Skip to main content
. 2018 Oct 31;14(10):e1007776. doi: 10.1371/journal.pgen.1007776

Fig 3. zhp-4 mutants are compromised for crossing over.

Fig 3

(A) Representative full projections of diakinesis nuclei of the indicated genotypes stained with DAPI. In comparison to the six bivalents observed in wild types, zhp-4(vv103) mutants contain no bivalents, indicating a loss of crossover formation. In contrast, zhp-4(vv96) mutants nuclei contain a mixture of structures, including univalents, anomalous bivalents ‘tethered’ by chromatin (white arrow), and bivalents. zhp-4(vv96);spo-11(ok79) nuclei contain mostly univalents, indicating that the bivalents displayed by zhp-4(vv96) are recombination initiation dependent. (B) Histogram showing distribution of the number of DAPI bodies in diakinesis nuclei in the -1 and -2 oocytes for the indicated genotypes. Nuclei scored: +/+ n = 97, zhp-4(vv103) n = 38, zhp-4(vv96) n = 64, zhp-4(vv96);spo-11(ok79) n = 30. Using Kruskal-Wallis and Dunn’s post test, all pairwise comparison results are significantly different (*** p<0.001) except for the comparison between zhp-4(vv103) and zhp-4(vv96);spo-11(ok79) nuclei (ns p>0.05). (C) Bar graph showing quantification of the numbers of DAPI-stained bodies in diakinesis nuclei at the -1 and -2 positions in germlines from animals of the indicated genotype. Most zhp-3(H25A) nuclei have 6 DAPI bodies and are not significantly different from wild types while the increase observed in zhp-4(H26A) mutants is significantly different from both. zhp-3(H25A);zhp-4(H26A) has on average 12 DAPI bodies indicating a severe loss of function (significantly different from all other genotypes assessed). Statistical significance assessed by Kruskal-Wallis test and post Dunn’s test: ns = not significant, p>0.05, *** p<0.001. Nuclei scored: +/+ n = 20, zhp-3(H25A) n = 21, zhp-4(H26A) n = 35, zhp-3(H25A);zhp-4(H26A) n = 25. (D) Bar graph showing the frequency of genetic recombination in two large genetic intervals in wild types and zhp-4 mutants (detailed in Materials and Methods). Multiple pairwise coparisons indicate that wild types and zhp-4 mutants are all significantly different from one another in the X chromosome dpy-3(e27) unc-3(e151) interval. In the dpy-18(e364) unc-25(e156) interval on chromosome III, no statistical difference was observed between wild types and zhp-4(vv96) mutants, but zhp-4(H26A) mutants are statistically different from both wild types and zhp-4(vv96) mutants. Data are represented as recombination frequency results ± 95% confidence interval and statistical analysis was conducted using Chi-squared test and Bonferroni corrections on the raw count of phenotypes (ns p>0.05, *** p<0.001).