Table 1. Range of osmotic potential, regression equations and the coefficient of determination for the relationships between osmotic potential (π) and the concentration of soluble solids (SSC) of sweet cherry, sour cherry, grapes and plums.
Species | Osmotic potential (MPa) | Equation | Coefficient of determination | |
---|---|---|---|---|
Min | Max | (r2)a | ||
Sweet cherry | -0.8 | -8.0 | π (MPa) = 0.136 – 0.182 * SSC (%) + 0.002 * SSC2 (%) – 7.192 * 10−5 * SSC3 (%) | 0.998 |
Sour cherry | -0.8 | -9.6 | π (MPa) = 0.123 – 0.186 * SSC (%) + 0.002 * SSC2 (%) – 9.08 * 10−5 * SSC3 (%) | 0.998 |
Grapes | -1.3 | -7.0 | π (MPa) = 0.042 – 0.168 * SSC (%) + 5.294 * 10−4 * SSC2 (%) – 6.293 * 10−5 * SSC3 (%) | 0.996 |
Sweet and sour cherry and grapeb | -0.8 | -9.6 | π (MPa) = 0.239 – 0.207 * SSC (%) + 0.003 * SSC2 (%) – 1.088 * 10−4 * SSC3 (%) | 0.996 |
Plums | -1.4 | -6.1 | π (MPa) = 1.412 – 0.413 * SSC (%) + 0.018 * SSC2 (%) – 3.797 * 10−4 * SSC3 (%) | 0.966 |
a The coefficient of determination of all equations are highly significant (<0.1%).
b Because the cherries and grapes followed a practical identical relationship, we also provide an equation for the pooled data of these three species.