an RNA sequence may have more than one fold using
the MIBP algorithm (Lin et al. 2018). High values in
SHAPE reactivities, low sequence conservation, and high
Shannon entropy in SHAPE-MaP experiments are good ex-
perimental indicators for RNA sequences or regions of
long RNAs that may have more than one conformation
(Siegfried et al. 2014). Shannon entropy is ameasure of un-
certainty in a message, and has different interpretations
when the information in the message is an RNA, DNA, or
protein sequence, sequence alignments, RNA secondary
structures, mutations, or other data. While RNA sequences
can be referred to as multimodal, high Shannon entropy,
or high SHAPE, this review will use the nomenclature of

“RNA with multiple conformations” or “multiconforma-
tional ensembles.”

FREE ENERGY MINIMIZATION APPROACHES

We next highlight three free energy minimization ap-
proaches to predicting multiple functional secondary
structures for a single RNA sequence. The three approach-
es all use the same database of free energy parameters,
incorporate experimental constraints from chemical prob-
ing, and share the same goal of predicting more than one
structure from a sequence. The approaches differ in the
selection of test cases, the methods for clustering analysis,
and the metrics for distinguishing ensembles of RNA
structures.
Rsample is a new tool in the RNAstructure software pack-

age that uses thermodynamic data, partition functions,
stochastic sampling, and chemical probing data in compu-
tations of RNA with multiple conformations (Spasic et al.
2018). The approach explicitly considers that a sequence
may fold into more than one conformation, samples RNA
structure models, and optimizes the comparison between
the experimental chemical probing data and estimated
chemical probing data from a calculated ensemble. In
the first steps, a partition function calculation and stochas-
tic sampling generate an ensemble of RNA structures for a
given sequence. Then estimated chemical probing reactiv-
ities are calculated for the ensemble, and a pseudo-free
energy bonus term for reactivities is incorporated as a re-
straint in the folding predictions. Next, stochastic sampling
computations and clustering analysis generate centroid
structures. For five test cases, the HIV-1 rev responsive el-
ement (RRE) and four riboswitches, that have two experi-
mentally identified conformations and SHAPE (selective
hydroxyl acylation by page electrophoresis) chemical
probing data, Rsample generated centroids for each con-
formation with accuracies for the best centroid ranging
from 81.7% to 100%. The method was also applied to an
FMN riboswitch with three possible conformations in
both the bound and unbound states. The incorporation
of chemical probing data improved predictions ∼10%
relative to predictions without chemical probing data.
With more data on RNA with multiple conformations and
optimization of the heuristically determined parameters,
Rsample will further improve prediction accuracy and in-
terpretation of in vivo genome-wide chemical probing
experiments.
REEFFIT, RNA Ensemble Extraction from Footprinting

Insights Technique, is a free energyminimization approach
to predicting multiple RNA conformations and uses addi-
tional data from mutate-and-map strategies (Cordero and
Das 2015). Themutate-and-map strategy systematically in-
corporates mutations into a sequence and identifies muta-
tions that cause a significant change in chemical probing
reactivities. REEFFIT uses a chemical reactivity distribution
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based on analysis of the RNAMapping Database (Cordero
et al. 2012) and crystal structures in the Protein Databank
(Rose et al. 2017), a set of RNA secondary structures
from the ALLSub program in RNAstructure (Reuter and
Mathews 2010), and likelihood function to generate pre-
dictions of RNA sequences with multiple conformations.
The program was initially optimized on an in silico data
set of 20 RNA sequences from the Rfam database
(Nawrocki et al. 2015; Kalvari et al. 2018). The program
was tested on three naturally occurring RNA with experi-
mentally well-defined bi-stable states as well as one natural
sequence and one designed sequence that each form
three stable conformations. REEFFIT accurately predicts
95% of the helices present in structures with at least 25%
population in the ensemble and has a low false discovery
rate of ∼10%. Currently the main limitation is detecting
low percentage populations of structures, which is espe-
cially challenging for long sequences with large ensem-
bles. Improvements in the thermodynamic database
(Turner and Mathews 2009), more data in the chemical
mapping database, and more test cases of RNA with ex-
perimentally determined structures will further develop-
ment of this approach.

The EnsembleRNA program includes aspects of Boltz-
mann sampling andmutational analysis and utilizes unique
metrics for identifying diverse structures (Woods et
al. 2017). The EnsembleRNA method begins with a
sequence and computes the partition function for the
wild type and all single point mutations. Then themaximal-
ly different structures according to Shannon entropy and
hierarchical clustering are selected for calculation of Boltz-
mann suboptimal sampling computations. In order to gen-
erate a two-dimensional representation of conformational
space, structures are grouped by hierarchical clustering
and RNAShapes abstraction (Giegerich et al. 2004; Jans-
sen and Giegerich 2015), a method of broadly identifying
helices and loop regions, then arranged according to a
multidimensional scaling (MDS) metric. The method was
validated using adenine riboswitch and SHAPE probing
data. The two adenine-bound conformations and three
unbound conformations were accurately identified. The
method was also tested on the human β-actin mRNA
sequence with both in vitro and in vivo SHAPE-MaP exper-
iments. Interestingly, in regions with similar SHAPE reactiv-
ities in vitro and in vivo, high median reactivity correlated
with multiple alternative conformations. Surprisingly, the
two mRNA binding sites for the ZBP1 protein showed
higher reactivities in vivo versus in vitro, which lacks the
proteins. Rather than indicating protein footprinting as ex-
pected, the high SHAPE reactivities may indicate occupan-
cy of protein binding and flexible secondary structure
rearrangements. Although only one mRNA was the focus
of the study, this method can be expanded to gain new in-
sights into the many in vivo conformations of mRNA that
regulate gene expression.

VIRAL RNA WITH EXPERIMENTALLY DEFINED
COMPLEX LANDSCAPES

All of the approaches to predicting RNA structures with
multiple conformations and complex folding landscapes
will benefit from more experimentally well-defined test
cases. The review now discusses two recent examples of
viral RNA that have been studied with chemical probing
and either NMR or single molecule fluorescence reso-
nance energy transfer (smFRET). In each case, existing
RNA structure prediction tools were adapted to solve the
specific RNA folding problems. In addition to all the struc-
tures of riboswitches (Antunes et al. 2018), these newNMR
and smFRET approaches to characterization of RNA with
more than one functional structure provide new test cases
and insights into how an RNA sequence can encode and
utilize many different shapes and functions. Further devel-
opment of RNA structure prediction tools will be necessary
to meet these challenges.

The 3′-UTR of the brome mosaic virus has three distinct
possible folds, a folded conformation with a pseduoknot,
an intermediate, and a tertiary unfolded conformation
that forms a series of short hairpins, which depend on
sodium, potassium, and magnesium ion concentrations.
The three conformations of this 169-nt RNA can be isolat-
ed and studied by SHAPE chemical probing. Folding of
this RNA has also been studied by smFRET to identify
the three distinct conformations and their relative abun-
dance in different combinations of salt concentrations
(Vieweger and Nesbitt 2018). Using SHAPE reactivities
of the pure isolated conformations and the population
of each fraction as determined by smFRET, the SHAPE
reactivities in heterogeneous conformational mixtures
can be deconvoluted. The low-level SHAPE reactivities
were most indicative of transition from single-stranded to
double-stranded conformation, while the largest SHAPE
reactivities were interpreted to report mainly on flexibility
in single-stranded regions. This approach highlights
the challenges in interpreting chemical probing reactivities
for RNA that may form heterogeneous populations of
structures. RNAstructure software was used to generate
RNA secondary structures using SHAPE restraints. Interest-
ingly, the 3′ end pseudoknot interaction unfolds first be-
fore the hairpin conformations unfold. In addition to
providing insight into the folding pathway of this viral
RNA, this approach will be generally useful for RNA with
distinct stable folds and provide important data for opti-
mizing predictions of RNA with multiple conformations.

The 3′-UTR of hepatitis C virus also folds into more than
one conformation. The 385-nt 3′ end of the genomic RNA
can adopt an open conformation of six hairpins or a kissing
loop complex that forms in a magnesium-dependent
manner. The final 98 nt of the 3′ end, also called 3X′, can
form a structure with three hairpins or two hairpins, in
which two hairpins have completely refolded to form one
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new longer hairpin. The presence of the kissing loop hair-
pin partner can induce this structural change (Kranawetter
et al. 2017). The 3X′ sequence can also form a dimer that
facilitates genome dimerization for packaging (Cantero-
Camacho et al. 2017). NMR spectroscopy has been used
to characterize these conformational changes. Selective
deuterium labeling and lr-AID (Keane et al. 2016), a
method that identifies the unusual chemical shift of the
central adenine H2 proton in the motif 5′UAA3′/3′AUU5′,
has been used to characterize both the transition from
open to kissing loop conformation and the structural rear-
rangements from two to three hairpins in 3X′ (Kranawetter
et al. 2017). In addition, the Monte Carlo Tightly Bound
Ion (MCTBI) (Sun et al. 2017) and Vfold 3D RNA folding
software (Zhao et al. 2017) have been used to model the
different conformations of the 3′-UTR and the metal ion
binding sites. This viral RNA example is particularly chal-
lenging because the conformational change depends on
both magnesium and the presence of 5′ upstream hairpin
structures.

FUTURE OUTLOOK FOR MULTICONFORMATION
RNA STRUCTURE ENSEMBLE PREDICTION

In the future, more examples of experimentally well-
defined multiconformational states will help optimize ap-
proaches for RNA structure prediction. NMR spectroscopy
and smFRET are powerful tools to probe the many states
that RNA may adopt. The PARIS method for in vivo cross-
linking also has great potential to provide many examples
of RNA with multiple folds (Lu et al. 2016). Advances in
cryoelectron microscopy and tomography with direct
electron detectors, better contrast techniques, and sin-
gle particle tracking will make direct observation of sin-
gle RNA molecules in many conformations possible
(Miyazaki et al. 2010; Merk et al. 2016; Zhang et al.
2018). The cryoelectron microscopy community has also
developed advanced software for grouping similar con-
formations of complex macromolecular assemblies (Frank
2017). The minimum number and lengths of RNA helices
from cryoelectron microscopy or crystallography also
provide a powerful constraint for RNA folding (Schroeder
et al. 2011; Bleckley and Schroeder 2012; Bleckley et al.
2012).
There is also a need for good metrics to evaluate differ-

ences between RNA structures. The AnalyseDist tool in the
Vienna RNA software package includes several options for
calculating matrix distances by Ward’s method, Saitou’s
neighbor joining method, or Shapiro’s cost matrix for
coarse structures (Bonhoeffer et al. 1993; Lorenz et al.
2011). For example, the RNA base pair distance metric
calculates the number of base pairs in common between
two RNA secondary structures, and the RNApdist function
compares the dot plots from partition functions for two
RNA ensembles (Bonhoeffer et al. 1993). Dot plots are

one way to summarize and visualize base-pairing probabil-
ities for an RNA sequence. The idea of Shannon entropy, a
measure of uncertainty or disorder in information theory,
also provides metrics to distinguish different structures.
For example, the EnsembleRNA methods use Shannon
entropy for base-pairing probabilities as ametric in cluster-
ing analysis (Woods et al. 2017; Spasic et al. 2018). The
Shannon entropy can be calculated for base pairs, the
full two-dimensional base-pairing probabilities, or thermo-
dynamic structural entropy (Shapiro 1988; Rivas and Eddy
2001; Woods et al. 2017). The molecular interpretation
of the Shannon entropy statistic depends on the type of
data, such as RNA sequence alignments, sequence point
mutations, SHAPE-MaP data, or thermodynamic calcula-
tions. The RNAEnsemble approach also introduces a novel
metric for measuring nestedness of RNA structures. The
nestedness is calculated from the number of inner and out-
er stacks and loops in structures that are represented using
the RNAShapes abstraction for helices (Giegerich et al.
2004; Woods et al. 2017). This metric is then used in metric
multidimensional scaling in order to generate a visual map
of RNA ensembles.
Thus, with new metrics and more experimentally de-

fined examples of multiconformation RNA ensembles,
RNA structure prediction will continue to improve. The
expectation of a single minimum free energy structure
for an RNA sequence will change to a deeper appreciation
for the many possible diverse structures encoded in
an RNA sequence. Accurate predictions will guide the
interpretation of the abundant ongoing transcript and
transcriptome-wide structure probing experiments. A full
understanding of the multiconformational RNA ensembles
will improve rational design and reduce off-target effects
of small RNA that target mRNA for siRNA or CRISPR guide
RNA applications. Accurate RNA ensemble information
will also facilitate target site selection of highly probable
motifs for siRNA, guide RNA, or small organic molecule
therapeutics. An ensemble approach to RNA structure
prediction will also facilitate discovery of how proteins
and ligands selectively stabilize certain conformations
and shift the population distribution of conformations.
Perhaps ligands or proteins can be rationally designed to
enrich low population states. Among the many layers of
information and gene regulation encoded in the human
transcriptome, there are multiple opportunities to use
this information to improve human health. The structure
prediction tools described here are one step forward
toward reading and understanding all the information in
the genetic code.
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