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Abstract

The intracellular functions of heat shock proteins (HSPs) as chaperones of macromolecules are 

well known. Current observations point to a role of these chaperones in initiating and modulating 

immune responses to tumors via receptor(s) on dendritic cells. In this article we provide an insight 

into, and a basis for, the importance of these HSP-mediated immune responses in rejecting nascent 

and emerging tumors.
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Heat shock proteins as chaperones of macromolecules

The major chaperones within cells belong to the Heat Shock Protein family. The proteins 

assist the folding of proteins and polypeptides fold into their native, most stable 

configurations1,2. Some HSPs are induced by stress but others are constitutively expressed1. 

Over the past decade the chaperone function of HSPs has been shown to include the binding 

and transport of several macromolecules including peptides derived from homeostatic 

protein turnover3–10. This peptide binding property of HSPs has been implicated in several 

immunological processes and pathways including antigen transfer, direct and cross-

presentation. For example, peptides in the MHC I processing and presentation pathway are 

shuttled by HSPs in the cytosol and endoplasmic reticulum4–7. HSPs are solely intracellular 

proteins and are tightly regulated as such. However, under certain pathological conditions 

some HSPs can be found in the extracellular environment, free as a diffusable soluble 

protein11,12, as part of the extracellular matrix12 or on the membrane of cells13. Infection by 

pathogens, hostile cancer microenvironments, and inflammation associated with these 

events, commonly cause significant cell death which leads to passive release of these 

abundant chaperones11. The peptide chaperone function of HSPs is critical to its role in the 

immune system both intracellularly and in the extracellular environment.
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Extracellular HSPs are immunogenic

Several HSPs have been shown to elicit immune responses14–27. This remarkable property 

was first observed when gp96 was biochemically isolated as the immunogenic entity of 

tumor cells14. In that study, when mice where immunized with gp96 preparations derived 

from a tumor, they became resistant to a subsequent challenge of that same tumor. This 

phenomenon has been replicated for hsp7015, hsp9016, calreticulin17, grp17018 and 

hsp11018, the major chaperones of cells. Since HSPs chaperone peptides within cells3–10, 

when isolated from tumor cells, the peptide repertoire includes tumor antigens expressed by 

that tumor7–9,14–18. The purified HSP-peptide complexes therefore represent the antigenic 

finger print of the cell from which they are isolated. The same applies to infected cells. This 

has been empirically tested. In several antigenically defined systems, HSPs have been shown 

to be associated with antigens that ultimately get presented by MHC I and MHC II 

molecules thereby dictating CD8 and CD4 T cell specificities of the immune response 

respectively. These systems include HSPs isolated from tumors7–10,27,28, infected cells29–34, 

allo-MHC cells35,36 and cells expressing model antigens35–38. In studies where crystal 

structures of HSPs have been resolved, peptide binding pockets within the HSP structure 

have been clearly identified39–41. HSPs can prime immune responses because of the 

presence of cell surface receptors on antigen presenting cells (APC)42. In the extracellular 

environment, HSPs engage CD91, a receptor which is expressed by most APCs20,43–55. 

CD91 serves two functions; (a) On conventional dendritic cells, CD91 acts as an endocytic 

receptor to internalize HSP-peptide complexes43–46. Several other cell surface receptors for 

the immunogenic HSPs have been proposed and are discussed elsewhere42. Following 

CD91-dependent endocytosis, the HSP-peptide complexes are processed and the peptides 

enter the pathways for antigen presentation for MHC I43,44,47 or MHC II45,48 of the APC. 

(b) CD91 also acts as a signaling receptor21. Upon engagement by HSPs, various signaling 

and transcription factors are activated following phosphorylation of the CD91 cytoplasmic 

chain, leading to production and secretion of cytokines and upregulation of co-stimulatory 

molecules11,21,51. On conventional dendritic cells, the signaling pathways and outcomes are 

responsible for and supportive of Th1 responses, and subsequent HSP-mediated rejection of 

tumors and pathogens following vaccination. Interestingly CD91 is expressed by 

hematopoietic cells of both myeloid and lymphoid origin including macrophages and a 

variety of DC subsets52–55. When HSPs are in the extracellular environment, HSPs can 

engage CD91 on any APC in that microenvironment, or can drain to lymph nodes and 

engage (additional) APCs at this distal site52. Using fluorescent tags, HSPs were shown to 

engage cDCs in vivo at doses capable of priming Th1 responses52. However increasing 

amounts of HSPs leads to engagement of additional cells, including pDCs53. The exact 

phenotype of the immunological responses is determined by the CD91+ APC engaged by the 

extracellular HSP. For example, pDCs engage extracellular HSPs but do not cross-present 

HSP-chaperoned peptides nor upregulate B7 or CD4053,56. Rather they promote an immune-

regulatory phenotype characterized by T reg. These responses have been harnessed for 

immunotherapy of autoimmune disease and amelioration of tissue allo-graft 

acceptance21–23. Engagement of cDCs by the same HSPs promote Th1 response that reject 

tumors43,44,47,52. The influence of other tumor secreted molecules, besides HSPs, in the 

immediate microenvironment potentially also plays a role in the resulting immune 
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response20. Molecules like HMGB157, dsDNA58 and cytokines21 have been shown to be 

immunologically important and could complement or antagonize the responses emanating 

from the HSP-APC interaction. For example, tumor-secreted TGF-β synergizes with HSP/

CD91-dependent IL-6 and TNF-α released from APCs to prime Th17 responses21. The 

resulting immunological response elicited by extracellular HSPs will be dependent on the 

influence of local APCs on cross-priming by cDCs in the draining lymph node. Many of 

these mechanisms, while demonstrated in murine models also hold true in the human 

setting59,60.

Extracellular HSPs as the molecular signature for immunological danger

A majority of the findings described above have been performed in a vaccination setting 

where purified HSPs are administered to rodents or humans15–20,22–25. However in studies 

examining HSPs released from cells in situ the same stimulation of APCs can be 

observed53,61,62. Under pathological conditions and cell death HSPs are released from cells 

and delivered to the extracellular environment11–13. Mechanisms of active secretion of HSPs 

have also been described to explain the extracellular presence of HSPs63. However, since 

HSPs contain no consensus sequences for such cellular trafficking and secretion, it is hard to 

conceive the cell biology comprising such a pathway, especially for the cytosolic HSPs. A 

passive release mechanism, when membrane integrity is compromised, appears more likely. 

Examples of conditions where passive release of HSPs is likely include cellular infection by 

bacteria and viruses, cancer, trauma, and associated inflammation. Collectively, HSPs are the 

most abundant proteins in cells accounting for >5% of the proteome1. Thus, they are ideal 

indicators to the immune system of cellular aberrancy. There are now 6 key HSPs known to 

be rapidly recognized by the APCs14–18 via cell surface receptor(s). The surprising 

discovery of the HSP receptor expressed on APCs afforded a molecular description of these 

immunological mechanisms43,44. Since the receptor(s) offers a significant degree of 

specificity for recognition of intracellular content they become key players in the immune 

system, allowing HSPs to be critical initiators AND mediators of resulting immune 

responses. Following the initiation of antigen-specific immune responses against cancers or 

pathogen infected cells, extracellular HSPs exacerbate existing inflammatory conditions or 

suppress ongoing immunity61. There is currently a well-developed picture on the cross-

presentation of HSP-chaperoned peptides to which T cells are primed, and pathways which 

leads to the release of cytokines, including the proinflammatory IL-1, IL-6, and TNFα11,21. 

Extracellular HSPs have been implicated in the etiology, progression and/or resolution of 

several diseases including cancer and rheumatoid arthritis61,64,65. In rheumatoid arthritis, the 

presence of extracellular hsp70 and gp96 in synovial fluid of inflamed joints has been shown 

to stimulate local APCs which release pro-inflammatory cytokines. These events constitute a 

cycle of tissue destruction, increased release of HSPs and increased inflammation64,65. 

Recognition of endogenous molecules (HSPs) by their respective receptors can be compared 

on some level to the recognition of pathogen associated molecular patterns (PAMPs) by 

pattern recognition receptors (PRRs)66.
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Tumor immunosurveillance and the HSP-CD91 pathway

Immunosurveillance of cancer initially envisaged that the immune system recognized 

aberrant cells and eliminated them before progression to cancer occurred67–69. Currently we 

know that priming of T cell and NK cell immunity is necessary for rejection of aberrant 

cells. In the absence of such immunity in mice70,71 or in humans72,73, achieved by the loss 

of these immune cells themselves or their effector molecules, multiple and frequent tumors 

arise. The tumors that arise under these immune compromised conditions are less edited 

compared to tumors from wild type mice70,74. The literature however, until recently, failed 

to reconcile two issues. The first pertains to the miniscule amount of antigen available for 

priming T cell responses at the very earliest stages of nascent tumor development75,76. The 

realization that most tumor rejection antigens are unique and derived from mutated 

proteins77–80 predicts that antigen levels in (emerging) tumors (and the quantity available for 

cross-presentation) is minute, and as a soluble protein, has indeed been shown to be 

insufficient for cross-priming of T cell responses75,76. Yet, T cell responses are easily 

measurable at these early time points of tumorigenesiseg.81,82. Mechanisms of antigen 

transfer and cross-presentation described for other systems83–90 where antigen is abundant 

or supra-physiological are not justifiable for nascent, emerging tumors. Thus, a super-

efficient mechanism must exist for antigen cross-presentation in this setting91. Experimental 

evidence shows that these quantitative restrictions are satisfied only if one invokes the HSP-

peptide complexes released by tumor cells as a mechanism of antigen transfer61,91. When 

tumor antigen levels are low, peptides derived from tumor antigens and chaperoned by HSP 

are efficiently cross-presented by APCs, a system that is dependent on CD91 expressed on 

APCs42–44. One microgram of total immunogenic HSP (an amount that will be present in < 

10000 cells), will chaperone approximately a nanogram of a specific antigenic/mutated 

peptide31,92. This amount of antigen is sufficient for cross-priming only when chaperoned 

by the HSP (Fig. 1). The second issue relates to the stimuli in the setting of nascent, 

emerging tumors that results in co-stimulation for T cell priming. Over millenia the immune 

system has evolved to recognize PAMPs associated with pathogens but are necessarily 

absent in the host66. PAMPs generate co-stimulation and cytokines required for T cell 

priming through well-defined pathways which are absent for a nascent tumors. Interestingly, 

a very short list of molecules of host origin, typically called DAMPs can do so11,21,57,58. 

HSPs are the prototypical DAMPs, the first group of host molecules found to stimulate DCs 

to release cytokines, upregulate co-stimulatory molecule expression11 and prime immune 

responses14. The HSP/DAMP receptor, CD91, channels intracellular signals to achieve this 

and the co-stimulation provided by APCs has been well defined21. Thus, tumor derived 

HSP-peptide complexes are a single entity with the capacity of priming robust antigen-

specific T cell responses, without the requirement of additional adjuvanticity or antigen.

HSPs have been known to require NK cell activity for effective anti-tumor immunity93,94. 

Immunization with tumor-derived HSPs does not lead to tumor rejection in mice devoid of 

NK cells. NK cell activity in mice immunized with HSPs has recently been examined and 

showed that HSPs activate NK cells indirectly to produce IFN-γ via the stimulated DC. NK 

cells are preferentially required for their helper rather than their cytotoxic function in the 

context of T cell rejection of tumors94. Thus, HSPs have the capacity of priming T cell and 
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NK cell activity which coordinately and cooperatively reject established or nascent emerging 

tumors. We present a new picture of tumor immunosurveillance, one that has the HSP-CD91 

pathway at the center of cross-priming T cell and activation of NK cell responses (Fig. 1).

The requirement for T cells or NK cells in tumor immunosurveillance has been shown by 

their selective deficiency which effectively renders the host susceptible to multiple and 

frequent cancers as they are unable to eliminate nascent, emerging tumor cells70,71. One 

would therefore predict that deficiencies in HSPs, CD91 or components of this pathway 

would similarly abrogate T and NK cell immunity and lead to enhancement of tumor 

growth. Several of these aspects have been tested empirically to date. In genetically 

engineered mice with selective deficiency of CD91 in APCs, HSPs are unable to cross-

present chaperoned peptides and stimulate co-stimulation61. These mice thus fail to mount 

tumor-specific T cells and control tumor growth. The immunogenic HSPs play redundant 

roles in cross-priming and their collective deletion mice is not feasible. However, when 

HSPs are collectively deleted in tumor cell lysates, the resulting lysates are incapable of 

priming tumor-specific immunity, even though they contain soluble tumor antigen75. These 

results cumulatively point to the HSP-CD91 pathway as essential for priming immune 

responses against tumors and for tumor immunosurveillance. While other DAMPs such as 

HMGB1 and dsDNA may contribute additional cytokines or co-stimulation through APCs, 

they do not appear essential tumor immunity, but may influence ongoing responses. While 

emerging tumors acquire several mechanisms to evade immune rejection such as antigen 

loss or secretion of TGF-β, we can now add to this list potential defects in HSP-mediated 

priming of anti-tumor immunity.

Conclusion

Defining the role of tumor-derived HSPs and CD91 in tumor immunosurveillance is still 

gathering steam but the current experimental evidence supporting this premise is significant. 

There is now a molecular mechanism as to how immune response, constituting CTL and NK 

cell activity, is initiated against a nascent emerging tumor, and how this leads to rejection of 

tumors. The evidence supporting this model also fulfils the quantitative restrictions defined 

by the scarcity of the tumor antigens. In a tumor microenvironment, with release of multiple 

HSPs and in the presence of several different APC populations, the immune response is fluid 

but can be of the Th1 type for tumor rejection. This response may also be fine-tuned by 

other factors such as additional DAMPs or molecules associated with DNA damage95.
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Figure 1. 
HSPs prime immune responses responsible for eradication of premalignant cells. HSPs 

released from aberrant, membrane compromised cells engage dendritic cells locally or in the 

draining lymph nodes via the receptor CD91. Dendritic cells mature and cross-present HSP-

chaperoned antigens to T cells. T cells are primed and NK cells are activated by these DCs. 

Activated effector cells eliminate aberrant, premalignant cells prior to formation of cancer.
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