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Abstract

Following myocardial infarction (MI), timely resolution of inflammation promotes wound healing 

and scar formation while limiting excessive tissue damage. Resolution promoting factors (RPFs) 

are agents that blunt leukocyte trafficking and inflammation, promote necrotic and apoptotic cell 

clearance, and stimulate scar formation. Previously identified RPFs include mediators derived 

from lipids (resolvins, lipoxins, protectins, and maresins), proteins (glucocorticoids, annexin A1, 

galectin 1, and melanocortins), or gases (CO, H2S, and NO). Matrix metalloproteinase-12 

(MMP-12; macrophage elastase) has shown promising RPF qualities in a variety of disease states. 

We review here the evidence that MMP-12 may serve as a novel RPF with potential therapeutic 

efficacy in the setting of MI.
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1. Introduction

Myocardial infarction (MI) occurs due to blockage of the coronary artery that supplies the 

left ventricle (LV) with blood, leading to irreversible ischemic damage of the downstream 

myocardium. Within 30 minutes of ischemia, cardiomyocytes undergo necrosis that release 

damage-associated molecular factors that initiate an inflammatory cascade.(1) While 

inflammation is required to initiate a wound healing response, excessive inflammation can 

exacerbate tissue damage both in the infarct and remote areas of the LV. The infarcted 

portion of the LV undergoes a wound healing response and is eventually replaced with scar 

tissue. The wound healing cascade consists of three sequential but overlapping phases: 

inflammatory, proliferative, and maturation phases.(2, 3) For appropriate scar formation to 

occur, the necrotic myocytes in the ischemic area must be broken down and new 

extracellular matrix (ECM) synthesized in a balance of replacement scar formation that 

provides structure to the infarct while preventing the development of an overly stiff 

myocardium.(2, 3)

A promising therapeutic strategy for treating MI is to stimulate the production of 

endogenous inflammation resolution promoting factors (RPFs) to enhance wound healing, 

generate a stable scar, and limit progression to heart failure.(4-8) RPFs regulate leukocyte 

trafficking, blunt inflammatory mediator production, and promote necrotic cell clearance 

and tissue repair. The current RPF catalogue includes lipid mediators (resolvins, lipoxins, 

protectins, and maresins), proteins and bioactive peptides (glucocorticoids, annexin A1, 

galectin 1, and melanocortins), and gases (NO, H2S, and CO).(9-11)

Of the RPFs identified to date, lipid mediators are the most studied. In particular, immune 

cells rapidly produce resolvins after injury as a means to dampen inflammation.(9-16) Lipid 

mediator RPFs are enzymatically produced from polyunsaturated fatty acids and are rapidly 

produced by immune cells.(9-15, 17) Of the polyunsaturated fatty acid-derived resolvins, 

resolvin D1 binds to the formyl peptide receptor 2, resolvin E1 binds to the chemoattractant 

receptor 23, and both resolvins bind the leukotriene B4 receptor BLT1.(9) In post-MI mice, 

resolvin D1 treatment stimulates an earlier neutrophil exit from the LV infarct and spleen, 

reduces pro-fibrotic collagen I α and tenascin C, and improves fractional shortening.(15) 

Resolvin D1 also reduces macrophage numbers and stimulates a shift from pro- to 

antiinflammatory phenotype by downregulating the CC chemokine receptor 5 and CXC 

motif chemokine ligand Cxcl5 while upregulating mannose receptor c-type 1, arginase-1, 

and chitinase-like protein 3 (Ym1).(15) Annexin A1 is a small protein expressed by 

macrophages and neutrophils that serves as an RPF after MI by binding to the formyl 

peptide receptor-2 and inhibiting neutrophil pro-inflammatory actions.(18) These results 

provide a template for studies of other RPFs and serve as literature controls for comparisons 

(Table 1).

Wound healing following MI is a dynamic process that depends on a temporal succession of 

events, in which matrix metalloproteinases (MMPs) play critical roles.(19, 20) MMPs are a 

family of protease enzymes with a catalytic zinc ion. Collectively, MMPs degrade a number 

of ECM and intracellular proteins.(1, 3, 21, 22) Endogenous MMP inhibitors include alpha 2 
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macroglobulin in the circulation and tissue inhibitor of metalloproteinases (TIMPs) locally 

that provide feedback to temper MMP proteolytic activity.(3) MMPs and TIMPs are 

critically involved in ECM remodeling after MI, including having direct and indirect roles in 

inflammation modification. (3)

To date, no RPF has translated to the clinic, indicating a need to better understand the 

mechanisms involved and the need to identify additional RPF candidates. MMP-12 

(macrophage metalloelastase) cleaves a number of MI-relevant ECM substrates including 

elastin, fibronectin, heparan sulfate, laminin, type IV collagen, and vitronectin.(3, 23) We 

have reported that MMP-12 inhibition after MI, using the selective phosphinic peptide 

inhibitor RXP 470.1, impaired CD44 and hyaluronan interaction to suppress neutrophil 

apoptosis and prolong inflammation, which worsened LV physiology.(8) This led to the 

concept that MMP-12 may serve a beneficial role in MI remodeling and may be working as 

a previously unidentified RPF. To demonstrate that MMP-12 is an RPF, there are a number 

of fulfillment criteria listed in Table 1 that should be met. Here, we summarize the current 

knowledgebase on MMP-12 in the post-MI myocardium, with the majority of information 

deriving from our own inhibition study. Where information is not currently available in the 

myocardium, we borrow from other fields to provide insight into possible MMP-12 roles in 

the post-MI LV (Figure 1).

2.1 MMP-12 is elevated after MI and with aging.

MMP-12 increases at MI day 1 and remains elevated through day 7.(8) Of interest, the LV 

MI neutrophil was identified as a novel MMP-12 source, as circulating blood neutrophils 

showed no expression and MI day 1 neutrophils isolated from the infarct zone showed robust 

expression. MMP-12 expression is induced by a number of MI relevant factors, including 

TGF-β1, IL-4, and hypoxia inducible factor (HIF)-1α, and is decreased by interferon 

gamma (IFN-γ).(24-27) In humans, MMP-12 is significantly elevated in the serum of 

patients with carotid atherosclerosis and ST-segment elevation MI, indicating MMP-12 

persists through the pathological continuum initiating with atherosclerosis and culminating 

in MI. (28, 29)

Aging is an important modulator of MMP-12 at baseline and after MI. Aging stimulates LV 

hypertrophy, inflammation, and fibrosis, resulting in impaired diastolic function.(30-32) 

Older patients have a higher mortality rate after MI, in part due to baseline differences.(33) 

In the myocardium, MMP-12 increases in mice with age, and correlates positively with LV 

mass.(30, 34) MMP-12 increases in the insoluble fraction and decreases in soluble fraction, 

which may indicate MMP-12 is more associated with insoluble ECM substrates and less 

associated with soluble substrates such as tumor necrosis factor alpha (TNFα).(35) In 

response to pressure overload, MMP-12 increases to a higher extent in older mice compared 

to the younger cohort.(36) The higher MMP-12 in the older pressure-overloaded mice 

corresponds with less LV remodeling (less hypertrophy and dilation) and reduced mortality 

rates, indicating MMP-12 serves a protective role in aging hearts with pathology.(36) These 

effects may be due to MMP-12 cleavage of urokinase-type-plasminogen activator receptor 

on endothelial cells to inhibit pathological angiogenesis in response to LV hypertrophy.(36) 

MMP-12, therefore, associates with cardioprotective roles after MI and aging.
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2.2 MMP-12 regulates leukocyte trafficking.

MI initiates a robust inflammatory response characterized by release of pro-inflammatory 

cytokines and chemokines and the influx of leukocytes.(2, 37-39) Monocyte infiltration 

begins first, followed by the influx of neutrophils at a much higher amplitude, such that by 

24 h after MI neutrophils are the predominant leukocyte in the infarct region.(40) MMPs 

regulate the inflammatory response to MI by proteolytic processing chemotactic factors that 

stimulate leukocyte recruitment.(23, 41) MMP-12 roles in post-MI leukocyte infiltration 

have not been defined. In the smoke-induced emphysema mouse model, MMP-12 induces 

rapid monocyte and neutrophil influx into the lung through proteolytic processing of elastin, 

generating fragments that incite a strong chemoattractant response.(42) In a mouse model of 

lipopolysaccharide-induced lung injury, MMP-12 null mice had delayed neutrophil 

resolution.(43) One mechanism of action was through MMP-12 cleavage of the ELR+ motif 

at Glu-Leu amino acids to inactivate CXCL1, 2, 3, 5, and 8. MMP-12 also inactivates CCL2, 

7, 8 and 13 to discontinue neutrophil recruitment. In the injured cornea, MMP-12 promotes 

epithelial proliferation and migration and early neutrophil infiltration to promote healing.

(44, 45) In summary, MMP-12 is a critical regulator of leukocyte trafficking, and promotes 

both the initial influx and discontinuation of neutrophils into the site of injury. The net effect 

as assessed by MMP-12 null mice is to limit the chronic persistence of neutrophils.

2.3 MMP-12 turns off pro-inflammatory signaling.

MMP-12 inhibition after MI prolongs upregulation of pro-inflammatory molecules IL1rl, 

IL6ra, IL11, and Cxcr5, and worsens cardiac physiology (Table 2).(8) In addition to serving 

as a proteolytic mediator of inflammation signaling, MMP-12 is a transcription factor.(46) 

MMP-12 is endocytosed by cardiomyocytes and exerts transcriptional activity at the 

NFKBIA promoter, supporting interferon-alpha (IFN-α) production and anti-viral activity.

(46) As a protease, MMP-12 later cleaves IFN-α to inhibit its activity and promote 

resolution of inflammation.(47) MMP-12 also possesses intracellular anti-bacterial 

properties in macrophages through its carboxy-terminal domain.(44) MMP-12 inactivates 

the complement cascade, one of the earliest stimuli to attract inflammatory cells during 

injury, and inactivates CCL2, a potent monocyte chemoattractant.(48, 49) Through cleavage 

of actin and fibrin, MMP-12 promotes clearance of neutrophil extracellular traps (NETs) 

that serve as neutrophil reservoirs following ischemic injury.(48, 50) In a mouse model of 

autoimmune encephalomyelitis, MMP-12 improves outcomes through proteolytic cleavage 

of osteopontin to reduce inflammation.(51) The CD14 receptor recognizes damage-

associated molecular patterns released during MI, and MMP-12 sheds membrane bound 

CD14 to downregulate pro-inflammatory monocyte activity.(52, 53) In summary, MMP-12 

turns off pro-inflammation by both direct cleavage of substrates and by serving as a 

transcription factor.

2.4 MMP-12 stimulates anti-inflammatory signaling.

IL-13 is an anti-inflammatory cytokine expressed by T helper 2 (Th2) cells that promotes 

healing following MI by enhancing macrophage differentiation to a reparative phenotype.

(54) While IL-13 has positive roles in MI remodeling, IL-13 is detrimental in lung injury. In 
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a mouse model of bleomycin-induced lung injury, MMP-12 mediates many of the pro-

fibrotic effects of IL- 13 and supports Th2 cell-derived IL-13 to promote pulmonary fibrosis.

(55, 56) IL-13 positively feeds back to further induce MMP-12 expression.(57) MMP-12 is 

induced by transforming growth factor (TGF)β1, an anti-inflammatory and pro-fibrotic 

cytokine, and in turn MMP-12 stimulates TGFβ1-induced lung fibrosis.(25) In a mouse 

model of multiple sclerosis, MMP-12 confers protection by enhancing anti-inflammatory 

Th2 cell activation, and Th2 cell activation links to decreased MI risk.(58, 59) MMP-12 

processes adiponectin from full-length to globular forms, which promotes nitric oxide 

production by endothelial nitric oxide synthase expression in endothelial cells, and promotes 

IL-10 expression while inhibiting pro-inflammatory cytokine expression in macrophages.

(60, 61) In summary, MMP-12 stimulates anti-inflammatory signals, which in turn stimulate 

further MMP-12 production.

2.5 MMP-12 promotes cell clearance.

MMP-12 may also promote resolution of inflammation by mediating clearance of 

inflammatory cells. Neutrophil clearance is critical for inflammation resolution, as the 

persistent presence of neutrophils impairs resolution and healing.(4, 53, 62) Mice lacking 

MMP-12 show a continuation of neutrophils in arthritic joints.(48) A similar phenotype is 

seen in the post-MI LV where MMP-12 inhibition prevented neutrophil apoptosis and in 

vitro where MMP-12 directly stimulates neutrophil apoptosis by caspase 3 activation.(8) In 

tumor cells, MMP-12 promotes apoptosis by activating TNF-related apoptosis-inducing 

ligand.(63) MMP-12 also cleaves hyaluronic acid to promote its binding to CD44 in 

neutrophils, leading to their apoptosis.(8) At MI day 7, MMP-12 inhibition reduced CD44 

and increased hyaluronic acid levels, halting neutrophil apoptosis due to inadequate CD44-

hyaluronic acid binding.(8, 64) CD18 (β2 integrin), a cell adhesion molecule that suppresses 

neutrophil apoptosis, is elevated when MMP-12 is blocked.(8)

MMP-12 inhibition also reduces the phagocytic marker CD36 at MI day 7, decreasing the 

ability of macrophages to engulf apoptotic neutrophils.(8) Macrophage phagocytosis is a 

necessary component for optimal neutrophil removal and activation towards a pro-reparative 

state.(65, 66) In macrophages, the absence of MMP-12 prevents migration and ECM 

degradation.(3, 67) In the injured liver, MMP-12 is more highly expressed in Ly6C-low M2 

macrophages, which play anti-inflammatory and pro-reparative roles following MI, 

compared to Ly6C-high M1 macrophages.(40, 68)

These results highlight the significant influence of MMP-12 on reducing apoptotic and 

necrotic cells within inflammed tissue.

2.6 MMP-12 promotes scar formation and angiogenesis.

Following MI, optimal scar formation requires an adequate inflammatory response, timely 

resolution of inflammation, and collagen synthesis and organization that does not infiltrate 

the remote, non-infarcted area.(39) Inadequate ECM synthesis paired with increased 

degradation can lead to LV rupture, while excessive ECM synthesis paired with insufficient 

breakdown can lead to elevated LV wall stiffness and progression to heart failure.(69) MMPs 
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stimulates ECM degradation directly and ECM synthesis indirectly, and MMP-12 presents a 

unique protease mediating both processes.(2, 3)

MMP-12 has cardioprotective and wound healing properties after MI (Figure 2), as MMP-12 

inhibition worsened MI outcomes including increased LV wall thinning, dilation, and 

hypertrophy.(8) In a mouse model of acetaminophen-induced liver injury, fibrinogen-

induced MMP-12 protects against hepatocyte necrosis; whether MMP-12 is protective 

against myocyte necrosis following MI remains to be determined.(70) MMP-12 generates 

elastin-derived peptides with therapeutic relevance to the myocardium, as these peptides 

protect from ischemia by enhancing nitric oxide production.(71, 72)

In addition to potentially protecting viable myocardium from ischemic injury, there are other 

mechanisms by which MMP-12 may promote scar formation. MMP-12 degrades the 

sarcomeric protein titin to participate in the degradation of necrotic myocytes and contribute 

to their removal and replacement with scar tissue.(73) MMP-12 may limit excessive tissue 

degradation by other MMPs, as MMP-12 inhibition after MI results in compensatory 

upregulation of MMP-8, −10 and −14.(8) Mice deficient in MMP-12 have increased 

MMP-2, −9 and −13 following lung injury.(8, 55) MMP-12 cleaves fibronectin, whose 

fragments promote macrophage secretion of fibroblast growth factor-1, insulin-like growth 

factor-1, and leukemia inhibitory factor to protect cardiomyocytes from ischemic injury.(74, 

75) MMP-12 promotes the motility of mesenchymal stem cells, which serve as a cardiac 

fibroblast source after MI.(76, 77)

MMP-12 influences cardiac fibroblasts, the major cell type responsible for ECM synthesis 

after MI.(78, 79) MMP-12 is expressed by myofibroblasts in the cornea to assist in the 

removal of damaged ECM components and support TGFβ1 activity.(80) Angiogenesis is a 

critical component of MI healing to re-vascularize the infarcted myocardium.(81) MMP-12 

generated elastin fragments have pro-mitogenic effects on dermal fibroblasts and are 

chemotactic for endothelial cells, implicating a role for MMP-12 in scar formation and 

angiogenesis.(82) MMP-12 also promotes angiogenesis by degrading the basement 

membrane component collagen IV.(83) At the same time, fibroblast-derived MMP-12 

inhibits angiogenesis by cleavage of urokinase-type-plasminogen activator receptor on 

endothelial cells.(84) This may be a later signal to turn off angiogenesis, when wound 

healing completes. Overall, MMP-12 promotes scar formation by regulating expression of 

other MMPs, promoting timely resolution of inflammation, and direct stimulation of 

fibroblasts and endothelial cells.

3.1 Therapeutic relevance.

There is strong logic for testing MMP-12 for RPF roles after MI. At the same time, both 

MMP-12 deletion and inhibition limit atherosclerosis progression,(23) which brings into 

question the clinical relevance of using MMP-12 to treat patients with MI. Acute (days) 

administration of MMP-12 in the immediate post-MI setting would target the initial 

inflammatory phase and stimulate efficient conversion of immune cells to repair phenotypes 

and limit the effects potentially seen with chronic (months) administration. MMP-12 is 

highly induced by statin use, which has anti-inflammatory properties. Statins are standard of 
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care for patients with MI, and MI patients who discontinue statin use have a higher one-year 

mortality rate.(85, 86) Thus, the effects of commonly used pharmacological agents on 

MMP-12 should be taken into consideration when evaluating therapeutic efficacy.

A second strategy to promote MMP-12 beneficial effects while limiting detrimental effects 

would be to target a particular MMP-12 substrate, rather than MMP-12 itself. While the 

atherosclerosis environment is macrophage and smooth muscle cell predominant, the MI 

environment is dominated by neutrophils, macrophages, and fibroblasts. The substrate 

environment, therefore, is different for the two pathologies. A better understanding is needed 

to evaluate MMP-12 and MMP-12 substrate treatment timing and effect on different cell 

types. Following this process will allow us to develop a mechanistic foundation on which to 

test translational applications. With the recent development of a number of guidelines for 

cardiovascular research, experimental designs that incorporate rigor and reproducibility will 

enlighten us on the potential therapeutic relevance of MMP-12.(87-90)

3.2 Conclusions.

MMP-12 displays several features of an RPF in the post-MI setting, including blunting 

excessive infiltration and promoting clearance of inflammatory cells, preventing excessive 

cytokine and chemokine activity, promoting anti-inflammatory activities of macrophages 

and T cells, and stimulating ECM remodeling and fibroblast function to promote scar 

formation. Our studies and others build a foundation upon which to test MMP-12 as an RPF 

for the treatment of MI.
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Figure 1. Actions by MMP-12 as a potential resolution promoting factor following MI.
MMP-12 expression is regulated by several pathophysiological, pharmacological, and 

endogenous factors. MMP-12 has diverse actions on cardiomyocytes, neutrophils, 

monocytes and macrophages, lymphocytes, fibroblasts, and endothelial cells that may 

promote inflammation resolution and scar formation. Cell images were obtained from 

Servier Medical Art© (http://www.servier.com/).
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Figure 2. Left ventricular remodeling following MI and potential therapeutic effects of MMP-12.
Following MI, inflammatory cells in the left ventricle clear dead myocytes and release 

matrix metalloproteinases (MMPs) that degrade the extracellular matrix (ECM), leading to 

wall thinning and LV dysfunction. MMP-12 may be beneficial after MI by preventing 

excessive inflammation while promoting more efficient removal of dead cells, decreasing 

other MMPs, and preserving ECM integrity.
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Table 1.

Criteria for classification as a resolution promoting factor (RPF) and comparison of matrix metalloproteinase 

(MMP)-12 to known RPFs

MMP-12 Resolvins Annexin A1

Increases after MI Yes(8) Yes(91) Yes(92)

Regulates leukocyte trafficking Yes Yes Yes

↑ monocyte/ neutrophil chemotaxis 
after injury(42, 44)

↓ neutrophil 
transendothelial 
migration(93)

↓ neutrophil chemotaxis 
from spleen(15)

↓ CD68+ macrophages 
after MI(92)

↓ neutrophil 
transendothelial 
migration(94)

Reduces proinflammation Yes Yes Yes

↓ IL1rl, IL6ra, IL11, and Cxcr5 after 
MI(8)

↓ IFN-α, CCL2, complement proteins, 
NETS, OPN, CD 14 (46, 48, 49, 51, 52)

↓ cytokine and 
chemokines(95)

↓ NF-κB, STAT3, MAPK 
activity(95)

↓ pro-inflammatory and 
pro-thrombotic 
cytokines(94)

Increases antiinflammation Yes Yes Yes

↑ IL-13 activity(55, 56)

↑ TGF-β1 activity(25)

↑ IL-8 secretion(96)

↑ Th2 cell activity(58)

↑ globular adiponectin(60)

↑ SIRT1 expression(95)

↑ M2 markers—Mrc1, 
Arg1, Ym1(15)

↑ IL-10 expression(92)

↑ TGF-β secretion(97)

Activation of lipoxin A4 
receptor(98)

Promotes cell clearance Yes Yes Yes

↑ neutrophil clearance from arthritic 
joints(48)

↑ neutrophil apoptosis after MI(8)

↑ macrophage phagocytosis(65)

↑ neutrophil efflux after 
MI(99)
↑ neutrophil apoptosis(100)

↑ macrophage 
phagocytosis of apoptotic 
neutrophils(101)

Promotes scar formation and 
angiogenesis

Yes No Yes

↑ degradation of myocyte debris(73)

↑ ECM turnover and remodeling(8, 25)

↓ tissue degradation by other 
MMPs(8, 55)

↑ TGF-β1 activity in myofibroblasts(80)

↑ fibroblast proliferation(82)

↓ fibrosis/collagen 
accumulation after MI(15)

↑ fibroblast activation and 
collagen deposition(102)

Arg 1- arginase 1; CCL- CC chemokine ligand; CD- cluster of differentiation; CXCR- CXC chemokine receptor; ECM- extracellular matrix; IFN- 
interferon; IL-interleukin; MAPK- mitogen activated protein kinase; MRC1- mannose receptor C type 1; NET- neutrophil extracellular trap; NF-
κB- nuclear factor kB; OPN- osteopontin; Stat- signal transducer and activator of transcription; TGF- transforming growth factor; Ym1- chitinase-
like protein 3
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Table 2.

MMP-12 inhibitor treatment worsens MI day 7 LV geometry and physiology.Adapted from (8).

MI day 7 Saline
(vs day 0 no MI)

MI day 7
MMP-12 inhibitor

(vs day 0 no MI and
Ml day 7 MI Saline)

Infarct wall thickness (mm) ↓ ↓↓

End diastolic volume (μL_) ↑ ↑↑

End systolic volume (μL) ↑ ↑↑

Ejection fraction (%) ↓ ↓↓

Remodeling index (end diastolic volume/ LV mass) ↑ ↑↑
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