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ABSTRACT

Experimental detection of RNA splicing branchpoints is difficult. To date, high-confidence experimental annotations exist
for 18% of 3′′′′′ splice sites in the human genome. We develop a deep-learning-based branchpoint predictor, LaBranchoR,
which predicts a correct branchpoint for at least 75% of 3′′′′′ splice sites genome-wide. Detailed analysis of cases in which
our predicted branchpoint deviates from experimental data suggests a correct branchpoint is predicted in over 90% of
cases. We use our predicted branchpoints to identify a novel sequence element upstream of branchpoints consistent
with extended U2 snRNA base-pairing, show an association between weak branchpoints and alternative splicing, and ex-
plore the effects of genetic variants on branchpoints. We provide genome-wide branchpoint annotations and in silico mu-
tagenesis scores at http://bejerano.stanford.edu/labranchor.
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INTRODUCTION

Following transcription, which produces RNA molecules
identical to the DNA sequence, vast stretches of RNA,
called introns, are “spliced out” leaving a string of “exons,”
which comprise the final messenger RNA. Splicing
involves three mechanistically essential sites: the 5′ and 3′

splice sites (5′SS and 3′SS), which define the up and down-
stream end of an intron, respectively, and a branchpoint,
which serves as the nucleophile in the first catalytic step
of splicing (Fig. 1A) and is generally located 18–45 nt up-
streamof the 3′SS (Fig. 1G;Mercer et al. 2015). The branch-
point is recognized by base-pairing of the surrounding
nucleotides to U2 snRNA and selection on the branch-
point nucleotide itself by an interaction with SF1 (Pascolo
and Séraphin 1997; Peled-Zehavi et al. 2001). Overall
3′SS recognition is facilitated by a combination of this
selection on the branchpoint, U2AF65 binding the poly-
pyrimidine tract (PPT), and U2AF35 recognizing the core
3′SS signal (Fig. 1A), alongwith a diverse cast of supporting
factors (Berglund et al. 1998; Hoskins and Moore 2012).
The locations of the 5′ and 3′SSs can be easily recovered

from RNA sequencing (RNA-seq) reads spanning between
exons. Similarly, RNA-seq reads spanning 5′SS–branch-
point junctions can in principle provide the positions of

branchpoints (Fig. 1B; Taggart et al. 2012). However, the
branched intron by-product is quickly degraded making
these reads exceptionally rare. In fact, a study analyzing a
massive collection of internally generated and ENCODE
RNA-seq data provided annotations for 16% of known
introns (Taggart et al. 2017), and even when specialized
sequencing methods were employed, coverage increased
to only 18% of branchpoints (Mercer et al. 2015). Further-
more, reads that are generated from 5′SS–branchpoint
junctions sometimes provide imprecise information about
branchpoint location due to errors in reverse transcription
caused by the unusual 2′-OH linkage present (Taggart
et al. 2017). Together, these factors have caused the
characterization of branchpoints to lag far behind that of
5′ and 3′ SSs.
The lack of branchpoint annotations has slowed our

understanding of the basis of 3′SS selection and makes
it difficult to diagnose diseases caused by mutations
to branchpoint sequences and the trans-acting factors
that recognize them. However, even with our limited
knowledge, it has been shown that branchpoints play a
role in Mendelian disease (Mercer et al. 2015; Signal
et al. 2018), as well as more complex diseases, such as
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SF3b-associated cancers (Alsafadi et al. 2016), and it has
been reported that expression levels of SF1 play a vital
role in aging (Heintz et al. 2017).

In response to the limited experimental branchpoint an-
notations and the importance of knowing branchpoints for
understanding the basis of 3′SS selection and branchpoint-
related diseases, we developed a computational method
to predict branchpoints, LaBranchoR (Long short-term
memory network Branchpoint Retriever). Specifically, we
focus on the problem of predicting the most likely branch-
point given the associated 3′SS, which we took to be the
most salient task given the widespread availability of 3′SS
positions. LaBranchoR is based on a bidirectional long
short-term memory network (LSTM), a “deep learning”
algorithm shown to be wildly successful in modeling
sequential data such as time-series and natural language
(Hochreiter and Schmidhuber 1997; Lipton et al. 2015).
The use of an LSTM allowed us to build a model based

on solely the RNA sequence, free from the biases of
hand-engineered features.

Throughout our study, we compare LaBranchoR to
two recently proposed computational methods, which fo-
cus on two distinct tasks: a machine learning approach
for branchpoint prediction, branchpointer (Signal et al.
2018), and a method to remove noise in the experimental
data proposed by Taggart et al. (2017). Branchpointer em-
ploys an ensemble of support vector machines and gradi-
ent boosting tree classifiers, which take as input a library of
engineered features. Branchpointer is trained on the same
set of experimental branchpoints as our model: the “high
confidence” set of branchpoints reported by Mercer et al.
(2015). Taggart et al. (2017) explicitly modeled U2 snRNA
base-pairing potential, ignoring the branchpoint position
itself, and the likelihood of observing a given nucleotide
skipping distance to resolve noise introduced by nucleo-
tide skipping. They used this model to produce maximum
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FIGURE 1. Overview of branchpoints and their genome-wide prediction using LaBranchoR. (A) Branchpoints play a key role in 3′SS recognition
and are essential to the mechanism of splicing. (B) RNA sequencing reads that span a 5′SS-branchpoint junction implicate branchpoints. The first
part of these reads (yellow) align upstreamof a branchpoint and the second part of these reads (red) align downstream from a 5′SS. In this way, the
downstream end of the first part of the read marks the branchpoint. (C ) Cartoon of information flow in a bidirectional LSTM. The RNA sequence
upstream of a 3′SS is input to the model, and a predicted probability of being a branchpoint is outputted for each nucleotide. (D) Model perfor-
mance on held-out test sets in comparison with two existing methods. Model performance is defined as the fraction of 3′SSs where the highest
scoring position overlaps with an experimentally determined branchpoint. Each cluster of bars indicates the performance on a different test set:
“High Conf” refers to Mercer et al. (2015) high confidence sites, “Low Conf” refers to the complete set of Mercer et al. (2015) sites, “Taggart”
refers to the Taggart et al. (2017) predictions. The “<5” test sets count the highest scoring position as overlapping with an experimental branch-
point if there is an experimental branchpoint <5 nt from it. (∗) Significant difference with P<1×10−14 by a two-sided Fisher exact test. Local se-
quence context (E), PhyloP conservation as a function of position relative to a branchpoint averaged across all branchpoints (F ), and position
relative to 3′SS (G) for predicted and experimentally determined branchpoints.
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likelihood branchpoint predictions for an expanded set of
RNA-seq data including a diverse range of cell lines.
In this study,we show that LaBranchoRhas strongpredic-

tive performance, exceeding that of previous methods. By
learning genome-wide patterns, LaBranchoRmakes robust
predictions that appear to often bemore accurate than the
raw data itself. After showing the accuracy of our predic-
tions, we use them to evaluate genome-wide properties
of branchpoints and find that we recover known trends,
as well as several novel insights. We conclude that branch-
point strengthplays a role, similar to that of 3′SS strength, in
alternative splicing. We identify a novel upstream recogni-
tion element, which is consistent with recent cryo-EMmod-
els of the spliceosome depicting the relevant bases in
duplex with U2 snRNA (Galej et al. 2016; Bertram et al.
2017). Finally, we show that LaBranchoR predictions over-
lap with more pathogenic variants than previous computa-
tional predictions, as well as the raw data itself.

RESULTS

We used a bidirectional LSTM network to learn a mapping
between RNA sequence and branchpoint locations (Fig.
1C). The RNA sequence 1–70 bp upstream of each 3′SS
served as the sole input to ourmodel. We trained ourmod-
el on the high confidence set of branchpoints annotated by
Mercer et al. (2015). We reserved the 7570 branchpoints
across 4306 3′SSs on chromosome 1 for testing, the
10,187 branchpoints across 7093 3′SSs on chromosomes
2, 3, 4 for model selection. The remaining 39,051 branch-
points across 27,711 3′SSs were used for model training.
We then used our trained model to predict branchpoints
for the remaining 169,182 annotated 3′SSs. While our
model predicts branchpoint probabilities for all 70 bp up-
stream of each 3′SS, we chose to focus our analysis on a
single predicted branchpoint per 3′SS, corresponding to
the highest of the predictions.

LaBranchoR provides accurate genome-wide
branchpoint annotations

Our model’s predictions generally agree with branch-
points implicated by both Mercer et al. (2015) and
Taggart et al. (2017). On a test set held out from model
training and parameter tuning, we found that our predict-
ed branchpoint coincided with a high confidence Mercer
site for 75% of 3′SSs (Fig. 1D). Expanding this analysis to
consider Mercer low confidence sites and cases where
our prediction lies within 4 nt of a Mercer site yields an
accuracy of 84% and 91%, respectively. Restricting to
Mercer sites with an A at the branchpoint yields an overlap
of 87%, and further requiring a U at the −2 position yields
an overlap of 93%. Briefly dropping our strategy of predict-
ing one branchpoint per 3′SS and instead predicting all
nucleotides above a given probability threshold to be

branchpoints, we find that at false discovery rates of 10
and 50% LaBranchoR achieves recalls of 35% and 72%
for all branchpoints, 46% and 92% for only A branchpoints,
and 62% and 98% for A branchpoints with a U at the −2
position, respectively. Our predictions have a lower agree-
ment with the Taggart set, where we find that our pre-
diction overlaps an annotated site for only 56% of 3′SSs
and that 80% of the time our prediction lies within 4 nt
of an annotated site. Notably, restricting to Taggart sites
with an A at the branchpoint yields a higher overlap of
71% and 84%, respectively (Supplemental Fig. S1A).
Our performance represents a 28 percentage point im-

provement over the most commonly used branchpoint
prediction method, SVM-BPFinder (Corvelo et al. 2010),
anda7–15percentagepoint improvementover the current
state-of-the-art method, branchpointer (Fig. 1D; Signal
et al. 2018). Comparing to branchpointer on our test set
yielded an 8 percentage point advantage, and even when
only considering branchpoints in positions −18 to −45
from the 3′SS, where branchpointer makes predictions,
we maintain a 7 percentage point increase in performance
(Supplemental Fig. S1B). However, this evaluation of their
performance is overly optimistic, as branchpointer had
seen roughly 80%of thedata fromour test set in its training.
On the intersection of our test sets, LaBranchoR out-
performs branchpointer by a 12 and 15 percentage point
margin for the −18 to −45 and −5 to −60 ranges,
respectively (Supplemental Fig. S1C,D). Area under receiv-
er-operator curve and precision-recall curve statistics for
all mentioned evaluations are in Supplemental Table S1.
We found that the bulk trends in sequence motifs, posi-

tional distribution, and conservation signatures are similar,
but display a few key differences between our predicted,
Mercer, and Taggart branchpoints (Fig. 1E–G). Our pre-
dictions and the Taggart set have a similar sequence
motif, which closely matches the motif expected for
base-pairing with U2 snRNA (Wu and Manley 1991), with
stronger nucleotide content biases than the Mercer set
(Fig. 1E). However, our predictions show a higher rate of
A branchpoint nucleotides. While this could represent
a “modal collapse” of our model, a strong bias to an A
at the branchpoint is supported by a study of positional
k-mer enrichment (Limet al. 2011). Additionally, thebranch-
point nucleotide was not considered in the Taggart et al.
(2017) denoising strategy, so there could exist cases where
a slightly stronger U2 base-pairing sequence without an A
was incorrectly selected over a different position with an A
nucleotide at the branchpoint.
Branchpoints have previously been observed to have a

distinct conservation signature, closely aligning with the
bias in nucleotide content at each position (Fig. 1F; Mercer
et al. 2015). Since conservation was not seen by LaBran-
choR during training, it can be used as an independent
validation metric. We considered PhastCons (Siepel et al.
2005) and PhyloP (Pollard et al. 2010) scores, which
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measure the probability that a base is part of a conserved
element and the –log(P-value) that a base is not under se-
lection, respectively. We expect both of these metrics to
be higher in branchpoints than their surrounding regions,
since branchpoints are required for splicing. We found
that the Mercer, Taggart, and our predicted branchpoints
display a similarly shaped PhastCons and PhyloP (Fig. 1F;
Supplemental Fig. S2) conservation signature, but the
increase in conservationat thebranchpoint and−2position
is stronger for our predictions than the experimentally
determined sites.

Conservation signatures and sequence motifs
support LaBranchoR predictions

Considering these observations, we performed a more
fine-grained analysis of the conservation signatures and
sequence motifs in cases where we agree and disagree

with the Mercer and Taggart set for 3′SSs in our test set
(and validation set for the Taggart set to arrive at roughly
equal numbers). For both the Taggart and Mercer set,
the strongest conservation signatures are present where
predictions match the experimental data (Fig. 2A,B).
Interestingly, the intersection of LaBranchoR and Taggart
sites results in the strongest conservation signature and
a −2 U and branchpoint A are nearly always present
(Fig. 2B; Supplemental Fig. S3). We found that predictions
matching a Mercer low confidence branchpoint resulted
in only a slightly weaker conservation signature than those
matching high confidence sites (Fig. 2A).

In cases where our predictions disagreewith the Taggart
and Mercer sets, conservation signatures, and sequence
motifs generally support our predictions over the experi-
mental data, suggesting that performance estimated by
explicit overlap with the experimental data is a loose lower
bound. We found that the Mercer sites often disagreed

A B

C D

FIGURE 2. Conservation signatures and sequence motifs support LaBranchoR predictions. (A) Average PhastCons and PhyloP conservation sig-
natures centered on LaBranchoRpredictionsmatching aMercer et al. (2015). high confidence site (Match),matching aMercer et al. (2015) low con-
fidence site (Match LowConf), 1–4 nt from aMercer et al. (2015) site (<4 off, predicted), andmore than 4 nt from aMercer et al. (2015) site (>4 off,
predicted), as well as centered onMercer et al. (2015) sites 1–4 nt from a predicted site (<4 off, Mercer) andmore than 4 nt from a LaBranchoR pre-
diction (>4off,Mercer). (B) Equivalent figure for Taggart et al. (2017)branchpoints. (C ) Theunusual 2′-OH linkagepresent at branchpoints can result
in reverse transcriptase skipping over nucleotides near the branchpoint, causing the raw experimental data to differ from the true branchpoint.
LaBranchoRpredictions shifted 1 and2 nt toward the 3′SSofMercer et al. (2015) sites have the expected sequencemotifs and PhyloP conservation
signature. (D) Taggart et al. (2017) branchpoints often differ from LaBranchoR predictions by small shifts toward the 3′SS. LaBranchoR predictions
shifted 1 and 2 nt away from the 3′SS of Taggart et al. (2017) sites have the expected sequence motifs and PhyloP conservation signature.
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with our predictions by small shifts away from the 3′SS, like-
ly due to reverse transcriptase skipping nucleotides due to
the unusual 2′-OH linkage at the branchpoint. In cases
where our predicted branchpoints differ by a 1 or 2 nt shift
from a Mercer site, sequence motifs centered on our pre-
dicted branchpoints display a similar motif to the expected
branchpoint motif (Fig. 2C). Furthermore, average PhyloP
conservation plots centered on the relevant Mercer sites
show a clear shift from the signature observed in bulk
(Fig. 2C). Conversely, the Taggart sites often disagreed
with our predictions by small shifts toward the 3′SS, per-
haps representing overcompensation for nucleotide skip-
ping in their denoising protocol. Again, we observe that
sequence motifs and conservation signatures centered
on our predictions resemble bulk trends, whereas those
centered on the Taggart data are shifted (Fig. 2D). Overall,
in cases where our predictions lie 1–4 nt from a Taggart or
Mercer site, conservation signatures centered on our pre-
dictions more closely resemble the consensus conserva-
tion signature than when centered on the experimental
coordinates (Fig. 2A,B).
In cases where our predictions disagree by larger shifts

(4+) from an experimental branchpoint, we found that
our predicted branchpoints display a stronger PhastCons
signature. For both the Mercer and Taggart data, the
conservation signature centered on the experimental coor-
dinate showed no clear increase in relation to the branch-
point (Fig. 2A,B). However, the story was not as clear for
PhyloP conservation scores, as we found that all three
sets show an increase at the −2 position, although the sig-
nature appears to be more similar to the consensus signa-
ture when centered on our predicted coordinates than
the experimental coordinates.

Cytosine branchpoints and branchpoints without
a −2 uracil have distinct properties

The strong trend toward A nucleotides at the branchpoint
and U at the −2 position in our predicted set led us to con-
sider if branchpoints lacking these properties displayed
any distinct patterns. While C branchpoints represented
only 1.5% of predicted branchpoints and 10% of Taggart
branchpoints, about a fifth of predicted and Taggart
branchpoints lack a U at the −2 position, so this subset
represents a significant proportion of branchpoints in the
genome.We chose to analyze the properties of these sites
in parallel as they both likely represent weaker than aver-
age branchpoints and were, in fact, found to follow many
of the same trends.
Both sets present sequence and conservation signatures

diverging from the bulk trends. Branchpoints lacking a −2
U show an increased rate of U at the −3 position and C at
the −1 and −4 positions (Fig. 3A). Meanwhile, C branch-
points have an increased rate of C nucleotides at the −3
and +1 position, consistent with the Taggart C branch-

points (Fig. 3A). For C branchpoints, average conservation
scores increase at the positions of these increased nucleo-
tide biases (Fig. 3B). For branchpoints lacking a −2 U, the
previous increase in average conservation scores at the −2
position is entirely lost, which is consistent with the lack of a
nucleotide preference at the −2 position in these branch-
points (Fig. 3B).
We went on to examine if these sets of branchpoints

were enriched for particular types of splicing events. We
found that both sets were associated with short introns
with median intron lengths shifting from 1654 to 1314 nt
for branchpoints with and without a −2 U and from 1603
to 807 nt for A and C branchpoints (Wilcoxon rank sum
test P=1.1×10−102 and P=2.1×10−121) (Fig. 3D). This
trend is analogous to the association of short introns with
weak splice sites (Farlow et al. 2012). Additionally, we
found that both sets were enriched in retained introns
and upstream of skipped exons and depleted from introns
downstream from skipped exons (Fig. 3F; Supplemental
Table S2). The enrichment of weak branchpoints upstream
of skipped exons was previously observed in the Mercer
branchpoints, albeit at a lower confidence (Mercer et al.
2015). This same study found that therewas no enrichment
of weak branchpoints in retained introns, likely due to a
lack of statistical power due to the small number of re-
tained introns in the genome.
Both subsets of branchpoints are associated with strong

3′SS sequences, as determined by MaxEntScan (Fig. 3E;
Yeo and Burge 2004). This trend was previously observed
for C branchpoints (Taggart et al. 2017); however, we add
the observation that C branchpoints are associated with
strikingly C-rich poly-pyrimidine tracks with a 1.42-fold
enrichment of C’s in positions −20 to −5 from the 3′SS
(P≅0 by a two-sided Fisher exact test) (Fig. 3C). C-rich
PPTs can be bound by hnRNPEs (Ji et al. 2016), and it
could be that such interactions stabilize otherwise unfavor-
able C branchpoints.
Opposing the trend for 3′SSs, both sets of branchpoints

are associated with weak 5′SS sequences, as determined
by MaxEntScan (Fig. 3E). The regions flanking 5′SSs
associated with both subsets are generally GC-rich, and,
additionally, there are position-specific differences in nu-
cleotide content unique to each subset (Supplemental
Fig. S5A). To more generally explore correlations between
branchpoints and their corresponding 5′SS, we computed
the mutual information between all pairs of positions near
the branchpoint and 5′SS (Supplemental Fig. S5B). The
mutual information, for example, between the branchpoint
−1 position and the 5′SS +3 position, which are in fact the
positions with the highest mutual information, quantifies
the reduction in uncertainty of the identity of the nucleo-
tide at the branchpoint −1 position given the identity of
the nucleotide at the 5′SS +3 position, and vice versa.
For the branchpoint, the marginal mutual information is
highest at positions near the branchpoint (−3, −1, +1).
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For the 5′SS, the marginal mutual information is highest at
the +3 position and was generally higher for positions in
the intron than in the exon. These correlations largely ap-
pear to be due to similarities in GC-content between
branchpoint sequences and their associated 5′SS se-
quences, i.e., GC-rich branchpoint sequences tend to be
paired with GC-rich 5′SS sequences. All trends presented
in this paragraph are stronger than can be explained by
only intron length (see Materials and Methods). Taken
together, these results show that there is a modest but sig-
nificant correlation between branchpoint and 5′SS se-
quences, suggesting that the joint sequence information
directing the spliceosome to these sites is greater than
the simple sum of the information at each site.

A nucleotide content signature consistent with
extended base-pairing to U2 snRNA is present
upstream of branchpoints

Analysis of the sequence upstream of our predicted and
experimental branchpoints revealed peaks in G content
centered at positions −6 to −7 and −12 and a peak in C

content at position −9 (Fig. 4A–C; Supplemental Fig.
S4A–C). To the best of our knowledge, this sequencemotif
has not been previously observed in association with
branchpoints and perhaps represents a novel sequence
feature aiding in branchpoint recognition. Recent cryo-
EM spliceosome structures show these bases in duplex
with U2 snRNA (Fig. 4E; Galej et al. 2016; Bertram et al.
2017). There is a cytosine at positions−12 and−7 and gua-
nine at −9 of U2 snRNA in position for Watson–Crick base-
pairing to these peaks (Fig. 4D). Interestingly, the cryo-EM
structure shows a distorted helix between the canonical
branchpoint recognition sequence and this region of ex-
tended base-pairing. This distortion could allow for shifts
in the alignment of the intronic RNA and U2 snRNA result-
ing in the smooth observed peaks.

This signature is significantly stronger for branchpoints
lacking a −2 U than for branchpoints with a −2 U present
with a 1.190-, 1.145-, 1.193-fold increase in the strength
of peaks at −6, −9, and −12, respectively (Fisher exact
two-tailed P=1.1×10−56, 5.0 × 10−41, 2.3 × 10−60). This
trend is stronger still in C branchpoints as opposed to A
branchpoints, although in this case the increase in C

A B

C D

E F

FIGURE 3. Cytosine branchpoints and branchpoints lacking a −2 uracil display distinct properties. (A) Sequence motifs for C branchpoints (top)
and branchpoints lacking a −2 U (bottom). (B) Conservation signatures for C and no −2 U branchpoints. (C ) 3′SS nucleotide content for A and C
branchpoints. C branchpoints have 1.43 times more C nucleotides in the −20 to −5 range than A branchpoints. (D) Both C and no −2 U branch-
points are found in shorter introns than expected. (E) Both groups have stronger than expected average 3′SSMaxEntScan scores and weaker than
expected average 5′SS MaxEntScan scores (two-sided Wilcoxon rank sum test). (F ) Both groups are enriched upstream of cassette exons and
depleted in introns downstream from cassette exons (two-sided Fisher exact test).
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content seems to dominate the G content signature, and
the upstream sequence is overall more C-rich, making en-
richment analysis challenging (Fig. 4C).

Branchpoints are enriched for pathogenic variants
and depleted of likely benign variants

We assembled a set of pathogenic variants by taking
the union of variants labeled “Pathogenic” in ClinVar
and “DM” in HGMD and filtering out any variant with
a nonsynonymous effect on a protein-coding sequence
(Stenson et al. 2014; Landrum et al. 2016). We found that
LaBranchoR predictions display a strong overlap with
these sites with 52 variants directly overlapping the
branchpoint, 15 at the −2 position, and 25 in positions
−1, −3, and +1 for a total of 92 pathogenic variants (Fig.
5C). In comparison, despite predicting 69,617 (133%)
more branchpoints (as they allowed for multiple branch-
points per 3′SS), branchpointer predictions have only 46
variants directly overlapping the branchpoint, 10 at the
−2 position, and 27 in positions −1, −3, and +1 for a total
of 88 pathogenic variants. Tuning LaBranchoR to predict
the same number of branchpoints resulted in the predic-

tion of 106 total pathogenic variants in the −3 to +1 inter-
val. (Despite this observation, we stuck with predicting one
branchpoint per 3′SS as our primary task because the rate
of overlap with pathogenic variants is much lower in the
additional branchpoints [one in 4273] than the initial
predictions [one in 2174].) Additionally, when considering
regions upstream of 3′SSs where Mercer and Taggart
branchpoints exist, our predictions overlap a larger num-
ber of pathogenic variants than the experimental data
(Fig. 5A,B).
Conversely, we reaffirm that variants present in the ge-

neral population, as reported by the ExAC consortium
(Lek et al. 2016), are excluded from branchpoints (Mercer
et al. 2015; Signal et al. 2018). To circumvent sequence
and distance biases in variation rate, we compared the
variation rate at predicted branchpoints with an A at
the branchpoint and U at the −2 position to UNA tri-
nucleotides not implicated as branchpoints from amatched
distance distribution. We found that branchpoints show a
0.776- and 0.815-fold enrichment of common variants
(occurring in at least one in 10,000 people) at the −2 and
branchpoint positions (P=8.0×10−41, 7.3 × 10−33 by a
two-sided Fisher exact test) (Fig. 5D). Furthermore, these

B CA

D E

FIGURE 4. Branchpoints display a nucleotide content signature, consistent with extended base-pairing with U2 snRNA. This signature is stronger
in branchpoints lacking a −2 U (B) than in branchpoints with a−2 U (A). (C ) C branchpoints display a strong increase in C nucleotide content in this
sameposition. (D) The human and yeast U2 snRNA sequence positioned for interacting with this upstream recognition element (top). P represents
psuedouridines and (∗) corresponds to the branchpoint position. The canonical branchpoint motif (upper case) and positions of G, C content sig-
nature (lower case). (E) An image from a cryo-EM structure of the spliceosome (PDB ID: 5O9Z) shows an extended intron-U2 snRNA duplex. The
intronic sequence is shown in gray, except for the branchpoint which is shown in red. TheU2 snRNA sequence is colored by base (red, blue, green,
and magenta for A, C, G, and T, respectively).
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trends are stronger for common variants than for rare vari-
ants and for branchpoints in genes with a probability of
loss of function intolerance (pLI) > 0.9 than genes with
pLI < 0.9 (P<10×10−5, 10 ×10−6 by a two-sided Fisher ex-
act test) (Fig. 5E,F; Lek et al. 2016). Interestingly, we found
that for all sets there is a marked enrichment in variation in
the +1 to +4 positions, which is mirrored by a lull in path-
ogenic variants, perhaps indicating that this region gener-
ally plays little functional role apart from serving as a linker
between the PPT and branchpoint sequence (Fig. 5A–F).

We quantified the effect of variants on branchpoint
strength by comparing predictions for the reference and
alternative sequences: a technique often referred to as
ISM (Signal et al. 2018). Specifically, we calculated the
change induced by the variant on the score of the branch-
point predicted for the reference sequence (Fig. 5G). We
found that pathogenic variants located 18–45 nt upstream

of a 3′SS have significantly stronger mutagenesis scores
than likely benign, ExAC variants (Fig. 5H). In fact, our
ISM scores outperform a state-of-the-art model for predict-
ing changes in splicing induced by variants, SPIDEX (Xiong
et al. 2015), in separating pathogenic variants from ExAC
variants in the −18 to −45 nt range, achieving an area un-
der the receiver–operator curve statistic of 0.718, as com-
pared to 0.585 for SPIDEX (Fig. 5H).

DISCUSSION

While it is hard to precisely evaluate our model’s perfor-
mance due to inherent noise in the experimental data in-
troduced by nucleotide skipping as reverse transcriptase
traverses the unusual 2′OH linkage at the 5′SS–branch-
point junction, we find that LaBranchoR is able to correctly
predict a branchpoint for at least 75% of 3′SSs, and our

A B C

D

G H

E F

FIGURE5. LaBranchoRpredicted branchpoints overlap pathogenic variants and exclude common variants. (A) Overlaps with pathogenic variants
for Mercer et al. (2015) high confidence branchpoints and LaBranchoR predictions for 3′SS with a Mercer et al. (2015) high confidence site.
(B) Similar for Taggart et al. (2017) branchpoints. (C ) Genome-wide pathogenic variant overlaps for the current state-of-the art branchpoint pre-
dictor, branchpointer (Signal et al. 2018), LaBranchoR, and LaBranchoR tuned to predict the same number of branchpoints as branchpointer
(LaBranchoR +). (D) Comparison of the common variant frequency in ExAC for distance from 3′SS matched UNA trinucleotides, where the A is
implicated as a branchpoint (BP) and not a branchpoint (not BP). (E) Enrichments in variation frequency of branchpoint UNAs, as compared to
non-branchpoint UNAs for common and rare variants. (F ) Similar comparison of branchpoints in high probability loss of function intolerant
(pLI) genes to low pLI genes. (G) In silico mutagenesis (ISM) scores are defined as the change in score of our predicted branchpoint induced
by the variant. (H) LaBranchoR ISM scores effectively classify pathogenic variants. A receiver–operator curve for HGMDandClinVar variants sorted
by LaBranchoR ISM scores and SPIDEX scores.
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analysis suggests that LaBranchoR is able to correctly pre-
dict a branchpoint for over 90% of 3′SSs. We arrive at this
conclusion based on explicit agreement with experimental
annotations (75% high confidence, 84% low confidence),
analysis of conservation signatures in cases where we devi-
ate from experimental annotations by <5 nt (91%), and
slightly less compelling conservation signatures in the
remaining case.
The fact that our predicted branchpoints are more accu-

rate than the raw experimental data shows that having a re-
liable way to remove noise introduced by nucleotide
skipping and transcript switching will continue to be valu-
able even as more experimental data becomes available.
Furthermore, there are currently 206,292 annotated
3′SSs in human protein-coding genes, only 37,110 (18%)
of which have an annotated branchpoint. Many of these
3′SS are expressed in only a handful of cell types (GTEx
Consortium 2015), so experimental annotation of the re-
maining branchpoints would require deep sequencing,
likely targeted at branchpoints (Mercer et al. 2015), for
most cell types. Meanwhile, since our method can make
accurate predictions for sequences it did not see in train-
ing, it can annotate branchpoints for all 3′SSs, as well as
any alternative 3′SS sequence observed in a particular indi-
vidual (Lek et al. 2016).
It has been previously shown that 3′SS strength corre-

lates with alternative splicing outcomes (Shepard et al.
2011) and our analysis shows that the same trends hold
for branchpoint strength. Our genome-wide branchpoint
predictions allowed us to assess the properties of two
groups of weak branchpoints: those lacking a −2 U and
those with a C at the branchpoint. We found that these
weak branchpoints are enriched for two types of condition-
ally used splice sites: those involved in intron retention and
those upstream of skipped exons. Additionally, we found
that weak branchpoints are excluded from introns down-
stream from skipped exons, supporting that branchpoint
strength helps enable competition between the two rele-
vant 3′SSs. This complements a report that branchpoints
abnormally far upstream of 3′SSs enable exon skipping
by slowing the upstream splicing reaction between the first
and second catalytic steps (Taggart et al. 2017). These
groups of weak branchpoints are generally associated
with stronger than average 3′SSs, supporting that 3′SS se-
lection is a holistic process where the strength of the
branchpoint, PPT, and core signal interact to result in the
overall strength of the 3′SS.
We found a distinct signature in G andC nucleotide con-

tent upstream of branchpoints, consistent with an extend-
ed region of base-pairing with U2 snRNA. This extended
base-pairing is observed in recent cryo-EM spliceosome
structures (Galej et al. 2016; Bertram et al. 2017) and is
consistent with an early biochemical study showing that
“SAP 145, together with four other SF3a/SF3b subunits,
UV cross-links to pre-mRNA in a 20-nt region upstream

of the BPS” (Gozani et al. 1996). This region of U2
snRNA shares 100% sequence identity with U2 snRNA in
budding yeast, albeit in humans four of these bases are
modified to form psuedouridines, while in yeast only two
have this modification (Fig. 4D; Yu et al. 2011). Indeed,
we observed a similar pattern in G, C content in a data
set of 718 budding yeast branchpoints (Supplemental
Fig. S4D; Gould et al. 2016). The extensive pseudouridyla-
tion, a modification resulting in stronger base-pairing to all
bases (Kierzek et al. 2014), of this stretch of U2 snRNA
could provide a mechanism by which this region is able
to interact favorably with a diverse set of RNA sequences
and explain why human branchpoints are more degener-
ate than yeast branchpoints.
Mirroring trends in 3′SS strength, we found that the

signature in G and C nucleotide content upstream of
branchpoints was on average stronger for weak branch-
points, supporting that it plays a positive role in branch-
point selection and enables usage of otherwise weak
branchpoints. Together with the biochemical data show-
ing that SF3b contacts this region, disruption of this ex-
tended interaction in SF3b mutants presents a potential
mechanism of the erroneous splicing in SF3b-associated
cancer. Disruption of the extended interaction could
require a stronger core branchpoint for stable U2 binding,
resulting in the observed usage of novel 3′SSs, character-
ized by stronger than average branchpoints (Alsafadi
et al. 2016).
The initial motivating factor for developing LaBranchoR

was to aid in the identification of pathogenic genetic vari-
ants, and we found that LaBranchoR has state-of-the-art
performance in this area.While the strongoverlapbetween
our predicted branchpoints and variants associated
with Mendelian disease is not surprising based on past
work (Taggart et al. 2012; Mercer et al. 2015; Signal et al.
2018), our predictions overlap pathogenic variants at a
higher rate than both previous computational predictions
and the raw experimental data. Furthermore, we found
that LaBranchoR ISM scores are better able to distinguish
pathogenic variants fromvariants in the general population
than SPIDEX scores, showing that explicit branchpoint
prediction provides information not captured by generic
splicing models. Recently, we integrated LaBranchoR
predictions into a model for distinguishing benign from
Mendelian disease causing variants affecting splicing,
S-CAP, and found that these scores increased model
performance (Jagadeesh et al. 2018).
The state-of-the-art branchpoint predictions presented

in this study promise to further our understanding of
RNA splicing and its role in disease. Moving forward, stud-
ies will be able to explore the associations of splicing quan-
titative trait loci and splicing regulators with branchpoints
in addition to splice sites. The strong predictive perfor-
mance of LaBranchoR, the apparent noise in the experi-
mental data (leading to a diluted sequence motif), and
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the existence of a sequence signature of extended U2
snRNA base-pairing suggests that branchpoints are less
degenerate and thereby more important than previously
believed.

MATERIALS AND METHODS

Preparation of annotations

High confidence branchpoints implicated by Mercer et al. (2015)
(their Supplementary data table 2) were downloaded from Ge-
nome Research, as were the Taggart et al. (2017) branchpoint pre-
dictions. We did not consider Taggart predictions whose
“binding model” was “none,” “transcript_skipping,” or “circle.”
A set of 718 budding yeast branchpoints were obtained from
Gould et al. (2016).

Introns were extracted from the Gencode v19 annotations for
all protein-coding genes. Bedtools were used to link branch-
points to 3′SSs using the intersect -loj command. Branchpoints
were considered to be associated with a 3′SS, if they lie between
5 and 60 bp upstream of it. The Mercer high confidence set of
branchpoints was used to produce a training, validation, and
test set split by chromosome. Chromosome 1 was used as a test
set. Chromosomes 2, 3, and 4 were used as a validation set and
all others were used for training.

PhyloP and Phastcons 100-way scores were downloaded from
the UCSCwebsite. They were used to produce average conserva-
tion plots using in-house scripts with the help of bedtools.

Model training

For each 3′SS, a target vector was composed to have a 1 in each
position with a high confidence Mercer et al. (2015) branchpoint
and zeros elsewhere. An input vector was composed by “one-hot
encoding” the 70 bp of genomic sequence immediately up-
stream of the 3′SS, i.e., encoded by a 70 by four vector where
the ith position has a 1 in the 0th position if the ith nucleotide is
an A, a 1 in the first position if the ith nucleotide is a C, a 1 in
the second position if the ith nucleotide is a G, and a 1 in the third
position if the ith nucleotide is a T.

Themodel used was a two-layer bidirectional LSTM (Hochreiter
and Schmidhuber 1997). Themodelwas implemented using keras
version 2.0.4 (https://github.com/fchollet/keras). The final model
has 32 hidden nodes in each direction for both layers. The output
of both LSTM layers are stacked to form a 70×64 tensor that is
passed to the next layer. Per base predictions were computed
by taking a linear combination of the hidden states of the second
layer and applying a sigmoid function to map the outputs to a sin-
gle number between zero and one. A binary cross entropy loss
function was employed in training. Both recurrent (0.05) and stan-
dard dropout (0.15) were employed. Dropout randomly removes
units from the network during training, preventing the model
from memorizing the precise input–output pairs present in the
training data, leading to better extrapolation (Srivastava et al.
2014). The model was trained with the Adam optimizer with de-
fault keras parameters. Themodel was trained until the number of
validation set branchpoints that overlap with Mercer et al. (2015)
branchpoints did not increase for 15 epochs. We experimented
with many hyperparameter settings, but found that as long as

the hidden spacewas sufficiently large and the network contained
at least two layers, performance did not significantly change.

Model testing

Model performance was tested using the 4306 3′SSs on chromo-
some 1 that were held out from the training and validation set.
The fraction of the top scoring branchpoints for a given 3′SS over-
lapping an experimental branchpoint was calculated using an
in-house script. Sklearn functions were used to compute receiver–
operator curve and precision–recall curve statistics. For each of
these statistics, we calculated them separately for considering
all bases in the −70 to −1 positions that were assigned branch-
point scores as well as for the −45 to −18 positions in which the
vast majority of branchpoints fall. As was done in Signal et al.
(2018), we masked positions corresponding to low confidence
branchpoints from the negative set, when computing area under
the curve and recall and false discovery rate statistics.

Comparison to branchpointer and SVM-BPFinder

We compared our model to predictions from the branchpointer R
package created by Signal and coworkers (https://bioconductor.
org/packages/release/bioc/html/branchpointer.html) (Signal et
al. 2018). Predictions were prepared for our test set by using their
pretrained model and closely following the example given in the
reference manual. We additionally downloaded a precomputed
file of genome-wide predictions in Gencode v19 introns for anal-
ysis of overlap with pathogenic variants. We obtained the training
and test set used by Signal and coworkers (https://osf.io/hrqvq/).
We also compared to SVM-BPFinder (Corvelo et al. 2010), which
we obtained predictions for by following the instructions given
at (https://bitbucket.org/regulatorygenomicsupf/svm-bpfinder).
To select the best branchpoint for each 3′SS, we used the
script, “calculate_best_BP_per_intron.pl” available at (http://
regulatorygenomics.upf.edu/Software/SVM_BP/). This model,
too, was pretrained by the original authors.

Genetic variants

A set of pathogenic variants was composed by taking the union of
ClinVar “Pathogenic” and HGMD PRO 2017 “DM” variants. We
removed all variants that affected a protein-coding sequence.
ANNOVAR v527 was used to annotate variants with a predicted
effect on protein-coding genes using gene isoforms from
Ensembl gene set version 75 for the hg19/GRCh37 assembly of
the human genome (Wang et al. 2010). All coding isoforms
were used where the transcript start and end sites were marked
as complete and the coding span was a multiple of three.

Likely benign variants were obtained through the ExAC
browser. For simplicity, in this set we considered only single nu-
cleotide polymorphisms. Variants were split into “common” and
“rare” based on the maximum allele frequency present in any
population with an allele frequency of greater than 1 in 10,000 be-
ing defined as common and all others as rare. TheMarch 16, 2017
release 3 of probability of loss of function intolerant predictions
were also obtained from the ExAC browser.

When computing enrichments of ExAC variants, we wished to
control for nucleotide content and distance from the 3′SS. This
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was particularly important as we noticed that T’s and A’s are gen-
erally less prone to variation (due to the highmutation rates of CG
dinucleotides), leading to an artificially strong signal at the −2 po-
sition and branchpoint. To accomplish this, we compared variant
frequency at branchpoints with a U at the −2 position and an A
at the branchpoint to variant frequency at UNA tri-nucleotides
not implicated as branchpoints. We then defined a variant enrich-
ment as the rate of variants for branchpoint UNAs divided by rate
of variants for non-branchpoint UNAs. We computed the statisti-
cal significance at each position relative to the branchpoint using
the two-sided Fisher exact test available through Scipy. We com-
puted these statistics for both allele frequency>0.0001 and allele
frequency<=0.0001, branchpoints in pLI >=0.9 genes and
branchpoints in pLI < 0.0001 genes. We again used a Fisher exact
test to assess statistical significance between these cases at each
nucleotide.

Exon type annotations

The 2013 version 2 build of MISO exon skipping and intron reten-
tion event annotations were downloaded from the MISO wiki
(https://miso.readthedocs.io/en/fastmiso/) (Katz et al. 2010). We
made no attempt to filter these annotations based on additional
functional data.

Splice site strength quantification

We used the MaxEntScan package, as available at http://genes.
mit.edu/burgelab/maxent/download/, to quantify the strength
of splice sites. An in-house wrapper script was developed to in-
voke the program cleanly in Python, but no functional changes
were made.

Controlling for intron length in analysis
of associated 5′′′′′SSs

We found that C branchpoints and branchpoints lacking a −2 U
occur in shorter than average introns. In order to assure that the
correlations between branchpoints and their associated 5′SSs
are not merely products of this trend, we generated a shuffled
set of branchpoint–5′SS pairs for which all pairs come from
distinct introns whose lengths differ by <5% of the length of
the smaller intron. In this way, any correlation due to only intron
length should be present in this shuffled set. In this shuffled
set, we found a much weaker correlation between 5′SS strength
and whether the branchpoint nucleotide is an A or C nor whether
there is a U at the −2 position than in the real data. Furthermore,
we found no branchpoint–5′SS position pairs with a mutual infor-
mation greater than 5×10−4, much less than many mutual infor-
mations observed in the real data.

DATA DEPOSITION

Codes to recreate all components of our study and final trained
model weights are available at https://github.com/jpaggi/
labranchor. A bed file of predicted branchpoints for Gencode
v19 protein-coding genes is available in Supplemental
Additional File 1. A file of LaBranchoR scores for all positions

70 bp upstream of a 3′SS is in Supplemental Additional File 2.
ISM scores for the 70 bp upstream of all exons in Gencode v19
protein-coding genes are in Supplemental Additional File 3.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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