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Abstract

GABA neurons in the VTA and SNc play key roles in reward and aversion through their local inhibitory control of
dopamine neuron activity and through long-range projections to several target regions including the nucleus
accumbens. It is not clear whether some of these GABA neurons are dedicated local interneurons or if they all
collateralize and send projections externally as well as making local synaptic connections. Testing between
these possibilities has been challenging in the absence of interneuron-specific molecular markers. We hypoth-
esized that one potential candidate might be neuronal nitric oxide synthase (nNOS), a common interneuronal
marker in other brain regions. To test this, we used a combination of immunolabelling (including antibodies for
nNOS that we validated in tissue from nNOS-deficient mice) and cell type-specific virus-based anterograde
tracing in mice. We found that nNOS-expressing neurons, in the parabrachial pigmented (PBP) part of the VTA
and the SNc were GABAergic and did not make detectable projections, suggesting they may be interneurons. In
contrast, NNOS-expressing neurons in the rostral linear nucleus (RLi) were mostly glutamatergic and projected to
a number of regions, including the lateral hypothalamus (LH), the ventral pallidum (VP), and the median raphe
(MnR) nucleus. Taken together, these findings indicate that nNOS is expressed by neurochemically- and
anatomically-distinct neuronal sub-groups in a sub-region-specific manner in the VTA and SNc.
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GABA neurons in the VTA and SNc play important roles in reward and aversion through their local control of dopamine
neuron activity and long-range projections to regions such as the nucleus accumbens. It is not clear whether some
of these neurons are dedicated interneurons, or if they all project externally and synapse locally. We find that neuronal
nitric oxide synthase (NNOS) is expressed by some GABAergic neurons that do not make detectable projections,
suggesting that they may be interneurons. In addition, NNOS is expressed by a subgroup of glutamatergic neurons
that project to regions including the ventral pallidum (VP) and median raphe (MnR) nucleus. Our study paves the way
kfor future investigation of the function of these molecularly-defined populations. j

ignificance Statement

Introduction
Around one third of neurons in the VTA and SNc are

GABAergic (Olson and Nestler, 2007; Nair-Roberts et al.,
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2008). These neurons make local, inhibitory synaptic con-
nections with dopamine neurons and their activation can
drive conditioned place aversion and reduce food con-
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sumption (Omelchenko and Sesack, 2009; Tan et al.,
2012; van Zessen et al.,, 2012). In addition, they send
long-range axonal projections to several target regions,
including the nucleus accumbens where they can regulate
associative learning (Brown et al., 2012; Taylor et al.,
2014). It is not clear whether a subset of these GABA
neurons are dedicated local interneurons or if they all
collateralize and send projections externally as well as
making local synaptic connections. Testing between
these possibilities has been challenging in the absence of
interneuron-specific molecular markers. Indeed, of the
cardinal interneuron markers used to identify and selec-
tively target sub-populations of interneurons in other re-
gions of the brain, most are either not expressed in either
the VTA or SNc, or are also expressed by sub-groups of
dopamine neurons (e.g., somatostatin, cholecystokinin,
vasoactive intestinal peptide, neuropeptide Y, parvalbu-
min, and calretinin; Hokfelt et al., 1980; Seroogy et al.,
1988, 1989; Rogers, 1992; Isaacs and Jacobowitz, 1994;
Liang et al., 1996; Gonzalez-Hernandez and Rodriguez,
2000; Klink et al., 2001; Lein et al., 2007; Olson and
Nestler, 2007; Dougalis et al., 2012; Merrill et al., 2015).
One potential candidate, however, is neuronal nitric oxide
synthase (NNOS). nNOS is a member of the NOS family of
enzymes that catalyze the synthesis of NO from
L-arginine (Knowles et al., 1989; Garthwaite, 1991). In the
nervous system NO acts as a gaseous transmitter that
can move rapidly across plasma membranes in antero-
grade and retrograde directions (Garthwaite and Boulton,
1995; Wang and Marsden, 1995). In several brain regions
nNOS is selectively expressed by specific types of
GABAergic interneurons (Klausberger and Somogyi,
2008; Tepper et al., 2010). Although several reports indi-
cate that nNOS is expressed sparsely in the VTA and/or
the SNc, there are discrepancies regarding the extent of
its expression, which sub-regions it is expressed in, and
the degree of colocalization with tyrosine hydroxylase
(TH; the rate limiting enzyme in dopamine synthesis that is
most commonly used to identify dopamine neurons; Vin-
cent and Kimura, 1992; Rodrigo et al., 1994; Gonzalez-
Hernandez and Rodriguez, 2000; Backes and Hemby,
2003; Klejbor et al., 2004; Gotti et al., 2005; Cavalcanti-
Kwiatkoski et al., 2010; Mitkovski et al., 2012). We hy-
pothesized that some of these discrepant findings may
have arisen because of non-specific immunolabelling. To
address this directly, we tested three different nNOS an-
tibodies for reliable immunolabelling in the VTA and SNc,
using tissue from nNOS-deficient mice as a control. This
allowed us to establish that only one of these antibodies
exhibited reliable immunolabelling in the VTA and SNc.
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Using this antibody, combined with cell type-specific
viral-based anterograde axonal tracing, we found that
nNOS is expressed by several distinct sub-groups of
neurons in the VTA and SNc, including GABAergic neu-
rons that do not appear to make projections and may
therefore be interneurons, and glutamatergic projection
neurons.

Materials and Methods

Animal maintenance and breeding

C57BI/6NCrl (RRID: IMSR_CRL:27; WT) mice were
purchased from Charles River. nNOS-deficient (RRID: IM-
SR_JAX:002986), NOS1Cre (RRID: IMSR_JAX:017526),
VGATCre (vesicular GABA transporter; RRID: IMSR_JAX:
016962), and RiboTag (RRID: IMSR_JAX:011029) mice
were purchased from The Jackson Laboratory. Mice
heterozygous for VGATCre (VGATCre -/+) were crossed
with mice homozygous for RPL22"* (RiboTag +/+) pro-
ducing VGATCre -/+ RiboTag -/+ offspring (VGATCre:
RiboTag). NOS1Cre mice were heterozygous. All breeding
and experimental procedures were conducted in accor-
dance with the Animals (Scientific Procedures) Act of
1986 (United Kingdom) and approved by Imperial College
London’s Animal Welfare and Ethical Review Body. All
mice were maintained in social groups of two to four,
where possible, with appropriate environmental enrich-
ment (e.g., bedding and tunnels). They were kept in rooms
at a constant temperature and maintained on a 12/12 h
light/dark cycle. They were fed on standard rodent chow
and water ad libitum.

Tissue fixation and preparation

C57BI/6NCrl, nNOS-deficient, VGATCre:RiboTag, or
NOS1Cre mice were anaesthetized under isoflurane
(4%) and given a lethal intraperitoneal injection of pen-
tobarbital (100 mg/ml; Euthatal). They were transcardi-
allly perfused with 50 ml of ice-cold PBS followed by
50-100 ml of 4% paraformaldehyde (PFA; Sigma Al-
drich) in PBS. When fixed, the brains were removed and
placed in 10 ml of 4% PFA for 1 h post-fixation at room
temperature. After three washes in PBS, brains were
placed in 30% sucrose (Sigma Aldrich) dissolved in
PBS for cryo-protection, and kept at 4°C for 24-48 h.
Subsequently, all brains were embedded in optimal
cutting temperature (OCT) medium and snap frozen in
isopentane (2-methlybutane) at -55°C. All tissue was
then stored at -80°C until sectioning.

Immunocytochemistry

Allimmunolabelling was conducted on tissue from mice
aged 8-12 weeks old. Brains were sectioned using a
Leica CM1800 cryostat (Leica Microsystems). Coronal
sections (30 wm) were taken from the midbrain, or from
the whole brain in the case of Nos1Cre mice. Free floating
sections were washed in PBS for 10 min at room temper-
ature. Following this, they were blocked in 6% normal
donkey serum (NDS) in 0.2% Triton X-100 in PBS (PBSTXx)
for 60 min at room temperature. Primary antibodies
(Table 1) were diluted in 2% donkey serum in PBSTx, and
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Table 1. Primary antibodies
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Antibody Host species Supplier (catalog number; RRID) Concentration
Anti-TH Chicken Abcam (ab76442; AB_1524535) 1:1000
Anti-nNOS Mouse Sigma Aldrich (N2280; AB_260754) 1:500
Anti-nNOS Rabbit Cell Signalling (4234; AB_10694499) 1:500
Anti-nNOS Rabbit Sigma Aldrich (N7155; AB_260795) 1:500
Anti-HA Mouse Sigma Aldrich (H3663; AB_262051) 1:1000
Anti-HA Rabbit Abcam (ab9110; AB_307019) 1:500
Anti-5HT Rabbit ImmunoStar (20080; AB_572263) 1:2000
Anti-VGLUT2 Rabbit Alomone (AGCO036; AB_2340950) 1:500
Anti-VGAT Rabbit SYSY (131 003; AB_887869) 1:500
Anti-substance P Guinea pig Abcam (ab10353; AB_297089) 1:500
Anti-AADC Rabbit Millipore (AB1569; RRID:AB_90789) 1:500
Anti-DAT Rat Millipore (MAB369; RRID:AB_2190413) 1:500

sections were incubated in the primary antibody solutions
overnight at 4°C. Sections were washed (3 X 10 min) in
PBS at room temperature. Secondary antibodies (Table 2)
were diluted in 2% donkey serum 0.2% PBSTx. Sections
were incubated in secondary antibody solution for a min-
imum of 1.5 h at room temperature. They were then
washed (3 X 10 min) in PBS. Stained sections were
mounted onto glass microscope slides and when dry
were cover-slipped using VectaShield mounting medium
(Vector Laboratories). SNc and VTA regions were deter-
mined using tyrosine hydroxylase (TH) expression. Region
outlines were traced from Franklin and Paxinos (2008).

Microscopy

Confocal images were acquired using a Leica SP5 con-
focal microscope with the pinhole set at 1 Airy unit. All
images were processed with Fiji software. Images of cell
bodies were acquired with z-stacks of 1 um. To determine
colocalization, channels were viewed both individually
and in composite. Colocalization was determined if the
cell body was visible in multiple channels through its
entire thickness (multiple z-planes). Representative exam-
ples of stacked images are shown. Images of axon termi-
nals in nNOS+ neuron target areas were acquired with
z-stacks of 0.5 um. Ten z-planes were stacked and
brightness, and contrast was adjusted equally across all
axonal projection images for comparison. Images of syn-
aptic terminals were acquired with z-stacks of 0.25 um.
ChR2-mCherry+ synaptic boutons were located in single
z-planes, which were extracted from the stack to deter-
mine colocalization with VGAT or VGIuT2.

Table 2. Secondary antibodies

Stereotaxic injections of adeno-associated virus
(AAV)

The 1-Ef1a-DIO-ChR2-mCherry construct (gifted by the
Deisseroth Lab) was commercially packaged in AAV se-
rotype 2/1 vector consisting of the AAV2 ITR genomes
and the AAV1 serotype capsid gene (Vector Biolab, Phil-
adelphia). The virus was diluted in sterile PBS and 5%
glycerol (pH 7.2) to a concentration of 2.7 X 10'® GC/m.
All viral tracing experiments were conducted on adult
(11-13 weeks) NOS1Cre (-/+) mice. Mice were briefly
anaesthetized in an induction chamber with isoflurane
(4%) and placed in a stereotaxic frame (David Kopf Instru-
ments) with continued isoflurane administration (2%). The
eyes were protected with Lacri-lube, the scalp was
shaved, and the skin disinfected with chlorheximide. All
mice received a subcutaneous injection of carprofen
(Rimadyl; 5 mg/kg) for post-operative anesthesia. An in-
cision (<1 cm) was made along the midline, and bupiva-
caine (2.5 mg/ml) was delivered directly to the incision site
for local analgesia. A small hole was drilled in the scalp
based on coordinates from bregma. Using a 33-gauge
metal needle and a Hamilton syringe the virus solution (0.1
wul) was injected unilaterally at a flow rate of 0.3 wl/min. We
systematically varied the injection coordinates [anterior-
posterior (AP) -3.0-3.4 mm, medial-lateral (ML) 0.4-0.9
mm, dorsal-ventral (DV) 4.3-4.8 mm] to obtain labeling of
different sub-regions. The flow rate was controlled by a
programmable pump (Elite Nanomite Infusion/Withdrawal
Programmable Pump 11, 704507, Harvard Apparatus).
After injection, the needle was left in place for 5 min to
allow for the spread of the virus. The incision was then
sutured using nylon monofilament, non-absorbable su-

Antibody Conjugation Host species  Supplier (catalog number; RRID) Concentration
Anti-chicken Alexa Fluor 488 Goat Thermo Fisher Scientific (A-11039; AB_2534096) 1:1000
Anti-chicken Cy3 Donkey Jackson ImmunoResearch Labs (703-165-155; AB_2340363) 1:1000
Anti-mouse Cy3 Donkey Jackson ImmunoResearch Labs (715-165-150: AB_2340813) 1:1000
Anti-mouse Cy5 Donkey Jackson ImmunoResearch Labs (715-175-151; AB_2340820) 1:1000
Anti-rabbit Alexa Fluor 633 Goat Thermo Fisher Scientific (A21070; AB_2535731) 1:1000
Anti-rabbit Cy3 Donkey Jackson ImmunoResearch Labs (711-165-152; AB_2307443) 1:1000
Anti-goat Alexa Fluor 488 Donkey Thermo Fisher Scientific (A11055; AB_2534102) 1:1000
Anti-guinea pig  Alexa Fluor 488 Goat Thermo Fisher Scientific (A11073: AB_2534117) 1:1000
Anti-rat Alexa Fluor 488 Goat Thermo Fisher Scientific (A-11006; RRID:AB_2534074) 1:1000
September/October 2018, 5(5) e0381-18.2018 eNeuro.org
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Figure 1. Comparison of three different anti-nNOS antibodies (for details, see Tables 1, 2) in the midbrain of wild-type and
nNOS-deficient mice. Representative images of double immunolabelling for nNOS (magenta) and TH (green). A, Anti-nNOS (Sigma
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continued

Aldrich; N7155; AB_260795) exhibited non-specific immunolabelling that was also seen in tissue from nNOS-deficient mice. B,
Anti-nNOS (Cell Signaling; 4234; AB_10694499) also exhibited somewhat non-specific immunolabelling, that was only partially absent
in tissue from NNOS-deficient mice. C, Anti-nNOS (Sigma Aldrich; N2280; AB_260754) exhibited specific immunolabelling that was
absent in tissue from nNOS-deficient mice. In wild-type tissue, NNOS+ cells were observed in the IPN, RLi, PBP, SNc, SNr, and
substantia nigra pars lateralis (SNL). There was no colocalization between nNOS and TH.

tures (size 2-0, 95060-062, VWR). Mice were allowed to
recover in a heated chamber (30°C) before being placed
back into their home cage with littermates. All mice were
monitored for five days after surgery, during which time
they had access to carprofen (Rimadyl; 50 mg/ml) in their
drinking water. Two weeks after surgery, the mice under-
went transcardial perfusion, as described above, and tis-
sue processed for microscopy.pAAV-hSyn-DIO-mCherry
was a gift from Bryan Roth (Addgene plasmid #50459).
The pAAV transgene plasmid was packaged into a mix-
ture of serotypes AAV1 and AAV2 (1:1) as previously
described (Klugmann et al., 2005; Yu et al., 2015). All
other details were the same as for the DIO-ChR2-mCherry
experiments, except that the AAV was injected using a
Nanoject lll Programmable Nanolitre Injector (Drummond
Scientific; 3-000-207) with a mineral oil filled glass mi-
cropipette. A volume or either 10 or 30 nl was injected at
a rate of 3 nl/s, and then the needle was left in position for
10 min to allow for spread of the virus.

Experimental design and statistics
Wild type versus nNOS deficient

To compare nNOS antibody staining in wild-type and
nNOS-deficient mice, the experimenter was blind to the
strain of the mouse from the stage of immunolabelling
until after image analysis. Mice for each experimental
group were stained in parallel to control for differences
between staining experiments. All images in this section
were obtained with matched confocal settings. Each anti-
nNOS antibody was tested in a total of three male WT and
three male nNOS-deficient mice. The concentration of
nNOS antibody was optimized through staining and im-
aging at three concentrations (1:250, 1:500, 1:1000). Im-
ages from the optimum concentration of 1:500 are shown.

Quantification of nNOS-expressing neurons

For the quantification of nNOS-expressing neurons tri-
ple immunolabelling for nNOS, HA, and TH was con-
ducted in three male VGATCre:RiboTag mice. To obtain
estimates of the numbers of nNOS neurons, and their
neurotransmitter phenotype, every fourth midbrain sec-
tion was selected for staining and imaging. Tile-scans
were taken of the entire VTA and SNc visible on the
right-hand side of the brain section. Merged tile-scan im-
ages were processed using Fiji (ImagedJ) and VTA and SNc
sub-region anatomy was defined based on TH expression.
HA+ cells, NNOS+ cells and HA+/nNOS+ were counted in
each sub-region using the Imaged cell counter plugin.

nNOS neuron circuit tracing and ChR2-mCherry colocal-
ization

A total of 18 (eight males and 10 females) virus injected
NOS1Cre mice exhibited ChR2-mCherry expression in
the VTA and SNc. Eight of these mice also exhibited
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ChR2-mCherry expression in the supramamillary nucleus
and were therefore excluded from further investigation.
The remaining 10 mice were used to examine the axonal
projections of NNOS+ neurons and further immunolabel-
ling experiments. To investigate the colocalization of
ChR2-mCherry, nNOS and TH, images of sub-regions
were processed using Fiji (ImagedJ). All ChR2-mCherry+
cells were counted in each image using the Imaged cell
counter plugin.

Statistics

Data are presented as mean = SEM. Statistical com-
parisons were made using one-way ANOVA and New-
man-Keuls post hoc tests, where appropriate (Prism,
GraphPad Software Inc).

Results

Comparison of three different anti-nNOS antibodies
in the midbrain of wild-type and nNOS-deficient
mice

We first wanted to identify a reliable nNOS antibody for
use in the VTA and SNc. We tested three different com-
mercially available antibodies (Tables 1, 2). We initially
tested each antibody at three different concentrations
(1:1000, 1:500, 1:250). For all three antibodies the 1:500
concentration appeared optimal in terms of reliably exhib-
iting immunolabelling in the interpeduncular nucleus (IPN)
and in regions of the VTA and SNc in wild-type mice (Fig.
1). to thoroughly verify their specificity, each antibody
(1:500) was used on midbrain sections from both wild-
type mice (n = 3) and nNOS-deficient mice (n = 3; Huang
et al.,, 1993) as a negative control. It is well established
that there is a large population of nNOS-expressing neu-
rons in the IPN, which lies just ventral to the VTA and was
therefore well suited to act as a positive control (Vincent
and Kimura, 1992; Rodrigo et al., 1994; Ascoli et al.,
2008). The first antibody (Sigma Aldrich; N7155; AB_260795)
failed to detect cell bodies and instead many processes
were visible (Fig. 1A), which were also present in the nNOS-
deficient tissue, suggesting that it was non-specific. The
second antibody (Cell Signaling; 4234; AB_10694499) dis-
played some sparse immunoreactivity “spots” that could be
mistaken for cell bodies within the VTA and SNc (Fig. 1B),
which were also present in the nNOS-deficient tissue, sug-
gesting that they were non-specific. The third antibody
(Sigma Aldrich; N2280; AB_260754) exhibited clear immu-
nolabelling of cell bodies in the wild-type tissue, which was
completely absent in the nNOS-deficient tissue (Fig. 1C). In
the wild-type tissue NnNOS+ neurons were mosaically dis-
tributed throughout the SNc, and most notably in the para-
brachial pigmented nucleus (PBP) and rostral linear nucleus
(RLi) of the VTA. These were in close proximity to TH+
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Figure 2. nNOS is mostly expressed in GABAergic, non-dopaminergic neurons in the PBP part of the VTA and SNc, and mostly in
non-GABAergic, non-dopaminergic (putatively glutamatergic) neurons in the VTAR and RLi. A-D, Representative images of triple
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continued

immunolabelling for NNOS, HA, and TH, in the SNc and sub-regions of the VTA. Yellow arrows indicate nNNOS+ neurons. E, Graphs
show the mean (xSEM; n = 3 mice, 1469 cells) and individual data points for percentage of NNOS+ cells localized in each region,
percentage of nNOS+ cells that colocalized with HA, and the percentage of HA+ cells that were nNOS+. F, Schematic illustrating
the localization of nNOS+/GABAergic neurons and nNOS+/glutamatergic neurons in the VTA and SNc. Yellow arrows indicate

exemplar neurons; #p < 0.05.

neurons, but there was no colocalization between nNOS and
TH (Fig. 1C).

nNOS is mostly expressed in GABAergic, non-
dopaminergic neurons in the PBP part of the VTA
and the SNc, and mostly in non-GABAergic, non-
dopaminergic (putatively glutamatergic) neurons in
the VTAR and RLi

We next asked whether these nNOS+ neurons in the
VTA and SNc were GABAergic. In the VTA and SNc,
antibodies for markers of GABAergic identity (i.e., GABA,
GAD, and VGAT) do not robustly label cell bodies. We,
therefore, used VGATCre mice (Vong et al., 2011), where
cre-recombinase is under the control of the promoter for
VGAT, crossed with RiboTag mice (Sanz et al., 2009)
which contains a floxed hemagglutinin (HA)-tagged exon
in the RLp22 gene. The resulting offspring (VGATCre:
RiboTag) exhibit robust HA expression in cell bodies in the
VTA and SNc which is well suited to examining colocal-
ization using immunolabelling (somewhat more so than
standard GFP and tdTomato reporter lines, in our hands).
Triple immunolabelling for nNOS, HA, and TH was con-
ducted in midbrain sections from VGATCre:RiboTag mice
(n = 3 mice, 1420 neurons). Nuclei sub-regions were
defined using TH immunolabelling and images from a
mouse brain atlas (Franklin and Paxinos, 2008). All
nNOS+ and HA+ neurons within each sub-region were
counted. The number of NNOS+ neurons varied in differ-
ent sub-regions with the largest populations lying in the
PBP of the VTA and the RLi, with smaller populations
found in the SNc and VTAR (ANOVA: F5q4 = 22.33, p =
0.00083; Fig. 2A-E). nNOS+ neurons were almost entirely
absent in the interfascicular nucleus (IF) and the paranigral
nucleus (PN) and therefore these sub-regions were not
included in our analysis or further investigated.

Consistent with our first set of results, there was no
colocalization between TH and nNOS. In contrast, colo-
calization between nNOS and HA was extensive, although
it varied between different sub-regions (ANOVA: F3 5 =
24.54, p = 0.0002). In the PBP and SNc, the majority
nNNOS+ neurons were also HA+, suggesting that nNOS +
neurons in these regions are mostly GABAergic (Fig.
2A,B,E,F). In contrast, in more rostral sub-regions (i.e., the
VTAR and RLi) the majority of nNOS+ neurons were HA-
(and TH-) and therefore putatively glutamatergic (Fig.
2C-F). Finally, the total proportion of HA+ neurons that
expressed nNOS was similar in each sub-region (ANOVA:
Fag = 1.268, p = 0.3489; Fig. 2E), typically <20%,
indicating that nNOS+ neurons represent a sub-group of
the overall GABAergic population in each of these sub-
regions.

September/October 2018, 5(5) e0381-18.2018

AAV injection into the VTA and SNc of NOS1Cre=
mice leads to expression of ChR2-mCherry in cell
bodies in distinct regions depending on injection
volume/position

Having examined the neurochemical identity of
NNOS+ neurons in the VTA and SNc, we next investi-
gated their axonal projections. To do this, we did ste-
reotaxic injections of AAV1-Ef1a-DIO-ChR2-mCherry
into the midbrain of NOS1Cre= mice (n = 18). We have
used this AAV previously in the midbrain and hypothal-
amus to obtain robust ChR2-mCherry expression with
no apparent consequences for cell health (Viskaitis
et al., 2017; Sandhu et al., 2018). We systematically
varied the injection coordinates (see Materials and
Methods) and then examined the degree of cell body
expression of ChR2-mCherry within the SNc and
VTA. We excluded mice that exhibited ChR2-mCherry
expression in either the IPN or the SUM (both regions
known to express nNOS; (Rodrigo et al., 1994;
Gonzalez-Hernandez and Rodriguez, 2000). The extent
of cell body expression fell into three groupings (Fig.
3A; Table 3): group 1 exhibited robust ChR2-mCherry
cell body expression in the PBP, SNc, VTAR, and RLj;
group 2 exhibited robust ChR2-mCherry cell body ex-
pression in the PBP, SNc, and a dorso-lateral boundary
region of the VTAR (where we did not see cell bodies in
group 1); group 3 exhibited robust ChR2-mCherry cell
body expression only in the PBP and SNc. In all cases,
cell bodies exhibited robust expression of ChR2-
mCherry, which was also often seen in long dendritic
processes. Importantly, cell body and dendritic mor-
phology appeared normal in neurons expressing
mCherry (Fig. 3B), when compared to previous reports
for GABA neurons in the VTA (Chieng et al., 2011;
Margolis et al., 2012).

When ChR2-mCherry expression was restricted to
cell bodies in the PBP part of the VTA and the SNc,
no axonal projections were found outside of the VTA
and SNc

For each mouse we conducted a full survey of the entire
brain looking for ChR2-mCherry positive axonal projec-
tions. In brains from group 1 (which exhibited cell body
labeling in the PBP, SNc, VTAR, and RLi), we observed
extensive axonal projections in multiple regions (Fig. 4;
Table 3), all shown previously to receive input from GABA
and glutamate neurons in the VTA (Taylor et al., 2014).
These projections were most dense in the ventral pallidum
(VP), lateral hypothalamus (LH), and median raphe (MnR).
In brains from group 2 (which exhibited cell body labeling
in the PBP, SNc, and dorso-lateral part of the VTAR) we
only reliably observed very sparse processes in the LH
(Fig. 4; Table 3). In brains from group 3 (which exhibited
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Figure 3. AAV injection into the VTA and SNc of NOS1cre=* mice lead to expression of ChR2-mCherry in cell bodies in distinct regions
depending on injection volume/position. A, Representative images of ChR2-mCherry (magenta) and TH (green) in cell bodies for each
injected group. Mice were grouped based on the distribution of ChR2-mCherry expressing cell bodies (yellow arrows indicate
sub-regions where robust cell body expression was observed). Group 1 exhibited expression in the VTAR, RLi, PBP and SNc, group
2 exhibited expression in the dorso-lateral VTAR, PBP, and SNc, and group 3 exhibited expression that was restricted to the PBP and
SNc (Table 3). B, Higher magnification, representative images illustrate the robust expression of ChR2-mCherry (magenta) in cell
bodies and dendrites intermingled with TH (green)-expressing neurons. Right-hand images show higher magnification images of
ChR2-mCherry-expressing neurons.
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Table 3. ChR2-mCherry expression in cell bodies and axon terminals following VTA/SNc AAV injections in NOS1Cre-/+ mice

Group 1 Group 2 Group 3
Injection number 7 8 9 10 13 14 15 16 17 18
Cell bodies
VTAR + ++ ++ +++ +++ +++ +++ + +
RLi +++ +++ +++ +++
PBP +++ +++ +++ +++ +++ +++ +++ ++ +4++ ++
SNc +++ +++ +++ +++ +++ +++ +++ ++ +++ +
Axonal projections
Septum
MS ++ ++ ++ ++
HDB + + + +
LS + + + +
ST + + + +
Striatum
NAc (shell) + + + +
VP +++ +++ +++ +++
NAc (core) +
Hypothalamus
LH +++ +++ +++ +++ + + +
DM + + + + +
PO ++ ++ ++ ++
Zl + + + +
Thalamus
LHb + + + +
MD +
VM + + + +
Amygdala
EAM +
AA +
Midbrain
Mammillary +
Pons/medulla
DR + + + ++
PMnR + + + ++
MnR ++ ++ + ++
PAG + + + +
CLi + + + +
NRO + + + +

ChR2-mCherry expression density: +, very sparse expression; ++, modest expression; +++, dense expression. AA, amygdaloid area; CLi, caudal linear nu-
cleus; DM, dorsomedial hypothalamic nucleus; DR, dorsal raphe nucleus; EAM, extended amygdala, medial part; HDB, horizontal limb of the diagonal band
of Broca; LH, lateral hypothalamus; LHb, lateral habenula; LS, lateral septum; MD, dorsomedial nucleus of the hypothalamus; Mm, mammillary bodies; MnR,
median raphe nucleus; MS, medial septum; NAc, nucleus accumbens; NRO, nucleus raphe obscurus PAG, periagueductal gray; PBP, parabrachial pigmented
nucleus; PMnR, paramedian raphe nucleus; PO, preoptic area; RLi, rostral linear nucleus; SNr, substantia nigra pars reticulata; ST, stria terminalis; VM, ven-
tromedial thalamus; VP, ventral pallidum; VTAR, rostral ventral tegmental area; ZI, zona inserta. 2, cell bodies were restricted to the dorso-lateral boundary re-
gion of the VTAR and this was not seen in group 1 or group 3.

robust cell body labeling only in the PBP and SNc), we did  First, NOS1Cre+ neurons in the PBP and SNc do not
not observe any axonal projections outside of the VTA  send axonal projections outside of the VTA and SNC.
and SNc (Fig. 4; Table 3). On the basis of these expression ~ Second, NOS1Cre+ neurons in the VTAR and RLi send
patterns we can, therefore, draw two main conclusions.  extensive projections to multiple regions, including the
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Figure 4. When ChR2-mCherry expression was restricted to cell bodies in the PBP part of the VTA and the SNc, no axonal projections
were found outside of the VTA and SNc. Representative images of axon-expressed ChR2-mCherry for each group. group 1 exhibited
extensive projections (for full summary, see Table 3) to multiple regions. Images are shown for the VP, PO, MD, LH, IPN, and
PMnR/MnR, where the most extensive axonal expression was observed (pink tick indicates robust axonal expression). Group 2
exhibited sparse projections that were limited to the LH. Group 3 (which had cell body labeling restricted to the PBP and SNc) did

not exhibit any axonal expression outside of the VTA and SNc.

VP, LH and MnR. All of these regions are known to receive
input from the RLi (Del-Fava et al., 2007). It should be
noted that in the case of group 2, where some sparse
fibers were observed the LH, the cell body labeling in
these cases was restricted to the dorso-lateral part of the
VTAR only. In contrast in group 1 cell body labeling was
observed throughout the VTAR.

September/October 2018, 5(5) e0381-18.2018

Cell body expression of ChR2-mCherry was
colocalized with nNOS immunolabelling in the VTA,
but in the SNc some neurons were TH+

We next examined the degree of colocalization be-
tween ChR2-mCherry, nNOS, and TH in cell bodies in the
PBP, SNc, VTAR, and RLi (n = 3-5 mice, 554 neurons).
We conducted immunolabelling for nNOS and TH and

eNeuro.org
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Figure 5. Cell body expression of ChR2-mCherry was colocalized with nNOS immunolabelling in the VTA. A, Representative images
of triple immunolabelling for ChR2-mCherry, nNOS, TH in the PBP. Graph shows the mean (=SEM) and individual data points for
percentage of ChR2-mCherry that were colocalized with nNOS and/or TH (230 ChR2-mCherry+ cells, five mice). Almost all
ChR2-mCherry+ neurons were nNOS+ and TH-. B, Representative images of triple immunolabelling for ChR2-mCherry, nNOS, TH
in the VTAR. Graph shows the mean (=SEM) and individual data points for percentage of ChR2-mCherry that were colocalized with
nNOS and/or TH (40 ChR2-mCherry + cells, four mice). Almost all ChR2-mCherry+ neurons were nNOS+ and TH-. C, Representative
images of triple immunolabelling for ChR2-mCherry, nNOS, TH in the RLi part of the VTA. Graph shows the mean (+*SEM) and
individual data points for percentage of ChR2-mCherry that were colocalized with nNOS and/or TH (155 ChR2-mCherry+ cells, three
mice). Almost all ChR2-mCherry+ neurons were nNOS+ and TH-; #p < 0.05.
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Figure 6. Cell body expression of ChR2-mCherry was mostly
colocalised with either nNOS or TH in the SNc. Representative
images of triple immunolabelling for ChR2-mCherry, nNOS, TH
in the SNc, showing exemplar cells exhibiting either: A, colocali-
sation of NNOS and ChR2-mCherry, but not TH. B, expression of
ChR2-mCherry, but neither nANOS nor TH. or C, co-localisation of
ChR2-mCherry and TH, but not nNOS. D, Graph shows the
mean (+SEM) and individual data points for percentage of
ChR2-mCherry that were colocalised with nNOS and/or TH (129
ChR2-mCherry+ cells, five mice). Most ChR2-mCherry+ neu-
rons were either NANOS+ or TH+. Yellow arrows indicate exem-
plar neurons.

examined colocalization with ChR2-mCherry. In the PBP
(n = 5 mice; ANOVA: F, 15 = 290.0, p < 0.0001), VTAR (n
= 4 mice; ANOVA: F, gy = 35.27, p < 0.0001), and RLi (n
= 3 mice; ANOVA: Fpq = 213.9, p < 0.0001) nucleus,
almost all ChR2-mCherry+ cells were nNOS+ and TH-
(Fig. 5A-C).

In contrast, in the SNc similar numbers of neurons were
ChR2-mCherry+ and/or nNOS+ and/or TH+ (ANOVA:
F12 = 2.627, p = 0.1132). Although a majority of the
ChR2-mCherry+ cells were nNOS+ (Fig. 6), surprisingly,
around half of the ChR2-mCherry+ neurons in the SNc
were TH+ (and nNOS-; Fig. 6). As observed in both the
wild-type and VGATCre:RiboTag mice, nNOS antibody
immunolabelling did not colocalize with TH in the SNc. It
is possible, however, that these neurons appear immuno-
negative for nNOS because they are either expressing
very low levels of the enzyme (so that it is not detectable
with the nNOS antibody), or that nNOS mRNA is being
transcribed but the protein is not being synthesized cur-
rently. Because this result was somewhat unexpected, we
wanted to replicate it with a different AAV. In this case, we
injected AAV-hsyn-flex-mCherry into the SNc and lateral
VTA. In cases where cell body labeling was restricted to
neurons in the SNc and lateral VTA (n = 2), we again
observed mCherry+ neurons that were also TH+, and we
could not detect any axonal projections outside of the
SNc and VTA. Furthermore, we also found that in all cases
examined these TH+ neurons co-expressed aromatic
L-amino acid decarboxylase (AADC) and the dopamine
transporter (DAT), suggesting that they might be dopa-
mine releasing (Fig. 7).

Axonal expression of ChR2-mCherry+ was
colocalized with GABAergic synaptic boutons in the
VTA and SNc

Taken together, our findings suggest that nNOS+ neu-
rons in the PBP and SNc are GABAergic and do not
project outside the VTA and SNc. To further examine their
neurochemical identity, we examined single z-plane im-
ages of tissue immunolabelled for VGAT and TH. In the
VTA and SNc, although VGAT antibodies do not resolve
cell bodies well (as discussed earlier) they can reliably
label processes, include putative presynaptic boutons. In
the VTA, we commonly observed VGAT + puncta colocal-
ized with ChR2-mCherry and in close proximity to, but not
colocalizing with, TH+ processes (Fig. 8A). This is con-
sistent with the possibility that nNOS+ interneurons form
inhibitory synapses onto dopamine neurons. In addition,
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Figure 7. mCherry-expressing neurons that were also TH+, co-expressed AADC and DAT. Representative images of triple
immunolabelling for mCherry, TH and AADC or mCherry, TH, and DAT. mCherry+ neurons that were TH+ were also AADC+ and
DAT+. Yellow arrows indicate exemplar cell bodies, exhibiting triple colocalization.

in the SNc, we were able to locate some ChR2-mCherry+
fibers that were also colocalized with VGAT+/TH+
puncta (Fig. 8B).

Axonal expression of ChR2-mCherry was colocalized
with glutamatergic synaptic boutons in the VP and MnR

The VP is the area that received the most prominent
input from the NNOS+ neurons in the RLi nucleus, con-
sistent with non-cell type-specific anterograde tracing ap-
proaches (Del-Fava et al., 2007). To examine this
innervation in more detail, VP containing sections were
immunolabelled for substance P (which delineates the VP)
and either VGIUT2 or VGAT. It can be clearly seen that
ChR2-mCherry+ fibers were more prevalent in the VP
(substance P+ region) compared to the horizontal limb of
the diagonal band of Broca (HDB) and shell of the NAc
(areas that receive sparse innervation; Fig. 9A). This in-
nervation is present throughout the extent of the VP.
ChR2-mCherry+ puncta could be clearly visualised
among substance P+ puncta, and were commonly colo-
calized with VGIuT2+ puncta (Fig. 9B). This is consistent
with our observation that these projections originate
mostly from cell bodies in the RLi and VTAR that are
VGAT-/TH- and therefore putatively glutamatergic. In-
deed, when we examined VGIuT2 and ChR2-mCherry
colocalization in the RLi, we observed some VGIuT2+
cell bodies (as for GABAergic markers, it can be difficult
to resolve cell bodies with antibodies for markers of
glutamatergic neurons in the VTA) that were ChR2-
mCherry+, consistent with our hypothesis that this is a
predominantly glutamatergic population (Fig. 9C).
Lastly, when we conducted immunolabelling for VGAT,
we occasionally observed colocalization with ChR2-
mCherry+ puncta, but these were less common than
for VGIUT2 (Fig. 9D).

September/October 2018, 5(5) e0381-18.2018

A second region that received extensive input was the MnR.
Immunolabelling for serotonin (5-HT) revealed ChR2-
mCherry+ terminals often in close proximity 5-HT+ neurons.
(Fig. 10A). Similar to the VP, VGIUT2+ (Fig. 10B) and VGAT+
(Fig. 10C) puncta colocalized with ChR2-mCherry+ puncta in
single z-plane images.

Discussion

Previous investigations of nNOS expression in the VTA
and SNc have produced discrepant results with respect to
the extent of its expression, which sub-regions within the
VTA and SNc it is expressed in, and the degree of co-
expression by dopamine neurons (Vincent and Kimura,
1992; Rodrigo et al., 1994; Gonzalez-Hernandez and Ro-
driguez, 2000; Klejbor et al., 2004; Gotti et al., 2005;
Cavalcanti-Kwiatkoski et al., 2010; Mitkovski et al., 2012).
We hypothesized that this variation in the literature was in
part due to the use of different antibodies not validated
specifically for the VTA and SNc. Consistent with this, we
found immunolabelling absent in control tissue from
nNOS-deficient mice. This highlights the importance of
validating antibodies. Using a validated antibody, we
show that nNOS+ neurons are present in the SNc, VTAR,
PBP, and RLi, but not other parts of the VTA, including the
PN. In addition, we show that nNOS+ neurons in the SNc
and PBP are largely GABAergic, whereas those located
in the RLi and VTAR are largely glutamatergic. These
GABAergic neurons appear to be interneurons: despite
the high levels of expression of an anterograde tracer in
their cell bodies, we could not detect any axonal projec-
tions outside of the VTA and SNc. We also observed at
the light microscope level these neurons making, what
appeared to be, local GABAergic synaptic boutons, but
this would need to be confirmed anatomically and func-
tionally using electron microscopy and electrophysiology
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Figure 8. Axonal expression of ChR2-mCherry+ was colocalized with GABAergic synaptic boutons in the VTA and SNc. A,
Representative images of immunolabelling for ChR2-mCherry, VGAT, and TH in the PBP. ChR2-mCherry colocalizes with VGAT
puncta in a single z-plane image suggesting the presence of GABAergic synapses. B, Representative images of immunolabelling for
ChR2-mCherry, VGAT, and TH in the SNc. ChR2-mCherry colocalizes with VGAT puncta in a single z-plane image suggesting the
presence of GABAergic synapses. These puncta are also often TH+. Yellow arrows indicate exemplar puncta.

respectively. Across these regions, nNOS+ neurons
make up <10% of the total GABA neuron population. In
contrast, we found that nNOS+/glutamatergic neurons
sent extensive projections to several regions, including
the VP, LH and MnR.

Previously, it has been demonstrated that GABA neu-
rons in the VTA make anatomically-defined local synaptic
connections with dopamine and non-dopamine neurons
in the VTA (Omelchenko and Sesack, 2009). Moreover,
functional optogenetic stimulation of VTA GABA neurons
can evoke fast GABAA-receptor-mediated synaptic cur-
rents in dopamine neurons in the VTA (Tan et al., 2012;
van Zessen et al., 2012). Activation of this local GABAer-
gic microcircuit can generate a conditioned place aver-

September/October 2018, 5(5) e0381-18.2018

sion and reduce food consumption (Tan et al., 2012; van
Zessen et al., 2012). It was not clear, however, whether
the GABA neurons that made these local synaptic con-
nections were also the same GABA neurons that send
long-range projections to other regions such as the stria-
tum (Brown et al., 2012; Taylor et al., 2014). Our findings
suggest that at least one subset of these neurons are local
GABAergic interneurons. Moreover, because these neu-
rons have a distinct molecular identity (i.e., nNOS expres-
sion), they are experimentally tractable (e.g., by using cell
type-specific functional and anatomic techniques in
NOS1Cre mice). This approach could be further refined
using intersectional genetics (e.g., to limit expression-
based GABAergic or glutamatergic identity). A number of
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Figure 9. Axonal expression of ChR2-mCherry was colocalized with glutamatergic synaptic boutons in the VP. A, Representative
images of immunolabelling for ChR2-mCherry and substance P (which is highly expressed in the VP). Extensive innervation was
observed in the VP compared to the neighboring parts of the NAc and septum. B, High-magnification representative images of
immunolabelling for ChR2-mCherry, substance P, and VGIuT2 in the VP. Colocalization between ChR2-mCherry andVGIuT2 puncta
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continued

can be seen in single z-plane images, suggesting that these projections are glutamatergic. C, Representative images of immunola-
belling for ChR2-mCherry, VGIuT2, and TH, in the RLi, occasionally also revealed cell bodies that expressed VGIuT2. D, High-
magnification representative images of immunolabelling for ChR2-mCherry, substance P, and VGAT in the VP. On some occasions,
colocalization between ChR2-mCherry and VGAT puncta was observed in single z-plane images, suggesting that some these

projections are also be GABAergic.

technical considerations must be taken into account with
respect to this conclusion. Firstly, it may be that their
axons did not readily transport the fluorescent markers
that we used and/or the expression of those markers
caused some axonal damage to the neurons. Secondly,
although we were unable to detect any axonal projections
of these neurons outside of the VTA and SNc, it remains
possible that they send some sparse projections which
we overlooked, despite very careful inspection of whole
brains. There are several reasons why we consider these
possibilities to be unlikely. First, we carefully examined

neurons for overall health and they appeared normal.
Moreover, we have previously used the same AAV to label
dopamine neurons in the VTA and hypothalamic neurons
without any detectable effects on morphology, physiol-
ogy, or behavior (Viskaitis et al., 2017; Sandhu et al,,
2018). Second, nNOS+ neurons in the VTAR and RLi did
exhibit extensive axonal projections, suggesting that
mCherry/ChR2 can be visualised in the axons of a neigh-
boring (in parts anatomically overlapping) population.
Moreover, these neurons exhibited similar levels of cell
body and dendritic labeling when compared to nNOS+
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Figure 10. Axonal expression of ChR2-mCherry was colocalized with glutamatergic synaptic boutons in the MnR. A, Repre-
sentative images of immunolabelling for ChR2-mCherry and 5-HT (which is highly expressed in the MnR compared to nearby
regions). Extensive innervation was observed in the MnR with axons often passing in close apposition to 5-HT[1] neurons. B,
Upper panels show high-magnification representative images of immunolabelling for ChR2-mCherry and VGIuT2 in the MnR.
Colocalization between ChR2-mCherry and VGIuT2 puncta can be seen in single z-plane images, suggesting that these
projections are glutamatergic. Lower panels show high-magnification representative images of immunolabelling for ChR2-
mCherry and VGAT puncta in the MnR. On some occasions, colocalization between ChR2-mCherry and VGAT was observed in
single z-plane images, suggesting that some these projections may also be GABAergic.
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neurons in the PBP and SNc. Taken together, it would
therefore be surprising if axonal transport of mCherry/
ChR2 was completely absent in one of these populations
but not the other.

One intriguing observation was that a subset of nNOS-
Cre+ neurons in the SNc were TH+. Importantly, these
neurons do not send projections outside the SNc. It is, of
course, a canonical view of the mesocorticolimbic dopa-
mine system that TH+ neurons in the SNc send extremely
dense axonal projections to several target regions, most
notably the striatum (Matsuda et al., 2009). Not withstand-
ing the caveats discussed in the previous paragraph, our
findings suggest, however, that a subset of TH+ neurons
in the SNc are local interneurons (or at least have dramat-
ically more limited axonal projections than typical SNc
dopamine neurons). Interestingly, there is evidence for
TH+ GABAergic interneurons in the striatum (Dubach
et al., 1987; Tashiro et al.,, 1989; Meredith et al., 1999;
O’Byrne et al., 2000; Mao et al., 2001; Petroske et al.,
2001; Ibafez-Sandoval et al., 2010; Unal et al., 2011; Unal
et al., 2015; Xenias et al., 2015). Optogenetic stimulation
of these TH+ neurons in the striatum fails to elicit any
detectable release of dopamine (Ibafiez-Sandoval et al.,
2010; Xenias et al., 2015). In addition, they do not express
AADC, dopamine, or DAT (Xenias et al., 2015). Instead,
optogentic activation of these neurons elicited GABA-
mediated IPSCs in mediam spiny neurons (lbafiez-
Sandoval et al., 2010; Xenias et al., 2015). Colocalization
with GABA synthesizing enzymes GAD65 and GAD67 has
also been reported (Betarbet et al., 1997; Cossette et al.,
2005; Mazloom and Smith, 2006; Tandé et al., 2006; San
Sebastian et al., 2007). Notably, this interneuron popula-
tion is considered to be distinct from the nNOS+ in-
terneurons in the striatum (Ibanez-Sandoval et al., 2010;
Tepper et al., 2010). In contrast, we observed co-
expression of AADC and DAT in our subset of non-
projecting TH+ neurons in the SNc, suggesting that they
may be dopaminergic. It will be important, therefore, to
establish whether they release dopamine. Our examina-
tion of synaptic terminals in the SNc suggest that some at
least may be GABAergic. It is also not clear whether these
TH+ interneurons would be mistaken for TH+, long-range
projecting dopamine neurons in studies where TH-GFP or
TH-Cre mice are used to identify and/or manipulate do-
pamine neurons.

Glutamate neurons are found sparsely distributed
throughout the SNc and VTA, although at a greater den-
sity in more medial regions of the VTA (Yamaguchi et al.,
2007, 2011, 2013, 2015; Nair-Roberts et al., 2008; Mo-
rales and Root, 2014; Root et al.,, 2016; Morales and
Margolis, 2017). Some of these neurons co-release dopa-
mine or GABA (Stuber et al., 2010; Tecuapetla et al., 2010;
Root et al., 2014b; Zhang et al., 2015; Yoo et al., 2016).
They make local synaptic connections with dopamine and
non-dopamine neurons and send projections to several
regions including the striatum (Dobi et al., 2010; Hnasko
et al.,, 2012; Root et al., 2014a,b; Taylor et al., 2014).
Interestingly, optogenetic excitation of VTA glutamate
neurons can have rewarding and aversive effects, de-
pending in part on the site of stimulation, suggesting
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some functional heterogeneity (Root et al., 2014a; Wang
et al.,, 2015; Qi et al., 2016; Yoo et al., 2016). We have
found the nNOS is expressed by glutamate neurons in the
VTAR and RLi that send projections most densely to the
VP, LH, and MnR. This is consistent with previous reports
of non-cell type-specific anterograde labeling of projec-
tions from the RLi to the VP, but not NAc (Del-Fava et al.,
2007). Based on reports of the full projectome of gluta-
mate neurons in the VTA, which includes extensive pro-
jections to regions such as the NAc (Hnasko et al., 2012;
Taylor et al.,, 2014; Qi et al., 2016), we conclude that
nNOS+ neurons represent a projection-specific sub-
group of this population. As is the case for ANOS+ GABA
neurons in the PBP and SNc, because nNOS+ glutamate
neurons have a distinct molecular identity understanding
their function will be experimentally tractable.

In conclusion, our findings indicate that nNOS is ex-
pressed by neurochemically- and anatomically-distinct
neuronal sub-groups in a sub-region-specific manner
within the VTA and SNc.
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