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Abstract
The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or surface (e.g.,

fsaverage) coordinate systems. Accurate mappings between volumetric and surface coordinate sys-

tems can facilitate many applications, such as projecting fMRI group analyses from MNI152/

Colin27 to fsaverage for visualization or projecting resting-state fMRI parcellations from fsaverage

to MNI152/Colin27 for volumetric analysis of new data. However, there has been surprisingly little

research on this topic. Here, we evaluated three approaches for mapping data between MNI152/

Colin27 and fsaverage coordinate systems by simulating the above applications: projection of

group-average data from MNI152/Colin27 to fsaverage and projection of fsaverage parcellations

to MNI152/Colin27. Two of the approaches are currently widely used. A third approach (registra-

tion fusion) was previously proposed, but not widely adopted. Two implementations of the

registration fusion (RF) approach were considered, with one implementation utilizing the Advanced

Normalization Tools (ANTs). We found that RF-ANTs performed the best for mapping between

fsaverage and MNI152/Colin27, even for new subjects registered to MNI152/Colin27 using a dif-

ferent software tool (FSL FNIRT). This suggests that RF-ANTs would be useful even for

researchers not using ANTs. Finally, it is worth emphasizing that the most optimal approach for

mapping data to a coordinate system (e.g., fsaverage) is to register individual subjects directly to

the coordinate system, rather than via another coordinate system. Only in scenarios where the

optimal approach is not possible (e.g., mapping previously published results from MNI152 to fsa-

verage), should the approaches evaluated in this manuscript be considered. In these scenarios, we

recommend RF-ANTs (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/

registration/Wu2017_RegistrationFusion).

K E YWORD S

atlas, Colin27, deformation, fMRI, group analysis, MNI152, registration, structural MRI, Talairach

Hum Brain Mapp. 2018;1–16. wileyonlinelibrary.com/journal/hbm VC 2018Wiley Periodicals, Inc. | 1

Received: 9 January 2018 | Revised: 7 April 2018 | Accepted: 2 May 2018

DOI: 10.1002/hbm.24213

Hum Brain Mapp. 2018;39:3793–3808. wileyonlinelibrary.com/journal/hbm © 2018 Wiley Periodicals, Inc. 3793

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2019 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2018;39:3793–3808. wileyonlinelibrary.com/journal/hbm 3793

https://orcid.org/0000-0002-4866-272X


R21-DK-108277-01; National Institute for

Neurological Disorders and Stroke, Grant/

Award Numbers: R01NS0525851,

R21NS072652, R01NS070963,

R01NS083534, 5U01NS086625; NIH Blue-

print for Neuroscience Research, Grant/

Award Number: 5U01-MH093765

1 | INTRODUCTION

Most neuroimaging studies register their participants to a common

coordinate system for group analyses (Evans et al., 1993; Fischl,

Sereno, Tootell, & Dale, 1999b; Talairach et al., 1967; Talairach & Tour-

noux, 1988; Thompson et al., 1997; Van Essen, 2002). Even studies

focusing on individual-specific analyses map individual participants to a

common coordinate system (e.g., Gordon et al., 2017), allowing for

comparisons across participants or studies. There are two main types

of coordinate systems: volumetric and surface. The advantage of volu-

metric coordinate systems is that both cortical and subcortical struc-

tures are represented, in contrast to surface coordinate systems that

only focus on the cerebral cortex. Conversely, surface-based coordi-

nate systems allow for more accurate intersubject registration by

respecting the 2D topology of the cerebral cortex (Anticevic et al.,

2008; Cointepas, Geffroy, Souedet, Denghien, & Riviere, 2010; Fischl,

Sereno, & Dale, 1999a; Ghosh et al., 2010; Goebel, Esposito, & Formi-

sano, 2006; Pantazis et al., 2010; Tucholka, Fritsch, Poline, & Thirion,

2012; Van Essen, Glasser, Dierker, Harwell, & Coalson, 2012).

The most popular volumetric coordinate system is the MNI152

template, obtained by group-wise registration of 152 participants

(Fonov et al., 2011; Good et al., 2001; Grabner et al., 2006; Mazziotta,

Toga, Evans, Fox, & Lancaster, 1995, 2001). Another common volumet-

ric coordinate system is the single-subject MNI template (i.e., Colin27;

Holmes et al., 1998), often used in the neuroimaging software packages

SPM and MRIcron for lesion-symptom mapping (Ashburner & Friston,

1999; Rorden, Karnath, & Bonilha, 2007). The most popular surface

coordinate system is FreeSurfer fsaverage template (Bar & Aminoff,

2003; Filimon, Nelson, Hagler, & Sereno, 2007; Fischl et al., 1999b;

Yeo et al., 2010a). An important issue with multiple coordinate systems

is that results reported in one coordinate system cannot be easily

translated to another coordinate system.

While there have been tremendous research efforts on mapping

data from individual subjects into common coordinate systems (Ander-

sson, Jenkinson, & Smith, 2007; Ashburner, 2007; Collins, Neelin,

Peters, & Evans, 1994; Hamm, Ye, Verma, & Davatzikos, 2010; Hellier

et al., 2003; Nenning et al., 2017; Robinson et al., 2014; Rueckert et al.,

1999; Tong, Aganj, Ge, Polimeni, & Fischl, 2017; Woods, Grafton, Wat-

son, Sicotte, & Mazziotta, 1998; Yeo et al., 2010b; Yushkevich, Wang,

Pluta, & Avants, 2012), there is significantly less work on mappings

between coordinate systems (Laird et al., 2010; Lancaster et al., 2007).

Accurate mapping between volumetric (e.g., MNI152) and surface (e.g.

fsaverage) coordinate systems would be useful for many applications.

For example, it is a common practice for researchers to perform group

analysis in MNI152 space, and then project the results to fsaverage

space for visualization (Liu, Stufflebeam, Sepulcre, Hedden, & Buckner,

2009; Sepulcre et al., 2010; Yeo et al., 2015). As another example,

resting-state parcellations estimated in fsaverage or fs_LR surface coor-

dinate systems (Glasser et al., 2016; Gordon et al., 2016; Schaefer

et al., 2017; Yeo et al., 2011) can be projected to the MNI152 coordi-

nate system for analyzing fMRI data of new subjects registered to the

MNI152 template. Finally, a more accurate MNI152-fsaverage mapping

would facilitate the comparison of thousands of neuroimaging studies

reported in either MNI152 or fsaverage coordinate system.

In this work, we evaluate three approaches (including two imple-

mentations of one of the approaches) for mapping between volumetric

(MNI152 or Colin27) and surface (fsaverage) coordinate systems. The

evaluation utilized simulations mimicking the previously described

applications: projection of group-average data from MNI152/Colin27

to fsaverage and projection of surface-based parcellations from fsaver-

age to MNI152/Colin27. We note that the evaluations are not compar-

isons of volumetric and surface registrations. Instead, the evaluations

served to provide error bounds on different mappings between

MNI152/Colin27 and fsaverage coordinate systems and to guide the

adoption of best practices.

It is also worth emphasizing that a perfect mapping between volu-

metric and surface coordinate systems is impossible because of regis-

tration errors that become irreversible after group averaging.

Therefore, the best way of mapping data to fsaverage is by registering

subjects directly to fsaverage (e.g., via the official FreeSurfer recon-all

pipeline). Similarly, the best way of mapping data to MNI152/Colin27

is by registering subjects directly to the corresponding volumetric tem-

plate. The approaches evaluated in this article should only be consid-

ered when the best approach is not possible, for example, mapping

previously published results from MNI152 to fsaverage. Whenever the

original data from a subject’s native space are available, one should per-

form registration between the subject’s native space and the desired

coordinate system (fsaverage, MNI152 or Colin27) directly, rather than

utilize the approaches evaluated in this article.

2 | METHODS

2.1 | Volumetric and surface templates

The MNI152 coordinate system is created by averaging the MRI scans

of 152 participants and affords a higher resolution over the original

MNI305 average brain. Here we consider the 1 mm asymmetric

MNI152 template distributed by the FMRIB Software Library (FSL) ver-

sion 5.0.8. The template was obtained by the linear and nonlinear regis-

tration of 152 T1-weighted images (Grabner et al., 2006).

Although MNI152 is the most commonly used volumetric coordinate

system, the intersubject averaging results in the loss of fine anatomical
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details. Therefore, some research communities (e.g., neuropsychology)

prefer single-subject templates. A commonly used single-subject template

is Colin27 (also called the MNI single subject template), which is an aver-

age image across 27 scans of one subject (Holmes et al., 1998). We used

the 1 mm Colin27 template from the Statistical Parametric Mappings

(SPM) Anatomy Toolbox version 2.2c (Eickhoff et al., 2005).

Finally, the most common surface coordinate system is FreeSurfer

fsaverage, which is obtained by spherical alignment of 40 participants

(Fischl et al., 1999a,b). As a surface template, fsaverage offers excellent

representation of the cortical surface’s intrinsic topological structure as

well as multi-scale summary statistics of cortical geometry. It also has

an inflated form, which facilitates data visualization. We used the fsa-

verage template from FreeSurfer version 4.5.0.

2.2 | Data and FreeSurfer processing

Data from 1,490 subjects from the Brain Genomics Superstruct Project

(GSP) were considered (Holmes et al., 2015). All imaging data were col-

lected on matched 3T Tim Trio scanners using the vendor-supplied 12-

channel phase-array head coil. Subjects were clinically normal, English-

speaking young adults (ages 18–35). The structural MRI data consisted

of one 1.2 mm 3 1.2 mm 3 1.2 mm scan for each participant. Details

of data collection can be found elsewhere (Holmes et al., 2015; Yeo

et al., 2011). The subjects were split into training and test set, each

containing 745 subjects.

A second dataset consisted of 30 healthy young adults from the

Hangzhou Normal University of the Consortium for Reliability and

Reproducibility (CoRR-HNU) dataset (Chen et al., 2015; Zuo et al.,

2014). All anatomical images were collected on matched 3T GE Discov-

ery MR750 scanners using an 8-channel head coil. Ten 1.0 mm 3

1.0 mm 3 1.0 mm scans were performed for each subject across one

month. In this article, we utilized all 10 sessions for all 30 subjects, giv-

ing rise to a total of 300 sessions.

The T1 images of the GSP dataset has been previously processed

(Holmes et al., 2015) using FreeSurfer 4.5.0 recon-all procedure

(http://surfer.nmr.mgh.harvard.edu; Dale, Fischl, & Sereno, 1999; Fischl

et al., 1999a,b,2001; S�egonne et al., 2004, 2007). For consistency, the

T1 images of the CoRR-HNU dataset were also processed using the

same FreeSurfer version. FreeSurfer constitutes a suite of automatic

algorithms that extract models of most macroscopic human brain struc-

tures from T1 MRI data. There are three outputs of the recon-all proce-

dure that were important for subsequent analyses.

First, FreeSurfer automatically reconstructs surface mesh represen-

tations of the cortex from individual subjects’ T1 images. The cortical

surface mesh is inflated into a sphere, and registered to a common

spherical coordinate system that aligned the cortical folding patterns

across subjects (Fischl et al., 1999a,b). The outcome of this procedure

is a nonlinear mapping between the subject’s native T1 space and fsa-

verage surface space.

Second, the recon-all procedure generates corresponding volumet-

ric (aparc.a2009s1 aseg.mgz) and surface (lh.aparc.a2009s.annot and

rh.aparc.a2009s.annot) parcellations of 74 sulci and gyri for each sub-

ject (Desikan et al., 2006; Destrieux, Fischl, Dale, & Halgren, 2010;

Fischl et al., 2004b). FreeSurfer assign these labels based on probabilis-

tic information estimated from a manually labeled training set (Des-

trieux atlas) and geometric information derived from the cortical model

of the subject. These anatomical segmentations will be utilized in our

evaluation of various algorithms for mapping between MNI152/

Colin27 and fsaverage.

Third, the recon-all procedure performs a joint registration-

segmentation procedure that aligns the T1 image to an internal Free-

Surfer volumetric space,1 while classifying each native brain voxel into

one of multiple brain structures, such as the thalamus and caudate

(Fischl et al., 2004a,b). The outcome of this procedure is a nonlinear

mapping between the subject’s native T1 space and FreeSurfer internal

volumetric space. The nonlinear mapping is represented by a dense dis-

placement field (i.e., a single displacement vector at each 2 mm iso-

tropic atlas voxel) and can be found in the file “talairach.m3z” (under

the “mri/transforms” folder of the recon-all output).

2.3 | Affine and MNIsurf

Two existing approaches (Affine and MNIsurf) for mapping between

MNI152 and fsaverage coordinate systems were identified. Both

approaches have been discussed on the FreeSurfer mailing list and

might be considered as “recommended” FreeSurfer approaches.

Figure 1 summarizes the Affine approach for mapping between

MNI152 and fsaverage surface coordinate systems. The Affine

approach made use of an affine transformation between the MNI152

template and fsaverage volume space (Figure 1a) provided by FreeSur-

fer (i.e., $FREESURFER_HOME/average/mni152.register.dat). This

affine transformation can be concatenated with the mapping between

FIGURE 1 Affine procedure. (a) MNI152 and fsaverage volume was aligned using an affine transformation. (b) FreeSurfer provides a
mapping between fsaverage volume and fsaverage surface. Concatenating the two transformations result in a mapping between MNI152
and fsaverage surface

1Note that this internal volumetric space is different from fsaverage

volume.
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fsaverage volume and fsaverage surface (Figure 1b) using FreeSurfer

functions (mri_vol2surf and mri_surf2vol), thus yielding a mapping

between MNI152 and fsaverage coordinate systems.

One drawback of this approach is that an affine transformation is

unlikely to eliminate nonlinear anatomical differences between

MNI152 and fsaverage volume. Simply replacing the affine transfor-

mation with a nonlinear warp (Van Essen et al., 2012) might not be

helpful because the fsaverage volume is a blurry average of 40 sub-

jects after affine registration; fine anatomical details have already

been lost.

Figure 2 summarizes the MNIsurf approach for mapping between

MNI152 and fsaverage surface coordinate systems. The MNI152 tem-

plate was first processed with FreeSurfer recon-all. The recon-all pro-

cess involved extracting MNI152 template’s cortical ribbon and

reconstructing the cortical surface (Figure 2a). FreeSurfer commands

(mri_vol2surf and mri_surf2vol) could then be utilized to map between

MNI152’s cortical ribbon (as segmented by recon-all) and fsaverage

surface (Figure 2b).

One drawback of MNIsurf is that the cortical ribbon of a typical

subject mapped to MNI152 coordinate system will not exactly match

the group-average MNI152 cortical ribbon (which is abnormally thin

and misses some low-frequency and/or thin folds due to intersubject

averaging). Consequently, there will be irreversible registration errors

from averaging subjects mapped to the MNI152 coordinate system.

MNIsurf does not take into account these irreversible registration errors

because it simply maps the cortical ribbon of MNI152 directly to fsaver-

age surface.

2.4 | Registration fusion: RF-M3Z and RF-ANTs

The registration fusion (RF) approach was first introduced by Buckner

and colleagues (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011; Yeo

et al., 2011). Figure 3 summarizes the original implementation. Recall

that by applying FreeSurfer recon-all procedure to each GSP training

subject, we have generated for each subject a nonlinear mapping

between the subject’s cortical ribbon and fsaverage surface space (Fig-

ure 3c) and a nonlinear mapping between the subject’s T1 volume and

FreeSurfer internal volumetric space (Figure 3b). By also processing the

MNI152 template with FreeSurfer recon-all, we also obtained a nonlin-

ear mapping between the MNI152 template and FreeSurfer internal

volumetric space (Figure 3a). By concatenating the three transforma-

tions (Figure 3a–c) for each subject, a mapping between MNI152 and

fsaverage coordinate systems for each GSP training subject was

obtained. By averaging across all 745 training subjects, a final mapping

between MNI152 and fsaverage coordinate systems was obtained.

This mapping is referred to as RF-M3Z.

Visual inspection suggested that the mappings between MNI152

and individual subjects (concatenations of transformations in Figure 3a,

FIGURE 2 MNIsurf procedure. The MNI152 template was processed using FreeSurfer recon-all. The cortical ribbon of MNI152 was (a)
extracted and (b) aligned to fsaverage surface during the recon-all procedure [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Registration fusion (RF-M3Z) procedure. Each subject’s T1 volume is mapped to the (a, b) MNI152 template and (c) fsaverage
surface. By concatenating the mappings for each subject and then averaging the deformations across all 745 training subjects, we created a

mapping between MNI152 and fsaverage surface space. All mappings (a–c) were generated using FreeSurfer’s recon-all procedure. More
specifically, mappings (a) and (b) were provided by the talairach.m3z files generated by recon-all, so we refer to the resulting MNI152-
fsaverage mapping as RF-M3Z [Color figure can be viewed at wileyonlinelibrary.com]
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fsaverage coordinate systems for each GSP training subject was

obtained. By averaging across all 745 training subjects, a final mapping

between MNI152 and fsaverage coordinate systems was obtained.

This mapping is referred to as RF-M3Z.

Visual inspection suggested that the mappings between MNI152

and individual subjects (concatenations of transformations in Figure 3a,

FIGURE 2 MNIsurf procedure. The MNI152 template was processed using FreeSurfer recon-all. The cortical ribbon of MNI152 was (a)
extracted and (b) aligned to fsaverage surface during the recon-all procedure [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Registration fusion (RF-M3Z) procedure. Each subject’s T1 volume is mapped to the (a, b) MNI152 template and (c) fsaverage
surface. By concatenating the mappings for each subject and then averaging the deformations across all 745 training subjects, we created a

mapping between MNI152 and fsaverage surface space. All mappings (a–c) were generated using FreeSurfer’s recon-all procedure. More
specifically, mappings (a) and (b) were provided by the talairach.m3z files generated by recon-all, so we refer to the resulting MNI152-
fsaverage mapping as RF-M3Z [Color figure can be viewed at wileyonlinelibrary.com]
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b) were of good quality (Buckner et al., 2011; Yeo et al., 2011). How-

ever, by concatenating two deformations, small registration errors in

each deformation may be compounded to result in large registration

errors. Furthermore, FreeSurfer is optimized for processing the brains

of individual subjects, not an average brain like the MNI152 template.

Therefore, we also considered a second implementation, where

the individual subjects and the MNI152 template were directly regis-

tered using ANTs (Avants, Epstein, Grossman, & Gee, 2008; Avants,

Tustison, & Song, 2009). More specifically, each GSP training subject’s

T1 image was directly registered to the MNI152 template using an

affine transformation followed by Symmetric Normalization (Figure 4a).

Like RF-M3Z, the mapping between each subject’s cortical ribbon and

fsaverage surface space was provided by FreeSurfer recon-all (Figure

4b). By concatenating the two transformations (Figure 4a,b) for each

subject, a mapping between MNI152 and fsaverage coordinate systems

for each GSP training subject was obtained. By averaging across all 745

training subjects, a final mapping between MNI152 and fsaverage coor-

dinate systems was obtained. This mapping is referred to as RF-ANTs.

It is important to note that this does not constitute a comparison of

FreeSurfer and ANTs (Klein et al., 2010), as FreeSurfer is not being

used in the way it was designed (i.e., individual subject analyses) in the

case of RF-M3Z.

2.5 | Tight and loose cortical masks for fsaverage-to-

MNI152 mappings

It is worth mentioning an important asymmetry in the generation of

the MNI-to-fsaverage and fsaverage-to-MNI mappings. When comput-

ing the MNI-to-fsaverage mapping, each subject yielded a mapping

between every fsaverage vertex and some MNI location, which allowed

for a simple averaging of MNI-to-fsaverage mappings across all 745

training subjects. By contrast, when computing the fsaverage-to-MNI

mapping, not every training subject yielded a mapping between every

MNI location and some fsaverage vertex because not every MNI loca-

tion corresponded to the cerebral cortex of every subject.

Therefore, when computing the fsaverage-to-MNI mapping, we

defined two cortical masks. Figure 5 illustrates the two MNI152 masks

and the difference between them. The tight cortical mask corre-

sponded to the cortex for at least 50% of the subjects (Figure 5a), while

the loose cortical mask corresponded to the cortex for at least 15% of

FIGURE 4 Registration fusion (RF-ANTs) procedure. Each subject’s T1 volume is mapped to the (a) MNI152 template and (b) fsaverage
surface. By concatenating the mappings (a and b) for each subject and then averaging the deformations across all 745 training subjects, we
created a mapping between MNI152 and fsaverage. Mapping (a) was generated using ANTs, so we refer to the resulting MNI152-fsaverage
mapping as RF-ANTs [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Cortical masks for fsaverage-to-MNI152 mappings. (a) Tight cortical mask corresponding to 50% of the 745 GSP training sub-
jects. (b) Loose cortical mask corresponding to 15% of the training subjects. (c) Difference between tight and loose cortical masks [Color
figure can be viewed at wileyonlinelibrary.com]
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the subjects (Figure 5b). For each tight cortical mask voxel (Figure 5a),

the fsaverage-to-MNI152 mappings were averaged across all subjects

with valid fsaverage-to-MNI152 mappings for the voxel. The averaged

mapping was then grown outwards to fill the entire loose cortical

mask. More specifically, for each voxel outside the tight mask (but

within the loose mask; Figure 5c), its nearest voxel within the tight

mask (Figure 5a) was identified based on Euclidean distance. The voxel

was then assigned the same fsaverage surface coordinates as its near-

est voxel within the tight mask. Therefore, fsaverage surface data can

be projected to fill up the entire loose cortical mask in the MNI152

template. This procedure was repeated for Affine, MNIsurf, RF-M3Z

and RF-ANTs.

2.6 | MNI152-to-fsaverage evaluation

To evaluate the MNI152-to-fsaverage projection, let us consider a pos-

sible usage scenario. Researchers often project data (e.g., fMRI) from

subjects’ native spaces to MNI152 coordinate system for some form of

group analysis. The outcome of the group analysis can be visualized in

the volume, but is often projected to fsaverage surface for visualiza-

tion. By contrast, data from subjects’ native space can be directly pro-

jected to fsaverage surface for group analysis. The subjects-to-

MNI152-to-fsaverage results should ideally be close to the subjects-to-

fsaverage results.

To simulate the above scenario, recall that we have processed

the 745 GSP test subjects using FreeSurfer recon-all, yielding

corresponding surface (lh.aparc.a2009s.annot and rh.aparc.a2009s.

annot) and volumetric (aparc.a2009s1 aseg.mgz) parcellations of 74

sulci and gyri per cortical hemisphere (i.e., Destrieux parcellation).

Figure 6a illustrates the superior temporal sulcus label in two GSP

test subjects. The parcellation labels were projected to MNI152 coor-

dinate system using ANTs and averaged across subjects, resulting in

an ANTs-derived volumetric probabilistic map per anatomical struc-

ture. The probabilistic maps simulated the group-average results from

typical fMRI studies. As an example, Figure 6b illustrates the ANTs-

derived MNI152 volumetric probabilistic map of the superior tempo-

ral sulcus.

The MNI152 volumetric probabilistic maps (Figure 6b) can then be

projected to fsaverage surface using the various MNI152-to-fsaverage

projection approaches (dotted arrow in Figure 6) for comparison with

“ground truth” surface probabilistic maps (Figure 6c). The “ground

truth” surface probabilistic maps were obtained by averaging the sur-

face parcellations across subjects in fsaverage surface space, mapped

from each subject using FreeSurfer. As an example, Figure 6c shows

the “ground truth” surface probabilistic map of the superior temporal

sulcus.

To quantify the disagreement between the projected probabilistic

map and the “ground truth” surface probabilistic map of an anatomical

structure, the normalized absolute difference (NAD) metric was used.

The NAD metric was defined as the absolute difference between the

two maps, summed across all vertices and divided by the sum of the

“ground truth” probabilistic map. This metric measured the dissimilarity

FIGURE 6 MNI152-to-fsaverage evaluation. (a) Parcellation labels from each subject were projected to (b) MNI152 and (c) fsaverage. The
projected labels were averaged across subjects, resulting in a probabilistic map per anatomical structure in (b) MNI152 and (c) fsaverage,
respectively. Figure shows superior temporal sulcus as an example. The latter maps in (c) fsaverage were used as “ground truth.” The
MNI152 probabilistic maps can then be projected to fsaverage surface using the various projection approaches (dotted arrow) for
comparison with the “ground truth” maps [Color figure can be viewed at wileyonlinelibrary.com]
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the subjects (Figure 5b). For each tight cortical mask voxel (Figure 5a),

the fsaverage-to-MNI152 mappings were averaged across all subjects

with valid fsaverage-to-MNI152 mappings for the voxel. The averaged

mapping was then grown outwards to fill the entire loose cortical

mask. More specifically, for each voxel outside the tight mask (but

within the loose mask; Figure 5c), its nearest voxel within the tight

mask (Figure 5a) was identified based on Euclidean distance. The voxel

was then assigned the same fsaverage surface coordinates as its near-

est voxel within the tight mask. Therefore, fsaverage surface data can

be projected to fill up the entire loose cortical mask in the MNI152

template. This procedure was repeated for Affine, MNIsurf, RF-M3Z

and RF-ANTs.

2.6 | MNI152-to-fsaverage evaluation

To evaluate the MNI152-to-fsaverage projection, let us consider a pos-

sible usage scenario. Researchers often project data (e.g., fMRI) from

subjects’ native spaces to MNI152 coordinate system for some form of

group analysis. The outcome of the group analysis can be visualized in

the volume, but is often projected to fsaverage surface for visualiza-

tion. By contrast, data from subjects’ native space can be directly pro-

jected to fsaverage surface for group analysis. The subjects-to-

MNI152-to-fsaverage results should ideally be close to the subjects-to-

fsaverage results.

To simulate the above scenario, recall that we have processed

the 745 GSP test subjects using FreeSurfer recon-all, yielding

corresponding surface (lh.aparc.a2009s.annot and rh.aparc.a2009s.

annot) and volumetric (aparc.a2009s1 aseg.mgz) parcellations of 74

sulci and gyri per cortical hemisphere (i.e., Destrieux parcellation).

Figure 6a illustrates the superior temporal sulcus label in two GSP

test subjects. The parcellation labels were projected to MNI152 coor-

dinate system using ANTs and averaged across subjects, resulting in

an ANTs-derived volumetric probabilistic map per anatomical struc-

ture. The probabilistic maps simulated the group-average results from

typical fMRI studies. As an example, Figure 6b illustrates the ANTs-

derived MNI152 volumetric probabilistic map of the superior tempo-

ral sulcus.

The MNI152 volumetric probabilistic maps (Figure 6b) can then be

projected to fsaverage surface using the various MNI152-to-fsaverage

projection approaches (dotted arrow in Figure 6) for comparison with

“ground truth” surface probabilistic maps (Figure 6c). The “ground

truth” surface probabilistic maps were obtained by averaging the sur-

face parcellations across subjects in fsaverage surface space, mapped

from each subject using FreeSurfer. As an example, Figure 6c shows

the “ground truth” surface probabilistic map of the superior temporal

sulcus.

To quantify the disagreement between the projected probabilistic

map and the “ground truth” surface probabilistic map of an anatomical

structure, the normalized absolute difference (NAD) metric was used.

The NAD metric was defined as the absolute difference between the

two maps, summed across all vertices and divided by the sum of the

“ground truth” probabilistic map. This metric measured the dissimilarity

FIGURE 6 MNI152-to-fsaverage evaluation. (a) Parcellation labels from each subject were projected to (b) MNI152 and (c) fsaverage. The
projected labels were averaged across subjects, resulting in a probabilistic map per anatomical structure in (b) MNI152 and (c) fsaverage,
respectively. Figure shows superior temporal sulcus as an example. The latter maps in (c) fsaverage were used as “ground truth.” The
MNI152 probabilistic maps can then be projected to fsaverage surface using the various projection approaches (dotted arrow) for
comparison with the “ground truth” maps [Color figure can be viewed at wileyonlinelibrary.com]
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between the two maps, normalizing for the size of the anatomical

structure. A lower NAD value indicates better performance.

For every pair of approaches, the NAD metric for each of the 74

anatomical structures were averaged between the two hemispheres

and submitted to a paired-sample t test. Multiple comparisons were

corrected using a false discovery rate (FDR; Benjamini & Hochberg,

1995) of q< .05. All the p values reported in subsequent sections sur-

vived the false discovery rate.

2.7 | fsaverage-to-MNI152 evaluation

To evaluate the fsaverage-to-MNI152 projection, let us consider a pos-

sible usage scenario. It is unlikely that researchers would directly pro-

ject individual subjects’ fMRI data onto fsaverage surface space for

group-level analysis, and then project their results into MNI152 space

for visualization. A more likely scenario might be the projection of

surface-based resting-state fMRI cortical parcellations (Glasser et al.,

2016; Gordon et al., 2016; Schaefer et al., 2017; Yeo et al., 2011) to

MNI152 space. The projected resting-state fMRI parcellation can then

be utilized for analyzing new data from individual subjects registered to

the MNI152 coordinate system. In this scenario, it would be ideal if the

projected fsaverage-to-MNI152 resting-state parcellation were the

same as a parcellation that was estimated from resting-state fMRI data

directly registered to MNI152 space.

To simulate the above scenario, the Destrieux anatomical parcella-

tion of each GSP test subject (Figure 7a) was projected to fsaverage

and combined into a winner-takes-all parcellation (Figure 7b). The

surface-based parcellation can then be projected to MNI152 using the

various fsaverage-to-MNI152 projection approaches (dotted arrow in

Figure 7) for comparison with the “ground truth” volumetric parcella-

tion (Figure 7c). The “ground truth” volumetric parcellation was

obtained by projecting the individual subjects’ anatomical parcellations

(Figure 7a) into MNI152 space (using ANTs) and then combined into a

winner-take-all parcellation (Figure 7c).

To quantify the agreement between the projected parcellation and

the “ground truth” parcellation, the Dice coefficient was computed for

each of the 74 anatomical regions per hemisphere. A higher Dice value

indicates better performance.

For every pair of approaches, the Dice metric for each of the 74

anatomical structures were averaged between the two hemispheres

and submitted to a paired-sample t test. Multiple comparisons were

corrected using a false discovery rate (FDR; Benjamini & Hochberg,

1995) of q< .05. All the p values reported in subsequent sections sur-

vived the false discovery rate.

2.8 | Generalization to new data (CoRR-HNU) and FSL
FNIRT

The RF mappings were derived using the GSP training set. To ensure

the mappings generalize to new data, the above evaluations (MNI152-

to-fsaverage and fsaverage-to-MNI152) were repeated using the

CoRR-HNU dataset. Furthermore, the previous evaluation procedures

utilized ANTs to project subjects’ anatomical parcellations to MNI152

(Figures 6b and 7c), resulting in possible biases in favor of RF-ANTs. As

FIGURE 7 fsaverage-to-MNI152 evaluation. (a) Parcellation from each subject was projected to (b) fsaverage and (c) MNI152. By combining
the parcellations across subjects, winner-takes-all parcellations were obtained in (b) MNI152 and (c) fsaverage, respectively. The latter was
used as “ground truth.” The fsaverage winner-takes-all parcellation can be projected to MNI152 coordinate system using the various projection
approaches (dotted arrow) for comparison with the “ground truth” MN152 parcellation [Color figure can be viewed at wileyonlinelibrary.com]
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such, the above evaluations were repeated using FSL FLIRT/FNIRT

(Andersson et al., 2007). More specifically, FLIRT/FNIRT was utilized to

project individual subjects’ parcellation to MNI152 space to obtain

FNIRT-derived CoRR-HNU MNI152 volumetric probabilistic maps (Fig-

ure 6b) and FNIRT-derived CoRR-HNU MNI152 winner-take-all parcel-

lation (Figure 7c).

2.9 | Registration fusion convergence

In the previous analyses, as many training subjects as available

(N5745) were used to construct the average mappings for the RF

approaches. Here, we investigated the relationship between the accu-

racy of the RF approaches and the number of subjects used. More spe-

cifically, the MNI152-to-fsaverage evaluation (using ANTs-derived GSP

MNI152 maps) were repeated using RF mappings averaged across dif-

ferent number of subjects.

2.10 | Colin27-to-fsaverage and fsaverage-to-Colin27

The previous mappings and evaluations were repeated for Colin27. In

the case of the Affine approach, FreeSurfer does not provide a corre-

sponding Colin27-to-fsaverage-volume warp. Therefore, an affine warp

was generated using FSL FLIRT.

As we are now working with the Colin27 template, the MNIsurf

approach was renamed as Colin27surf. It should be noted that unlike

that of the MNI152 template, the cortical ribbon of the Colin27 tem-

plate is not abnormally thin (as it is a single-subject template). However,

using a single subject prevents the use of cross-subject variance meas-

ures that can stabilize intersubject registration (Fischl et al., 1999b).

Therefore, we also expect registration errors between the cortical rib-

bon of a typical subject and Colin27. Consequently, Colin27surf does

not take into account irreversible registration errors because it simply

maps the cortical ribbon of Colin27 directly to fsaverage.

3 | RESULTS

3.1 | MNI152-to-fsaverage projection

Figure 8 shows the projection of ANTs-derived MNI152 probabilistic

maps of four representative anatomical structures to fsaverage surface

space for the GSP test set. Figure 9 shows the projection of FNIRT-

derived MNI152 probabilistic maps of four representative anatomical

structures to fsaverage surface space for the CoRR-HNU dataset. The

black boundaries correspond to the winner-takes-all parcellation obtained

by thresholding the “ground truth” GSP or CoRR-HNU fsaverage surface

probabilistic maps. Visual inspection of Figures 8 and 9 suggests that the

projected probabilistic maps corresponded well to the “ground truth” for

all approaches, although there was also clear bleeding to adjacent ana-

tomical structures for the central sulcus and middle frontal sulcus.

The NAD evaluation metric is shown below each brain in Figures 8

and 9. A lower value indicates closer correspondence with the “ground

truth” probabilistic map. The NAD generally agreed with the visual

quality of the projections, suggesting its usefulness as an evaluation

metric. For example, in Figure 8, the projection of the left ANTs-

derived middle posterior cingulate probabilistic map using RF-ANTs vis-

ually matched the “ground truth” black boundaries very well, resulting

in a low NAD of 0.27. On the other hand, the corresponding projection

using MNIsurf aligned well with the posterior—but not the anterior—

portion of the “ground truth” black boundaries, resulting in a worse

NAD of 0.34 (Figure 8).

Figure 10 shows the NAD metric averaged across all anatomical

structures within each hemisphere. When ANTs-derived GSP MNI152

probabilistic maps were used, RF-ANTs was the best (p< .01 cor-

rected). RF-M3Z and MNIsurf showed comparable performance and

were both significantly better than Affine (p< .01 corrected). When

FNIRT-derived CoRR-HNU MNI152 probabilistic maps were used, RF-

ANTs were also the best (p< .01 corrected). RF-M3Z and Affine

showed comparable performance and were both significantly better

than MNIsurf (p< .04 corrected and p< .02 corrected). To summarize,

RF-ANTs always performed the best. We note that hemispheric

differences within each approach were not statistically significant (all

p> .2).

3.2 | Fsaverage-to-MNI152 projection

Figure 11 illustrates the projection of the fsaverage winner-takes-all

parcellation to MNI152 volumetric space for the GSP test set, juxta-

posed against black boundaries of ANTs-simulated “ground truth” seg-

mentations. Figure 12 illustrates the projection of the fsaverage

winner-takes-all parcellation to MNI152 volumetric space for the

CoRR-HNU dataset, juxtaposed against black boundaries of FNIRT-

simulated “ground truth” segmentations. Figures 11a and 12a show the

fsaverage-to-MNI152 projections before the dilation within the loose

cortical mask (Section 2). Figures 11b and 12b show the fsaverage-to-

MNI projections after the dilation, with insets illustrating example

regions with obvious differences across methods.

Figure 13 shows the Dice metric averaged across all anatomical

structures within each hemisphere. In the case of GSP test set (using

ANTs-simulated “ground truth”), RF-ANTs were the best (p< .01 cor-

rected). RF-M3Z, MNIsurf and Affine all showed comparable perform-

ance. In the case of the CoRR-HNU dataset (using FNIRT-simulated

“ground truth”), RF-ANTs and Affine were the best (p< .01 corrected).

There was no statistically significant difference between RF-ANTs and

Affine.

To summarize, RF-ANTs performed the best, although Affine also

performed surprisingly well when FNIRT-simulated CoRR-HNU “ground

truth” was considered (Figure 13, right). Visual inspection of Figure 12a

suggests that the projected cortical ribbon for Affine did not match well

to the MNI152 cortical ribbon. However, the dilation within the loose

cortical mask appeared to compensate for the poor mapping (Figure

12b), leading to a competitive dice score (Figure 13, right).

3.3 | Registration fusion convergence

Figure 14 shows the average NAD metric within each hemisphere for

projecting ANTs-derived GSP MNI152 probabilistic maps to fsaverage

space, plotted against the number of subjects used to construct the RF
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such, the above evaluations were repeated using FSL FLIRT/FNIRT

(Andersson et al., 2007). More specifically, FLIRT/FNIRT was utilized to

project individual subjects’ parcellation to MNI152 space to obtain

FNIRT-derived CoRR-HNU MNI152 volumetric probabilistic maps (Fig-

ure 6b) and FNIRT-derived CoRR-HNU MNI152 winner-take-all parcel-

lation (Figure 7c).

2.9 | Registration fusion convergence

In the previous analyses, as many training subjects as available

(N5745) were used to construct the average mappings for the RF

approaches. Here, we investigated the relationship between the accu-

racy of the RF approaches and the number of subjects used. More spe-

cifically, the MNI152-to-fsaverage evaluation (using ANTs-derived GSP

MNI152 maps) were repeated using RF mappings averaged across dif-

ferent number of subjects.

2.10 | Colin27-to-fsaverage and fsaverage-to-Colin27

The previous mappings and evaluations were repeated for Colin27. In

the case of the Affine approach, FreeSurfer does not provide a corre-

sponding Colin27-to-fsaverage-volume warp. Therefore, an affine warp

was generated using FSL FLIRT.

As we are now working with the Colin27 template, the MNIsurf

approach was renamed as Colin27surf. It should be noted that unlike

that of the MNI152 template, the cortical ribbon of the Colin27 tem-

plate is not abnormally thin (as it is a single-subject template). However,

using a single subject prevents the use of cross-subject variance meas-

ures that can stabilize intersubject registration (Fischl et al., 1999b).

Therefore, we also expect registration errors between the cortical rib-

bon of a typical subject and Colin27. Consequently, Colin27surf does

not take into account irreversible registration errors because it simply

maps the cortical ribbon of Colin27 directly to fsaverage.

3 | RESULTS

3.1 | MNI152-to-fsaverage projection

Figure 8 shows the projection of ANTs-derived MNI152 probabilistic

maps of four representative anatomical structures to fsaverage surface

space for the GSP test set. Figure 9 shows the projection of FNIRT-

derived MNI152 probabilistic maps of four representative anatomical

structures to fsaverage surface space for the CoRR-HNU dataset. The

black boundaries correspond to the winner-takes-all parcellation obtained

by thresholding the “ground truth” GSP or CoRR-HNU fsaverage surface

probabilistic maps. Visual inspection of Figures 8 and 9 suggests that the

projected probabilistic maps corresponded well to the “ground truth” for

all approaches, although there was also clear bleeding to adjacent ana-

tomical structures for the central sulcus and middle frontal sulcus.

The NAD evaluation metric is shown below each brain in Figures 8

and 9. A lower value indicates closer correspondence with the “ground

truth” probabilistic map. The NAD generally agreed with the visual

quality of the projections, suggesting its usefulness as an evaluation

metric. For example, in Figure 8, the projection of the left ANTs-

derived middle posterior cingulate probabilistic map using RF-ANTs vis-

ually matched the “ground truth” black boundaries very well, resulting

in a low NAD of 0.27. On the other hand, the corresponding projection

using MNIsurf aligned well with the posterior—but not the anterior—

portion of the “ground truth” black boundaries, resulting in a worse

NAD of 0.34 (Figure 8).

Figure 10 shows the NAD metric averaged across all anatomical

structures within each hemisphere. When ANTs-derived GSP MNI152

probabilistic maps were used, RF-ANTs was the best (p< .01 cor-

rected). RF-M3Z and MNIsurf showed comparable performance and

were both significantly better than Affine (p< .01 corrected). When

FNIRT-derived CoRR-HNU MNI152 probabilistic maps were used, RF-

ANTs were also the best (p< .01 corrected). RF-M3Z and Affine

showed comparable performance and were both significantly better

than MNIsurf (p< .04 corrected and p< .02 corrected). To summarize,

RF-ANTs always performed the best. We note that hemispheric

differences within each approach were not statistically significant (all

p> .2).

3.2 | Fsaverage-to-MNI152 projection

Figure 11 illustrates the projection of the fsaverage winner-takes-all

parcellation to MNI152 volumetric space for the GSP test set, juxta-

posed against black boundaries of ANTs-simulated “ground truth” seg-

mentations. Figure 12 illustrates the projection of the fsaverage

winner-takes-all parcellation to MNI152 volumetric space for the

CoRR-HNU dataset, juxtaposed against black boundaries of FNIRT-

simulated “ground truth” segmentations. Figures 11a and 12a show the

fsaverage-to-MNI152 projections before the dilation within the loose

cortical mask (Section 2). Figures 11b and 12b show the fsaverage-to-

MNI projections after the dilation, with insets illustrating example

regions with obvious differences across methods.

Figure 13 shows the Dice metric averaged across all anatomical

structures within each hemisphere. In the case of GSP test set (using

ANTs-simulated “ground truth”), RF-ANTs were the best (p< .01 cor-

rected). RF-M3Z, MNIsurf and Affine all showed comparable perform-

ance. In the case of the CoRR-HNU dataset (using FNIRT-simulated

“ground truth”), RF-ANTs and Affine were the best (p< .01 corrected).

There was no statistically significant difference between RF-ANTs and

Affine.

To summarize, RF-ANTs performed the best, although Affine also

performed surprisingly well when FNIRT-simulated CoRR-HNU “ground

truth” was considered (Figure 13, right). Visual inspection of Figure 12a

suggests that the projected cortical ribbon for Affine did not match well

to the MNI152 cortical ribbon. However, the dilation within the loose

cortical mask appeared to compensate for the poor mapping (Figure

12b), leading to a competitive dice score (Figure 13, right).

3.3 | Registration fusion convergence

Figure 14 shows the average NAD metric within each hemisphere for

projecting ANTs-derived GSP MNI152 probabilistic maps to fsaverage

space, plotted against the number of subjects used to construct the RF
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mappings. The NAD values start converging after about 100 subjects.

When more than 300 subjects are used, the NAD values are mostly

stable, although the right hemisphere for RF-ANTs seems to require

more subjects to converge. This suggests that the use of 745 training

subjects is sufficient to guarantee the quality of the RF mappings.

Nevertheless, the RF mappings that we have made publicly available

utilize the entire GSP dataset to construct the mappings.

3.4 | Colin27-to-fsaverage and fsaverage-to-Colin27
projections

Supporting Information, Figures S1–S3 show the Colin27-to-fsaverage

projection results. The results are largely consistent with the MNI152-

to-fsaverage results. In the case of the GSP test set (using ANTs-

derived volumetric probabilistic maps), RF-ANTs was the best (p< .01

FIGURE 8 Visualization of ANTs-derived MNI152 probabilistic maps projected to fsaverage surface space in the GSP test set. Four represen-
tative structures are shown. Black boundaries correspond to the “ground truth” winner-takes-all parcellation. The value below each cortical sur-
face shows the normalized absolute difference (NAD) between projected probabilistic map and “ground truth” probabilistic map, where a
smaller value indicates better performances. Best NAD for each region is bolded [Color figure can be viewed at wileyonlinelibrary.com]

WU ET AL. | 9WU et al. 3801



corrected). RF-M3Z and Colin27surf showed comparable performance

and were both significantly better than Affine (p< .01 corrected). In

the case of the CoRR-HNU dataset (using FNIRT-derived Colin27 volu-

metric probabilistic maps), RF-ANTs was also the best (p< .01 cor-

rected). RF-M3Z was the second best (p< .01 corrected), followed by

Affine (p< .01 corrected). Hemispheric differences within each

approach were not statistically significant (all p> .1). To summarize, RF-

ANTs always performed the best.

Supporting Information, Figures S4–S6 show the fsaverage-to-

Colin27 projection results. The results are largely consistent with the

fsaverage-to-MNI152 results. In the case of the GSP test set (using

ANTs-derived “ground truth”), RF-ANTs was the best (p< .01 cor-

rected). While Colin27surf showed better performance than RF-M3Z

(p< .01 corrected), both of them showed (statistically) comparable per-

formance with Affine. On the other hand, in the case of the CoRR-

HNU dataset (using FNIRT-derived “ground truth”), both RF-ANTs and

RF-M3Z showed (statistically) comparable performance with Affine.

Nevertheless, RF-ANTs showed better performance than RF-M3Z

(p< .01 corrected). Colin27surf performed the worst (p< .01 cor-

rected). To summarize, RF-ANTs performed the best, although Affine

also performed surprisingly well when FNIRT-simulated CoRR-HNU

“ground truth” was considered. Similar to the previous section, the

FIGURE 9 Visualization of FNIRT-derived MNI152 probabilistic maps projected to fsaverage surface space in the CoRR-HNU dataset. Four
representative structures are shown. Black boundaries correspond to the “ground truth” winner-takes-all parcellation. The value below each
cortical surface shows the normalized absolute difference (NAD) between projected probabilistic map and “ground truth” probabilistic map,
where a smaller value indicates better performances. Best NAD for each region is bolded [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 10 Normalized absolute difference (NAD) of MNI152 probabilistic maps projected to fsaverage surface space. (Left) Results for
ANTs-derived GSP MNI152 probabilistic maps. (Right) Results for FNIRT-derived CoRR-HNU MNI152 probabilistic maps. The bars represent
the NADs averaged across all 74 probabilistic maps within left hemisphere (black) and right hemisphere (white). Error bars correspond to
standard errors across the 74 anatomical structures. Overall, RF-ANTs performed the best

FIGURE 11 Winner-takes-all fsaverage parcellation projected to MNI152 volumetric space with ANTs-simulated “ground truth” (black boun-
daries) in the GSP test set. (a) Projections before dilation within loose cortical mask. (b) Projections after dilation within loose cortical mask
[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 12 Winner-takes-all fsaverage parcellation projected to MNI152 volumetric space with FNIRT-simulated “ground truth” (black
boundaries) in CoRR-HNU dataset. (a) Projections before dilation within loose cortical mask. (b) Projections after dilation within loose corti-
cal mask [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Dice of winner-takes-all fsaverage parcellation projected to MNI152 space, compared against (left) ANTs-simulated GSP
“ground truth” and (right) FNIRT-simulated CoRR-HNU “ground truth.” Bars represent dice coefficient averaged across all 74 segmentation
labels within left hemisphere (black) and right hemisphere (white). Error bars correspond to standard errors
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dilation within the loose cortical mask compensated for the actually

poor Affine mapping.

4 | DISCUSSION

In this article, various approaches (Affine, MNIsurf/Colin27surf, RF-

M3Z and RF-ANTs) for mapping between MNI/Colin27 and fsaverage

were quantitatively evaluated. RF-ANTs performed the best.

Our results showed that RF-ANTs compared favorably with RF-

M3Z, MNIsurf/Colin27surf and Affine even when FSL FNIRT was used

to set up the evaluations using a dataset different from the one utilized

to derive RF-ANTs. This suggests that if a different software (other

than ANTs) was used to register data to MNI152 space, it would still

be preferable to use RF-ANTs (rather than RF-M3Z, MNIsurf, or Affine)

to map the resulting data to fsaverage space. Nevertheless, to achieve

best performance, if SPM was used to register data to MNI152 space,

then it would probably be the most optimal to generate a new set of

RF transformations using SPM.

One potential concern is that the RF mappings are expensive to create

because it requires registering a large number of subjects. However, we

note that this is a one-time cost. To alleviate this one-time cost, RF-M3Z

and RF-ANTs mappings generated using all 1490 GSP subjects are available

at https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/

registration/Wu2017_RegistrationFusion. The code to replicate the map-

pings or generate newmappings can be found at the same repository.

Recent work has proposed integrating surface-based and volumet-

ric registration to obtain the advantages of each (Joshi, Leahy, Toga, &

Shattuck, 2009; Postelnicu, Zollei, & Fischl, 2009; Zollei, Stevens,

Huber, Kakunoori, & Fischl, 2010). These combined-volume-surface

registration algorithms either used both cortical features and volumet-

ric intensity to drive the alignment simultaneously (Joshi et al., 2009) or

used geometric information from a surface-based warp to initialize the

volumetric alignment (Postelnicu et al., 2009; Zollei et al., 2010). How-

ever, these methods were usually designed with inter-subject registra-

tion in mind. The combined-volume-surface registration algorithms can

be used to create a joint surface-volumetric template, in which the sur-

face and volumetric surface coordinate systems are in alignment. How-

ever, creating a new coordinate system would not be helpful for

researchers with existing data in MNI152/Colin27 and fsaverage coor-

dinate systems.

The RF approaches might also potentially benefit from improving

the registration between subjects and the common coordinate systems

(e.g., MNI152). As the RF approaches can be easily adapted to new

registration methods, future work can explore more variants of the RF

approach. For example, by restricting the registration between subjects’

native space and MNI152/Colin27 to geodesic paths in an anatomical

manifold (Hamm et al., 2010), we might be able to generate a better

final mapping.

In summary, the RF-ANTs projections between MNI152/Colin27

and fsaverage worked surprisingly well. For example, the projected

anatomical structures fitted the ground truth boundaries very well (Fig-

ure 4), although there were clear, but minor misregistrations across

sulci. The advantage of registration fusion is consistent with the image

segmentation literature, which has demonstrated that using multiple

registrations for label fusion can improve image segmentation because

the multiple registrations capture greater inter-subject variability and

protect against occasional registration failures (Aljabar, Heckemann,

Hammers, Hajnal, & Rueckert, 2009; Collins & Pruessner, 2010; Hecke-

mann, Hajnal, Aljabar, Rueckert, & Hammers, 2006; Iglesias & Sabuncu,

2015; Sabuncu, Yeo, Van Leemput, Fischl, & Golland, 2010; Wang

et al., 2013).

Overall, we believe that the RF approach is useful for projecting

between volume and surface coordinate systems. However, we empha-

size that the best way of mapping data to fsaverage is by registering

subjects directly to fsaverage, while the best way of mapping data to

FIGURE 14 Normalized absolute difference (NAD) of ANTs-derived GSP MNI152 probabilistic maps projected to fsaverage space as a
function of the number of subjects used to create the RF mappings. (Left) RF-ANTs. (Right) RF-M3Z. NADs were averaged across all 74
probabilistic maps within left hemisphere (black) and right hemisphere (gray), and across all subjects in GSP test set. Results converge after
about 300 subjects, although the right hemisphere for RF-ANTs seems to require more subjects to converge
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MNI152/Colin27 is by registering subjects directly to the correspond-

ing volumetric template. When data in individuals’ native spaces are

available, researchers should not use the RF approaches to project indi-

viduals’ data between MNI152/Colin27 and fsaverage for convenience.

The RF approaches evaluated in this article can be considered when

the optimal approach is not possible (e.g., when running FreeSurfer on

individual subjects is not possible). Furthermore, care must be taken

when interpreting results. For example, when describing MNI152

results that have been projected to fsaverage for visualization, it is

important to verify that the description is consistent with the original

volumetric data in MNI152 space.

5 | CONCLUSION

In this article, we compared various approaches for mapping between

MNI152/Colin27 volumetric and fsaverage surface coordinate systems.

We found that a new implementation of the RF approach (Buckner

et al., 2011; Yeo et al., 2011), RF-ANTs, performed the best. Neverthe-

less, it is worth noting that the most optimal approach for mapping

data to a particular coordinate system (e.g., fsaverage) is to register

individual subjects directly to the coordinate system, rather than via

another coordinate system. However, in scenarios where the optimal

approaches are not possible (e.g., mapping previously published results

from MNI152 to fsaverage), we recommend using RF-ANTs. The RF

approach can be easily adapted for other volumetric and surface coor-

dinate systems. Code and transformations from this article can

be found at https://github.com/ThomasYeoLab/CBIG/tree/master/

stable_projects/registration/Wu2017_RegistrationFusion.
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