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Summary
Objectives: To highlight and provide insights into key develop-
ments in translational bioinformatics between 2014 and 2016.
Methods: This review describes some of the most influential 
bioinformatics papers and resources that have been published 
between 2014 and 2016 as well as the national genome 
sequencing initiatives that utilize these resources to routinely 
embed genomic medicine into healthcare. Also discussed are 
some applications of the secondary use of patient data followed 
by a comprehensive view of the open challenges and emergent 
technologies.  
Results: Although data generation can be performed routinely, 
analyses and data integration methods still require active 
research and standardization to improve streamlining of clinical 
interpretation. The secondary use of patient data has resulted 
in the development of novel algorithms and has enabled a 
refined understanding of cellular and phenotypic mechanisms. 
New data storage and data sharing approaches are required to 
enable diverse biomedical communities to contribute to genomic 
discovery.
Conclusion: The translation of genomics data into actionable 
knowledge for use in healthcare is transforming the clinical land-
scape in an unprecedented way. Exciting and innovative models 
that bridge the gap between clinical and academic research are 
set to open up the field of translational bioinformatics for rapid 
growth in a digital era.
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Introduction
There has been a remarkable shift over the 
last decade in the costs of generating mo-
lecular measurements – most notably DNA 
sequencing but also transcriptomes, pro-
teomes, and metabolomes [1, 2]. Most im-
pacted by this change is the area of genomic 
medicine where it is now possible to move 
from generating reference or population 
level data to producing data from individuals. 
Concurrently, there have also been advances 
in the development of new algorithms and 
tools to integrate and interpret this data.

Bioinformatics is classically defined as 
the storage, analysis, and interpretation of 
biological data [3D]. In the 2016 edition of 
the IMIA Yearbook of Medical Informatics, 
Russ Altman summarized the evolution 
of the term Translational BioInformatics 
(TBI) from 2004, when the term ‘biomed-
ical informatics’ was used. This term has 
come to describe the creation of informatics 
methods that may include the biological 
world (including DNA, RNA, proteins, 
small molecules, cells), and the clinical 
world (including patients, diagnoses, signs, 
symptoms) [4], while TBI is defined as the 
translation of basic capabilities and discov-
eries provided by informatics methods into 
clinically useful tools.

Previous reviews have classified trans-
lational bioinformatics into four themes: 
(i) linkage of Electronic Health Records 
(EHRs) to biobanks for genomic discovery, 
(ii) adoption of genomics and pharmacog-
enomics into routine clinical care, (iii) use of 
genomics in drug discovery and drug reposi-
tioning, and (iv) personal genomic testing [5, 
6]. Over the last three years the translational 
bioinformatics global landscape has substan-
tially changed and it is both interesting and 
exciting to see these themes have merged 

with genomic medicine very much at the 
fore of national policies and investment. The 
National Institute of Health (NIH) makes 
the difference between genomic and preci-
sion medicine by defining the broad term 
genomic medicine as “an emerging medical 
discipline that involves using genomic infor-
mation about individuals as part of their clin-
ical care (e.g., for diagnostic or therapeutic 
decision-making) and the health outcomes 
and policy implications of that clinical use” 
and precision medicine as the approach for 
disease treatment and prevention that takes 
into account individual variability in genes, 
environment, and lifestyle.

This review outlines some of the most 
influential research publications and re-
sources that have been developed between 
2014 and 2016 and the national initiatives 
that have started to capitalize on these 
developments to routinely embed genomic 
medicine into healthcare. The field is broad 
and thus this review can neither cover all 
the aspects of TBI nor all the significant 
publications and outputs. 

The translation of genomic data into 
clinically actionable knowledge is one of 
the key challenges of TBI. Even rare mono-
genic disorders can be influenced by a large 
number of different genes and biological 
pathways, as well as by environmental fac-
tors that are difficult to assess. Patients will 
also vary in how they present symptoms 
and in disease severity. Common medical 
problems such as heart disease, diabetes, 
and obesity do not have a single genetic 
cause—they are likely associated with the 
effects of multiple genes in combination 
with lifestyle and environmental factors. 
In addition, complex or multifactorial 
disorders do not have a clear-cut pattern of 
inheritance. This makes it difficult to deter-
mine a person’s risk of inheriting or passing 
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on these disorders. Complex disorders are 
also difficult to study and treat because the 
specific genetic and environmental factors 
leading to most of these disorders have not 
yet been identified.

The genetic developments of the mono-
genic disorder cystic fibrosis exemplify 
some of the challenges of applying genomic 
information to the clinic. Although the 
genetic basis of cystic fibrosis was well 
established to be mutations in the cystic 
fibrosis transmembrane conductance regu-
lator (CFTR) gene in 1989 [7], it has taken 
many years to understand and categorize 
the 2000 variants within the CFTR gene 
into roughly six different functional classes 
and then stratify patients for appropriate 
treatments [8]. The mutations observed 
have a wide variety of effects on the CFTR 
protein: some disrupt the function of the 
chloride channel at the apical surface of 
epithelial cells; some affect the intracellular 
processing of CFTR reducing expression 
levels; and others alter the transcription 
of CFTR. The successful development of 
the drug ivacaftor in 2012, a potentiator 
of CFTR function, was the first targeted 
therapy for patients with cystic fibrosis 
caused by specific genotypes [6]. In 2015, 
the approval of the combination therapy of 
a potentiator and a corrector (ivacaftor and 
lumacaftor) offered tailored treatments to 
people with cystic fibrosis caused by the 
most common CFTR mutation, Phe508del 
[9]. This treatment is a powerful example 
of precision medicine.

One of the key challenges in the appli-
cation of genomic medicine in healthcare is 
the necessity to protect patient privacy and 
security of data whilst making genomics 
diagnoses and discoveries. What makes this 
difficult are the wide differences in the way 
research and clinical practice are performed. 
Scientific research has in the last century 
been a global effort with English as the 
practicing language, similar systems for 
sharing results, open access to data via pub-
lications or other means, as well as funding 
via grants or awards. Healthcare practice, 
on the other hand, is primarily a national 
endeavor practiced under complex national 
legislation in the native language(s) of the 
country and is often contractually-funded. 
Hospital information systems also vary 

within and from country to country, with 
most of patient-specific data being private 
to patient and associated clinicians. Thus, 
when it comes to the application of bioin-
formatics methods into clinical studies a 
whole new paradigm needs to be created 
in order to be successful.

Advances in Genomic 
Medicine Discovery
Much has been done to advance and devel-
op the capabilities provided by informatics 
methods for genomic medicine discovery. 
These range from the development of various 
sequencing technologies to new models for 
data storage and data sharing. Below, we 
review some of these advances and their 
contribution to the progress made by various 
national genome sequencing initiatives.

Sequencing Technology
Over the past decade, technological im-
provements in high-throughput sequencing 
technologies have resulted in a growing 
worldwide capacity to easily generate 
nucleotide sequences [2]. The most com-
mon current technology, implemented in 
instruments made by Illumina, uses the 
sequencing-by-synthesis method and is able 
to sequence as many as 18,000 whole human 
genomes a year. Large-scale initiatives such 
as the UK 100,000 Genome Project  or the 
Human Longevity Inc. initiative to build a 
facility scaling up to 100,000 genomes a year 
[10] primarily use this robust technology.

Two other approaches generate longer 
read lengths than the sequencing-by-syn-
thesis method, making them well-suited 
for unsolved problems in genome, tran-
scriptome, and epigenetics research. The 
first is nanopore sequencing, in which a 
single DNA molecule is guided through a 
barrier with pores that allow only a single 
nucleotide to pass through at a time, the 
electrical charge of which is then measured 
and recorded. The MinION handheld device 
released by Oxford Nanopore Technologies 
in mid-2014 is the first and only nanopore 
sequencer on the market and has been since 

deployed widely. Its applications range 
from the metagenomic detection of Ebola 
viral pathogens from clinical samples in the 
field during the 2014-2015 epidemic, with 
an unprecedented less-than six hours sam-
ple-to-answer turnaround time [11]; to the 
rapid detection of antimicrobial resistance 
in outbreak situations where strain identi-
fication can be obtained within 30 minutes 
of sequencing; and, using about 500 reads, 
initial drug-resistance profiles within two 
hours and complete resistance profiles within 
10 hours [12]. A second long read length 
method is the Single-Molecule Real-Time 
sequencing (SMRT) technology used in 
Pacific Biosciences machines [13]. These 
can generate reads greater than 10,000 bases 
with over 99.999% accuracy, enabling the 
production of finished bacterial genomes, the 
resolution of structural variations, and a bet-
ter resolution of single nucleotide variants.

Reference Data
The generation of the reference datasets 
enables comparative analyses with parallel 
data from disease-centric studies to identify 
variants and processes that are linked to dis-
ease. These result in a better understanding of 
the underlying mechanisms by which various 
diseases occur, an improved ability to predict 
which treatments will work best for specific 
patients, and improved approaches such as ge-
nome-based strategies for the early detection, 
diagnosis, and treatment of disease.

Since the availability of the first com-
plete draft of the human genome, many 
large experimental studies and associated 
computational resources have been pub-
lished in efforts to further basic biological 
knowledge. These include the ENCODE 
project to understand the function of 
genes and the elements that regulate genes 
throughout the genome [14], the 1000 Ge-
nomes Project to generate comprehensive 
genetic variation maps of individuals from 
multiple populations [15], advances in 
mass spectroscopy and electron microscopy 
which generate 3-dimensional structures 
of proteins and enable the identification 
of functions, protein capture experiments 
which explore how DNA and proteins inter-
act with one another and with the environ-
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ment to create complex living systems, and 
large-scale epigenome maps from healthy 
and diseased human cells [16].

The Genome Reference Consortium that 
coordinates, builds, and manages reference 
genomes for several model organisms, devel-
ops novel methods such as graph-based algo-
rithms to represent complex allelic diversity. 
Significant effort is required to maintain up 
to date reference genome sequences, repre-
sent alternative loci, and effectively resolve 
difficult regions of the genome [17].

Functional and Clinical Interpretation
When identifying causative gene mutations, 
the first step is for rare diseases to catalogue 
all the nucleotide differences or variations 
in a patient’s genome compared to a refer-
ence genome, and for cancers to catalogue 
the differences between the healthy and 
tumor genomes. The more complex, and 
naturally the more valuable, next step is to 
understand the clinical significance of the 
variants, their inheritance patterns, and the 
strength of their association to the disease 
or phenotype [18].

Understanding the clinical and functional 
significance of each variant requires complex 
bioinformatics analyses and the integration 
of numerous other data types:
• Data such as gene structure information 

is necessary to determine whether the 
variant lies in the coding or non-coding 
portion of the genome; 

• Coding variant, protein structure, and 
functional data are needed to determine 
the impact of the mutation on protein 
function; 

• Transcriptomics and proteomics data 
are required to determine cell and tissue 
expression profiles; 

• Mutation experimental data from human 
cell or model organisms and disease 
variation information are needed to un-
derstand linked phenotypes; 

• Protein interaction network and biological 
pathway knowledge are required to learn 
more about the function and relationship 
with other proteins; 

• Data from clinical trials and pharmaceu-
tical agents are also needed to know if 
there have been medicines developed that 

target this protein or biological pathway;
• If available, longitudinal phenotypic in-

formation at the individual and population 
levels is also needed.

All of the above require the ready availability 
of curated, structured reference information.

Much of the data required to determine 
clinical significance is deposited and curated 
in bespoke biological repositories such as 
those hosted by the European Bioinformat-
ics Institute (EMBL-EBI) [19] or the NIH 
National Center for Biotechnology Infor-
mation (NCBI). However, data integration 
for genome-wide bioinformatics analyses 
and conversion of data to knowledge rely 
on the continuous development of analyt-
ical pipelines and systems. Tools such as 
the Ensembl Variant Effect Predictor is a 
powerful toolset for the analysis, annotation, 
and prioritization of genomic variants in 
coding and non-coding regions, providing 
access to an extensive collection of genomic 
annotations [20]. 

Clinical Data Environment
The integration of EHRs in patient care is 
also needed to link molecular and clinical 
data. One important component required 
for data integration is the careful curation 
and mapping of data to controlled vocab-
ularies or ontologies. For genomic data 
integration with clinical information, data 
from primary care, hospitals, outcomes, 
registries, and social care records should 
be first recorded using controlled clinical 
terminologies, such as SNOMED Clinical 
Terms and the Human Phenotype Ontol-
ogy [21]. Ontologies as such are not ever 
complete and end-users such as clinicians 
will need to work with ontology developers 
to continuously improve the precision and 
accuracy of terminologies [22].

Using standard terminologies for record-
ing clinical data is however just the primary 
step. Clinical data is usually generated and 
held across a wide variety of point of care 
settings such as acute hospitals, general 
practitioners, community hospitals, mental 
health, and social care. Integration of health 
data from different sources can facilitate the 
efficient and timely use of clinical informa-

tion gathered throughout a patient’s journey, 
and hence should minimise duplication and 
enable greater continuity of care. The im-
plementation of EHRs such as EPIC within 
hospitals has driven greater standardisation 
and efficiency. However there were signifi-
cant challenges to overcome in the deploy-
ment and operationalisation of such a system 
[23]. For research, organisations like CDISC 
work to create standards in order to support 
the acquisition, sharing, submission, and 
archiving of clinical research data.

The end of patent battles on genetic 
tests by commercial companies, such as 
Myriad Genetics and others, over BRCA1 
and BRCA2 mutation detection1, coupled 
with cheaper high-throughput sequencing 
and high profile celebrity activities (e.g. the 
Angelina Jolie effect [24]), have resulted in 
an increased demand for new approaches to 
diagnostic tests. These include developments 
in cost-effective accurate mutation detection 
strategies and a standardized, systematic 
approach, to the reporting of test results, 
especially in cancer [25]. Rahman and 
colleagues have developed a rapid, robust, 
large-scale, cost-effective testing pathway 
that can be utilized within the hospital 
framework and easily adapted across other 
healthcare systems [26].

As the volume of genomic data grows 
with associated clinical data, it is also useful 
to note that aggregation and reanalysis of 
such data will result in a new and improved 
understanding of clinical value over time 
[27]. For example, a novel variant discov-
ered in a patient today may have little or 
no information associated with it. However 
as genomic data grows and this variant is 
analyzed in conjunction with other similar 
variants, more statistically significant results 
can result in greater confidence of this vari-
ant being associated, or not, with a disease.

Data Storage and Sharing
New models for data storage and sharing 
have also emerged so that experts across the 
continuum from molecular biology to medi-

1 http://www.sciencemag.org/
news/2015/01/end-road-myriad-gene-
patent-fight

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



IMIA Yearbook of Medical Informatics 2017

181

A Review of Recent Advances in Translational Bioinformatics: Bridges from Biology to Medicine

cine can access, use, and deposit data. A pilot 
project in rare disease, the Deciphering De-
velopmental Disorders (DDD) study, aimed 
to determine the feasibility of translating 
new high-throughput genomic technologies 
into clinical practice, and of elucidating the 
underlying genetic architecture of develop-
mental disorders. This study, which utilized 
whole exome sequencing to diagnose 27% 
of 1,133 previously investigated yet undiag-
nosed children with developmental disorders 
[28], also established a unique database 
model in the DECIPHER2 database.

 Contributing to the DECIPHER data-
base is an international community of aca-
demic departments of clinical genetics and 
rare disease genomics that now numbers 
more than 250 centers who have uploaded 

2 https://decipher.sanger.ac.uk/index

more than 18,000 cases. Each center main-
tains control of its own patient data (which 
are password protected within the center’s 
own DECIPHER project) until consent is 
given to share the data with chosen par-
ties in a collaborative group or to allow 
anonymous genomic and phenotypic data 
to become freely viewable within genome 
browsers. Once data is shared, consortium 
members are able to gain access to the pa-
tient report and to contact other members 
to discuss patients of mutual interest. After 
data analysis, pertinent genomic variants 
are returned to individual research par-
ticipants via their local clinical genetics 
team. The DDD study also demonstrated 
that the systematic recording of relevant 
clinical data, curation of a gene–phenotype 
knowledge base, and development of clini-
cal decision support software were crucial 

for scalable prioritization and review of 
possible diagnostic variants [29]. Most of 
the diagnostic variants identified in known 
genes were novel and not present in current 
databases of known disease variations.

The Global Alliance for Global Health 
(GA4GH) established in 2013 is developing 
a common framework of approaches for 
adoption in order to accelerate progress in 
human health, drive efficiencies, and lower 
costs. The goal of the Alliance is to create 
data standards and strategies for storage and 
analysis of medically relevant genomic data, 
and to catalyze the creation of data sharing 
standards and methods to ensure worldwide 
interoperability of medical genomics data 
[30]. GA4GH includes institutions like 
EMBL-EBI that play a key role in facilitating 
the transfer of knowledge and expertise in 
data management and analysis of big data 

Fig. 1   National and International Data Sharing Mechanisms. Data from national genome sequencing initiatives and related clinical data will naturally need to be stored within centralized national storage systems. 
Anonymized data from the analyses of these projects can be made available for research use, either via controlled-access data repositories or open, public data repositories, depending on consent and data category. Products 
and Standards developed by GA4GH can be applied by the three different resource types to ensure interoperability of medical genomics data.
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projects. Currently 452 institutions and com-
panies across 42 countries participate to the 
Alliance, which emphasizes the global inter-
est, demand for standardization, and need for 
joint working solutions3. The strategic goal 
of GA4GH is to build a system of servers, 
to create standard markup languages, and to 
develop resources and applications similar to 
the implementation of the World Wide Web 
for users to access genomics information. 
A schematic view of how this may look in 
practice is shown in Figure 1.

National Sequencing Initiatives: 
Approach and Progress
The use of genomics as a healthcare diag-
nostic tool is becoming increasingly more 
common due to the desperate need to un-
derstand the underlying causes of diseases 
and to provide more efficacious medicines to 
patients. The disease areas that are likely to 
significantly benefit from the use of genomic 
diagnostics are those where the identifica-
tion of causative gene mutations is more 
straightforward, such as in rare diseases, 
cancers, and infectious diseases, as well as 
the detection of chromosomal abnormalities 
in non-invasive prenatal testing. Over the last 
few years, several national initiatives have 
been launched with the strong support of the 
leaders of respective countries. A complete 
list can be found in Table 1. The scope, ap-
proach, and goals of each of these are quite 
different, some of which are described below.

The UK 100,000 Genomes Project was 
formally announced in December 2012 by 
the Prime Minister as part of the UK Govern-
ment’s Life Sciences Strategy4. The delivery 
of the project was charged to a newly estab-
lished limited company owned by the UK De-
partment of Health, Genomics, England, with 
rare diseases, cancers, and infections chosen 
as the disease areas to focus on. Since then, 
the program has developed and executed an 
aggressive delivery plan including the setup 
of several genomic medicine centers across 
the country, a data infrastructure, a panel of 

3 http://genomicsandhealth.org
4 www.genomicsengland.co.uk

annotation suppliers, a clinical interpretation 
partnership with researchers, relationships 
with the pharmaceutical industry and bio-
technology companies, as well as a skills 
and education program for national health 
service employees. With over 18,000 genomes 
sequenced to date, several cases of rare dis-
ease diagnoses of previously undiagnosable 
genetic conditions are coming to light5 such 
as a rare mutation in the SLC2A1 gene which 
caused a patient’s Glut1 deficiency syndrome. 
This mutation was narrowed down from the 
6,414,934 variants initially observed when 
compared to the reference sequence. Besides 
clinical interpretation, the project is also ad-
dressing technical and logistical challenges, 
such as obtaining tumor DNA of sufficient 
quality and quantity to meet healthcare 
pathology test standards, and the mapping 
of clinical data to standard ontologies using 
robust and user-enabled approaches.

In January 2015, U.S. President Obama 
announced the Precision Medicine Initiative 

5 https://www.genomicsengland.co.uk/
first-children-recieve-diagnoses-through-
100000-genomes-project/

(PMI), a national, large-scale, research en-
terprise with one million or more volunteers 
from diverse social, racial/ethnic, ancestral, 
geographic, and economic backgrounds, 
from all age groups and health statuses 
as well as a dedicated cohort of oncology 
patients. June 2016 saw the kick-off of 
this initiative with the establishment of 
six recruiting centers that aimed to enroll 
10,000 participants in the first year, starting 
in November, then 35,000 a year through 
2020 to reach a total of 150,0006. The goals 
of the program included developing criteria 
and standards for the incorporation of rap-
idly evolving technology and mobile health 
technologies into cohort design, both for 
baseline and ongoing data collection, as well 
as interoperable and standardized EHRs plus 
various genomics and imaging approaches7.

6 http://www.sciencemag.org/
news/2016/07/president-obama-s-1-
million-person-health-study-kicks-five-
recruitment-centers

7 https://www.nih.gov/sites/default/files/
research-training/initiatives/pmi/pmi-
working-group-report-20150917-2.pdf

Table 1   Key aspects of national genomics healthcare initiatives

Program Name

Estonian Genome Project

Genome Denmark

Iceland (deCode Genetics)

UK 100,000 Genomes 
Project

US Precision Medicine 
Cohort

Scottish Genomes 
Partnership

Genomic Medicine France 
2025

Finland

China Precision Medicine 
Initiative 

Germany

Start Date

2001

March 2011

-

December 2012

January 2015

January 2015

April 2015

July 2015

March 2016

Planned

Number of genomes

1 million individuals 
over 5 years

10,000

100,000

>1 million volunteers

> 3000 citizens

235,000 genomes 
annually by 2020

-

100 million genomes 
over 15 years

Disease areas

Random selection

Cancer, pathogen, reference 
genome

All disease areas

Rare disease, cancer, 
infection

All disease areas

Cancer, childhood illnesses, 
rare genetic diseases, disor-
ders of the central nervous 
system and population studies

Rare disease, cancer, diabe-
tes, other common diseases, 
reference genome

All disease areas

All disease areas

Investment

1.5 billion 
Estonian kroons

80 million DKK

-

£300 million

$215 million

£21 million

€1 billion

€50 million

US$9.2 billion

€360 million
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The substantial learnings from previously 
established programs, such as the Electronic 
Medical Record and Genomics (eMERGE) 
network on approaches to integrate genom-
ic variant information within electronic 
medical records, will be incorporated into 
PMI protocols [31, 32]. Researchers are 
also working on integrative models based 
on current knowledge of genomics and 
epigenomics and the relevant biochemistry 
and cellular-tissue physiology to predict 
how to obtain data from these very large 
cohorts. Such predictions could specify 
which clinical parameters to measure and 
at what intervals [33]. eMERGE is also 
studying the ethical, legal, and social issues 
involved in the use of EHRs for genomics 
research, such as privacy, confidentiality, and 
communications to the public, as well as the 
return of actionable genomic test results to 
EHRs for use in clinical care.

The French national sequencing initia-
tive, France Médecine Génomique 2025, 
has an investment of €670 million over the 
first five years, accompanied by commercial 
contributions worth another €230 million, to 
sequence 235,000 genomes annually by 2020. 
Launched in April 2015, the French project 
will begin by sequencing genomes not only 
from patients with rare diseases and cancers, 
but also from some forms of diabetes, which 
is noted as an urgent priority for research to 
help develop better targeted treatments.

Applications of the Secondary 
Use of Patient Data
The launch of several national sequencing 
initiatives will create a ‘longitudinal life 
course of electronic health’ database of all 
participants, based upon a flow of electronic 
health data from primary care, hospitals, 
outcomes, registries, and social care records.

These extensive records will provide 
the opportunity to evaluate genomics in the 
context of rich and extended phenotypes 
including biochemical parameters, health 
outcomes, mortality data, and pharmacog-
enomics. Analysis of these data beyond the 
purpose of primary diagnosis will allow 
researchers to move past the primary phe-
notype of the disease that led to the patient’s 

enrolment to evaluate genomics in the con-
text of other continuous traits, diseases, and 
response to therapy.

The use of genomic data in secondary 
research has advanced the development of 
new tools and algorithms such as those used 
to model the genetic diversity and evolu-
tionary patterns of individual cancers [34]. 
Studies that aim to use biobanks and inte-
grate different data types have successfully 
stratified patients and identified potential 
biomarkers of drug response. In a recent 
study by Folkersen et al. in Rheumatoid 
Arthritis (RA), a biobank was used to test 
the claim that the current state-of-the-art 
precision medicine will benefit RA patients. 
High-throughput RNA sequencing, DNA 
genotyping, extensive proteomics, and flow 
cytometry measurements, as well as com-
prehensive clinical phenotyping, led to the 
identification of a small set of biomarkers 
available in peripheral blood that predict 
clinical response to tumor necrosis factor 
(TNF) blockade [35].

Genomic data has also enabled very 
large-scale projects, such as the Pan-Cancer 
Analysis of Whole Genomes (PCAWG) 
study, which is an international collaboration 
to identify common patterns of mutation 
in more than 2,800 cancer whole genomes 
from the International Cancer Genome 
Consortium. PCAWG aims to generate 
genomic, transcriptomic, and epigenomic 
changes in 50 different tumor types and/
or subtypes. Such analyses have shown the 
value of integrating genomics data from the 
same patient, will lead to novel targets and 
disease mechanisms, and should in turn drive 
enhanced diagnostic and therapeutic yields 
for individual patient benefit [36-38].

As well as research applications, the devel-
opment of new or repurposed drugs stands to 
substantially benefit from more disease-asso-
ciated genomic data. One of the main reasons 
for the high rate of attrition in late-stage clinical 
trials is thought to be the lack of drug efficacy 
[39]. Often the incorrect gene or protein is 
selected as the drug target in early drug devel-
opment, where the premise is that perturbation 
of this protein by a compound will significantly 
change the course of disease [40]. Recent pub-
lications have shown that genetic data that link 
a target to a phenotype or disease have higher 
success rates in the clinic [41].

A study by Bagley et al. combined 
data from electronic medical systems with 
disease-associated genetic variants data 
to study the relationship between disease 
co-occurrence and commonly shared ge-
netic architectures of disease. The study 
looked at 35 disorders, medical records for 
over 1.2 million patients, and variants from 
over 17,000 publications, and found specific 
shared genes between disease classes that 
were not previously thought to be related, 
such as autoimmune and neuropsychiatric 
disorders [42].

It is clear that current definitions and 
categorization of diseases and phenotypes 
do not necessarily reflect true molecular 
relationships and underlying biological 
relationships. Public-private initiatives such 
as Open Targets, a collaboration between 
Biogen, the EMBL-European Bioinfor-
matics Institute, GlaxoSmithKline, and the 
Wellcome Trust Sanger Institute (http://
www.opentargets.org), aim to provide 
comprehensive and up-to-date relevant 
genetics and high-throughput genomics 
data for drug target selection and validation 
[43, 44]. Chen and Butte have provided a 
comprehensive review on the availability of 
public data and the analytical tools across 
various data types for target selection and 
drug discovery [45].

Processed data from genome sequencing 
projects and the knowledge extracted from 
these can also be integrated into existing 
reference data in a manner that enables 
further analyses while protecting the privacy 
of patients within each country or system.

Data that can be captured include:  
• Molecular profiles that characterize dif-

ferences between diseased and normal 
states, or that provide sub-classification 
of a disease;

• Annotation of variants of clinical impor-
tance in different diseases;

• Annotation of variants and genes, and 
their association with drugs;

• Biomarkers (e.g. protein, RNA, metab-
olites, and complete metabolomes) for 
diagnosis and disease monitoring;

• Reference images that can link molecular 
data to disease phenotypes;

• Human pathogen data and their virulence 
components.
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Such data will provide broaden references 
dataset for further clinical research as well 
as develop resources that are fundamentally 
about understanding biology.

Ongoing Challenges: 
Technological, Societal, and 
Economic
Bioinformatics analysis leading to clinical 
interpretation is an expensive part of the 
pipeline. The importance of data sharing 
and common standards is emphasized by 
Muir et al. [46] who highlight that storage 
and computation costs have not decreased 
as quickly as sequencing costs. They 
concluded that “if the sequence data gen-
erated by individual labs is not processed 
uniformly and sequence databases are not 
made easily accessible and searchable, then 
the analysis of aggregated datasets will be 
challenging”. Reducing costs will require 
simultaneous improvements in data sharing 
and use of common standards. We describe 
below some of the technological, economic, 
and societal challenges that need resolution 
to fulfil this vision.

Standardization
If we look back at the historic peaks and 
troughs of molecular biology, major techno-
logical innovations have preceded moments 
of great discovery. For example, the inven-
tion of high-throughput Sanger sequencing 
technology enabled the completion of the 
human genome [47]. Innovation in data gen-
eration is always followed by a surge of data 
analysis methods and tools. At the moment, 
the bottlenecks in genomic medicine lie at 
the data analysis and interpretation end of the 
pipeline. Interpretation in this scenario is a 
critical step since a patient’s diagnosis status 
and potential treatment options are crucially 
dependent on interpretation, and not on the 
raw or processed sequence data.

Efforts to identify gold standard methods 
and evaluate the performance of data analyt-
ical methods are currently emerging. These 
include work by Tokheim and colleagues 

who compared eight different algorithms 
that attempted to identify, from variation 
data, which gene variants drove cancer driver 
genes and which were simply passenger 
mutations [48]. The analysis found that most 
approaches had a high rate of false positives 
and more work was needed to develop a gold 
standard method.

Electronic Medical Records (EMR) 
represent a convenient source of coded 
medical data, but the lack of standards and 
the variation among the different systems 
can introduce inaccuracies and biases when 
this data is used for analyses such as calcu-
lating disease prevalence, incidence, age of 
onset, or disease comorbidity [49]. There 
is a further need for standardisation around 
clinical data capture and communication, 
which addresses the quality, completeness, 
and adoption of standards. Analysis would 
also improve if there was standardization in 
the way data are collected from participants 
across hospitals and clinics. Far more can 
be interpreted from a genome sequence 
when an accurate patient record is available. 
The challenges lie in being able to collect 
this information from busy clinicians, and 
the data also needs to be integrated across 
the various points of patient care. Clinical 
decision support systems that have been 
approved by regulatory bodies and in which 
significance and confidence levels around 
genetic findings are systematically inferred 
and reported [50] are also needed.

Data Storage and Sharing
Currently, much of the human genomic data 
generated so far is deposited into public 
databases for broad research reuse. Human 
genomic and phenotypic data from clinical 
or research studies which would require a 
researcher to have a bespoke signed agree-
ment with the originating body (via a Data 
Access Committee or other mechanism) 
are largely stored in controlled-access 
repositories such as the European Ge-
nome-Phenome Archive (EGA), the NIH 
database of Genotypes and Phenotypes 
(dbGaP), or held by the originating body. 
However, given the differing ethical and 
legal systems of each country, these systems 
are not scalable nor are they appropriate for 

the growing volume of genomic data from 
national health studies.

Managed storage systems which follow 
national legislation and which allow access 
to data for research purposes are essential. 
Researcher access to genomic databases is 
necessary to create a research community that 
will be connected and may contribute directly 
to national health services and patient care 
systems. Analyses that utilize the aggregated 
data from hundreds of thousands or millions 
of patients from multiple healthcare systems 
will add much more to our knowledge of the 
genetic basis of disease than multiple individ-
ual studies using small sample cohorts from 
individual healthcare systems.

Large-scale cohorts are particularly 
important for very rare diseases for which 
patient numbers in any one country may be 
too small to provide adequate data to identify 
causative genes. For rare diseases, the sam-
ple size needed to infer whether observed 
variants that are associated with a disease 
are causative and statistically significant will 
often require combining data from patients 
in multiple countries: cross-border sharing 
of data is essential so that virtual or physical 
data aggregation and sufficiently powered 
analyses can be performed.

Researcher Access to Data
New data sharing mechanisms are also 
needed to minimize the movement of large 
volumes of data and allow instead for 
analyses to take place at the point where 
data are stored. Cloud computing frame-
works allow remote storage, with analysis 
scripts uploaded to the cloud and analysis 
performed remotely on virtual machines 
physically located at the remote site “next 
to” the data. This greatly reduces data 
transfer requirements since only the scripts 
and analytical results are transferred to and 
from the analysts’ institution or desktop: 
data resides permanently in the cloud [51]. 
The cost structure for computational and 
analysis resource in genomics points towards 
the efficiency of developing a single, large 
center for data analysis and processing. Such 
a resource would, through virtual access, be 
combined with a more widely distributed 
network of expertise [22]. Initiatives such 
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as the European Open Science Cloud will 
further the creation of infrastructures to 
enable data sharing and service provision 
across borders and disciplines8.

With health data for large numbers of 
people, it will be critical to find ways to 
protect individuals’ privacy and the confiden-
tiality of their health information. However, 
if data is to be shared by various communi-
ties, the correct legal and ethical frameworks 
must be in place. It is critical to find ways to 
protect participants’ privacy and the confi-
dentiality of their health information while 
simultaneously enabling research to take 
place. Current practices for researcher access 
to data that include paper-based agreements 
between users, institutions, and data access 
committees must be replaced by electronic 
mechanisms. These processes, at the interface 
between basic research and clinical research, 
should be strengthened and explicitly funded. 

Individuals will also need to understand 
the risks and benefits of participating in 
genomics diagnostic and research. Un-
derstanding what data is collected and 
generated is also important. Much like the 
legislation needed to protect consumer data 
after the advent of web-based purchases 
and mobile technology, patients should be 
made aware of the use and implications of 
generating personal genomics information. 
Requirements to collect consent for research 
should be more harmonized and regulatory 
tools developed as described in the recently 
published code of practice [52]. The new 
EU data protection framework, in the form 
of the European General Data Protection 
Regulation (GDPR), will place a number of 
direct obligations on data controllers, which 
will drive better forms of consent collection 
and withdrawal.

Biomedical Informatics Coordination
We believe the overall ideal endpoint at 
the national level is the development of a 
‘Biomedical Informatics Institute’ to act as 
a driver and coordinating center for health 

8 http://ec.europa.eu/research/
openscience/pdf/realising_the_
european_open_science_cloud_2016.
pdf#view=fit&pagemode=none

and biomedical informatics research in each 
country. This center should seek to act in 
conjunction with existing medical research 
and informatics organizations to form a 
seamless and integrated network with hos-
pitals, research organizations, and local and 
international health initiatives to maximize 
the utility of genomics and electronic health 
data. In bigger nations, this institute would 
itself likely be a network, but with a center 
of gravity, or hub, at or within one institute. 

Such centers would be the natural 
partners for research bioinformatics orga-
nizations such as EMBL-EBI or NCBI. In 
European countries, the development of bio-
medical informatics institutes or networks 
may be coordinated through an ELIXIR9 
Node: ELIXIR is the European life-science 
infrastructure for biological data. Research 
bioinformatics institutes can then be re-
sponsible for handling and providing both 
open (public) and controlled access data 
and bioinformatics services that are shared 
between researchers (including clinical re-
searchers), whereas the national biomedical 
informatics institute can be responsible for 
data and services that need to stay within the 
national framework (see Figure 1).

Much research and development is 
needed in areas such as: the development 
of analytical methods, tools, and standards 
to link and extract value from increasingly 
complex, disparate, diverse, and numer-
ous data sets; the development of secure 
interoperable research environments and 
data flows to provide a technology frame-
work to federate existing platforms that 
will connect diverse health and biomedical 
data assets; the development of partner-
ships with owners and controllers of data, 
regional and national health and social care 
partners, academia and industry; and the 
development of skills and capacity in the 
discipline of medical informatics, training 
researchers with interdisciplinary skills in 
core data science and medical research. 
Alongside these, the economic cost and 
impact of delivering precision medicine in 
an effective and affordable ways also need 
to be considered.  

9 http://www.elixir-europe.org/

Future Landscape
It is difficult to imagine exactly what the 
biomedical industry will look like in a few 
years’ time, but it is certain that the surge 
in biological data flows will continue. This 
increase in data will be from large innovative 
research projects, such as the International 
Human Cell Atlas Initiative10 that aims to 
create comprehensive reference maps of all 
human cells, and also from devices, apps, 
wearables, and implantable technologies. 
Translational BioInformatics methods, tools, 
and resources will need to evolve to include 
algorithms for streaming data capture, re-
al-time data aggregation, machine learning, 
predictive analytics, and visualization solu-
tions in order to integrate health monitoring 
data with EMRs and genomics data [53].

If genomics medicine approaches are to 
become part of routine healthcare, doctors 
and other healthcare providers will require 
better grounding in molecular genetics and 
biochemistry. They will increasingly find 
themselves needing to interpret the results 
of genetic tests, understand how that infor-
mation is relevant to treatment or prevention 
approaches, and convey this knowledge to 
patients. Education and skills in the data 
sciences is much needed [54]. Programs to 
ensure the long-term generation of proficient 
investigators who understand the multi-disci-
plinary nature of genomics in clinical practice 
and research, should be established, and will 
perhaps even form a new medical discipline.

Open data that allows data reuse and 
data integration has made possible great 
advances in molecular biology over the last 
few decades. These advances range from 
recombinant DNA drugs, animal cloning, 
gene therapy, and forensic science to stem 
cell therapy. Although the primary objective 
of genomic data generated for healthcare 
purposes is for disease diagnoses, treatment, 
and prevention, the availability of these data 
for use in secondary research can result in a 
better understanding of disease mechanisms 
and will lead to improvements in treatment 
strategies. Moreover, the crossover of 
bioinformatics into healthcare will further 
enable fundamental discoveries about the 
big questions of biology.

10 https://www.humancellatlas.org/
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It is worth saying that we are only at the 
very start of this health revolution brought 
about by genome sequencing. If we compare 
the time the human genome was sequenced 
in 2001 [47] following the first bacterial 
genome sequence in 1995 [55], to today, it 
is not a stretch of the imagination to envi-
sion human genome sequencing as a part 
of standard care pathways and real-time 
biomedical and health care analytics in the 
clinical setting. The systems and processes 
we put in place today must support the future 
and not just represent our present reality.
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