
1Scientific REPOrTS |         (2018) 8:16919  | DOI:10.1038/s41598-018-34400-z

www.nature.com/scientificreports

Computational Imaging Prediction 
of Starburst-Effect Diffraction 
Spikes
Markus Lendermann1, Joel Shi Quan Tan2, Jin Ming Koh3 & Kang Hao Cheong   3

When imaging bright light sources, rays of light emanating from their centres are commonly observed; 
this ubiquitous phenomenon is known as the starburst effect. The prediction and characterization of 
starburst patterns formed by extended sources have been neglected to date. In the present study, 
we propose a novel trichromatic computational framework to calculate the image of a scene viewed 
through an imaging system with arbitrary focus and aperture geometry. Diffractive light transport, 
imaging sensor behaviour, and implicit image adjustments typical in modern imaging equipment are 
modelled. Characterization methods for key optical parameters of imaging systems are also examined. 
Extensive comparisons between theoretical and experimental results reveal excellent prediction quality 
for both focused and defocused systems.

Captured images of light sources commonly exhibit the starburst effect, an optical phenomenon comprising 
apparent rays of light emanating from their centres. These rays, known as diffraction spikes, are also observable 
by the naked human eye, usually at night. Diffraction spikes in telescope images of stars and other illuminated 
bodies1–3 introduce uncertainties in luminosity-dependent measurements, but can be useful in localization tech-
niques4. The phenomenon occurs on all light sources and affects a wide range of imaging systems, including 
photography5–7, medical endoscopy8, and telemetry acquisition systems9, with higher-intensity sources yielding 
more prominent spikes.

Often accompanied with lens flare10,11, the starburst effect arises due to the diffraction of light as it propagates 
past the limiting aperture of the imaging system12. A Fourier optics formulation is typically employed, where the 
diffraction-limited point spread function is given by the Fourier transform of the exit pupil shape. It is common 
for imaging systems at high f-numbers to have polygonal apertures—these admit high spatial frequency compo-
nents along axes perpendicular to the polygonal edges13,14, hence forming the perceived spikes. In reflective tele-
scopes, the support vanes of secondary mirrors result in a diffraction pattern similar to that formed by multiple 
intersecting slits15.

The suppression and intensification of the starburst effect have received much attention to date. Efforts have 
been made to render visually similar effects in image post-processing6 and minimize diffraction artifacts in high 
dynamic range (HDR) photography5. In astronomy, software modelling Bahtinov masks and spider-diffraction 
have been developed16, and the reduction of diffractive effects on segmented mirrors is crucial for telescope 
design17. Simulation toolsets and methods are also available for astronomical imagery, encompassing light trans-
port effects including weak gravitational lensing and Doppler shift18–20. Outside of astronomy, however, limited 
attention has been placed on correctly predicting the images of extended objects on general apertures and focus, 
with the optical parameters and implicit image processing of the imaging system taken into account; a lacuna 
in this discipline therefore remains. While predicting the corresponding image of a point-like object entails a 
calculation of the point-spread function (PSF), predictions for extended objects require a convolution of the PSF 
with the object field, significantly increasing the complexity of the problem. Addressing this gap enables greater 
accuracy and generality in modelling the starburst effect, thereby enhancing its diverse applications, especially in 
image prediction on commercial imaging systems—such is the focus of our study.

This paper presents a rigorous framework for calculating the image of a scene viewed through an imaging 
system with arbitrary focus. A Fourier optics formulation is first discussed, followed by a computational image 

1National University of Singapore High School of Mathematics and Science, 20 Clementi Avenue 1, S129957, 
Singapore, Singapore. 2Yong Loo Lin School of Medicine, National University of Singapore, S119228, Singapore, 
Singapore. 3Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, S138683, Singapore, 
Singapore. Correspondence and requests for materials should be addressed to K.H.C. (email: Kanghao.Cheong@
SingaporeTech.edu.sg)

Received: 10 August 2018

Accepted: 17 October 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0002-4475-5451
mailto:Kanghao.Cheong@SingaporeTech.edu.sg
mailto:Kanghao.Cheong@SingaporeTech.edu.sg


www.nature.com/scientificreports/

2Scientific REPOrTS |         (2018) 8:16919  | DOI:10.1038/s41598-018-34400-z

prediction framework. The characterization of a benchmark imaging system and the adopted experimental 
method are then described, with extensive comparisons between theoretical and experimental results.

Optics Formulation
In Fourier optics, a system of lenses and apertures can be reduced to corresponding entrance and exit pupils, 
wherein diffractive effects can be equivalently treated21; the exit pupil is used throughout this paper. The media of 
the object and image spaces are taken to be identical, therefore the nodal points and principal planes are coinci-
dent22. A plausible alternative to the adopted Fourier-optical formulation is Monte Carlo ray-tracing extended to 
model edge diffraction23, though this remains outside the scope of the current study.

The system geometry is defined in Fig. 1. The geometrical coordinates on the image plane R are denoted (u, v). 
The heights d and d′ are defined at the entrance and exit pupils, as shown by the intersection of the limiting rays 
with reference spheres centered at the origins of the object and image planes respectively. The linear magnification 
of the system is then = ′M dz d z/i o, where zo and zi are the distances between the object plane and entrance pupil, 
and between the image plane and the exit pupil, respectively.

Here an extended object at O is illuminated by spatially incoherent light. The actual image intensity distribu-
tion can be written = | | ⊗I u v h u v I u v( , ) ( , ) ( , )i g

2 , where ⊗ denotes a convolution, Ig is the magnified 
object-space intensity distribution, and | |h 2 and h are the intensity and amplitude point spread functions respec-
tively. Note that h is complex, encoding both amplitude and phase information. To compute the convolution, the 
optical transfer function (OTF) = | |h{ }2H F  given by
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is utilized, where =H h{ } is the amplitude transfer function (ATF) and  ⋅{ } denotes the two-dimensional 
Fourier transform operator. Calculation of the OTF from a known ATF in this manner is known as the 
double-transform method24. The ATF of an imaging system takes the form

λ λ= ι λ λH f f P z f z f( , ) ( , )e , (2)u v i u i v
kW z f z f( , )i u i v

where π λ=k 2 /  and P(x, y) is the exit pupil function describing the bounded pupil area pup. The exponent in 
Equation (2) accounts for any phase shift kW(x, y) at the exit pupil due to aberrations. Considering on-axis image 
points (see Fig. A.1 of Supplementary Information), kW(x, y) can be obtained by subtracting the ideal phase dis-
tribution across the exit pupil from the actual one. Therefore,
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where Δz is the distance between the in-focus image plane F and the out-of-focus image plane R. These calcula-
tions are valid in the paraxial approximation, an inherent limitation in Fourier-optical formulations.

For simple pupil shapes, the OTF can be solved analytically from Equation (1) with the normalized autocor-
relation function of H 21,25. For complex pupil shapes, either the double-transform method or normalized auto-
correlation may be performed numerically. While the former relies on fast Fourier transform (FFT) algorithms, 
the latter requires a polygon clipping algorithm26 for each sampling point of the OTF, to determine the area over 
which ιkW x yexp[ ( , )], a highly oscillatory function at large defocusing, may be numerically integrated. Such a 
procedure is both time and memory intensive; the double-transform method is hence preferable.

The isoplanacity of the imaging lens system is assumed in this model as a simplification. A more complete 
treatment will entail the characterization of the modulation transfer function (MTF) of the lens system over the 
image area; such a method, however, yields a spatially variant PSF that is incompatible with a Fourier-optical 
formulation. To retain the low computational cost of Fourier-optical approaches, the imaging region of interest 
is taken to lie within the isoplanatic patch of the lens. This condition is expected to be satisfied if the paraxial 
condition holds.

Figure 1.  O, R, object and image planes; E, E’, entrance and exit pupils with reference lengths ε, ε′ respectively.
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Computational Model
In this section, the computational framework for the prediction of diffraction spikes is discussed. The process 
is divided into two primary segments (Fig. 2). First, the double-transform method computes the theoretical 
channel-specific raw pixel values; a post-processing pipeline then renders the final colour image. In this manner, 
the predicted colour image corresponds directly with images taken by imaging equipment, and the two can there-
fore be compared.

A trichromatic approach is adopted—predictions are made based on the composition of three monochro-
matic colour channels, each of a specific peak wavelength. This approximation yields a significant reduction in 
computational complexity, as compared to a polychromatic approach involving integration across the bandpasses 
of imaging sensor elements. In the adopted approach, the wavelength-dependent sensitivity of the sensor is sim-
plistically treated via empirical characterization on each channel, as will be described in the next section; this 
implies that the full spectral power distribution of the source need not be known. A trichromatic approach may 
be analogous to the technological nature of modern imaging sensors and displays27, and to biological vision in 
humans and many other organisms28–30.

Raw Pixel Data Prediction.  We seek to calculate the theoretical intensity distribution across the imaging 
sensor, such that the raw pixel values can be computed. First, the normalized object intensity ∈I [0, 1]o  is repre-
sented by an m × n matrix A covering a geometrical size of ξ η×2 2max max. The geometrical image therefore has a 
size ξ η| | × | |M M2 2max max and a normalized intensity matrix B given by =B Ai j i sgn M j sgn M, , . To calculate the 
OTF matrix , the pupil function matrix in the frequency domain  is first constructed by scaling pup (defined 
in the spatial domain) by 1/λzi, and uniformly sampling it m × n times within the domain of  = B{ }. The ATF 
matrix is then


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where ξ= | |f m M/4u, max max and η= | |f n M/4v , max max are the Nyquist frequencies along the u and v axes. The 
image must be of sufficiently high resolution such that the Nyquist frequency is larger than the cut-off frequency 
of the ATF. Sufficient null padding is also necessary for periodicity breaking. Utilizing the double-transform 
method, the OTF matrix  can be computed as    H{ { } }1 2= | |− . The predicted image intensity distribution 
is then H B= −

C { }1  where  denotes the Hadamard product of matrices.
The actual intensity distribution incident on the imaging sensor is therefore κC, where κ is a proportionality 

constant dependent on the system geometry. The raw pixel value matrix D is then

 κ φ= ( )tD C / , (5)i j i j, , 0

where t is the exposure time, φ0 is a reference radiant exposure for normalization, and   is the sensor response 
function. The form of   is intrinsic upon the physical construction of the sensor, and φ0 is specific for a given 
source and sensor configuration. The physical parameters which   and φ0 depend on are detailed in 
Supplementary Information B, alongside characterization methods in the next section.

Finally, an appropriate colour filter is applied to D, yielding the predicted channel-specific pixel values. The 
colour filter is dependent upon the construction of the imaging sensor, and can be represented by a Bayer pattern. 
This entire process is repeated for all three colour channels to yield a complete pixel-wise prediction in colour 
filter array (CFA) form.

Post-Processing Rendering.  Further stages of processing are required to apply various adjustments that 
are oftentimes implicit in modern imaging equipment. In the un-demosaiced CFA form, white balancing is per-
formed, followed by the execution of a demosaicing algorithm to yield a true colour RGB image31. Colour space 

Figure 2.  Flowchart illustrating the image prediction framework. The process comprises two sequential 
segments—the double-transform method first computes the channel-specific pixel values, followed by a 
postprocessing pipeline reflecting image adjustments standard on modern imaging equipment. Note that 
thumbnails from "Pixel Values" onwards are cropped and expanded for clarity.
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conversion is then applied for accurate display on a computer monitor or in print32. Gamma correction may also 
be applied. The final result from this process is a predicted colour image that corresponds directly to one captured 
by a modern imaging system, computed from first principles—the excellent accuracy of this method is demon-
strated in later sections.

Imaging System Characterization
Predicting the behaviour of an imaging system through the presented computational model requires several 
characteristic parameters of the system to be known. These include the linear magnification of the lens system 
and the positions and sizes of the entrance and exit pupils. The positions of the principal planes are also necessary 
to ascertain the lens geometry at different focusing distances. As a demonstration, a Nikon D7200 DSLR camera 
with an AF Nikkor 50 mm f/1.8D prime lens is used as a verification benchmark. However, it is worth noting that 
the model presented in this paper is applicable to arbitrary imaging systems in general.

Pupil & Principal Plane Locations.  Characteristic data for the examined lens system is available in exist-
ing literature33. The extracted pupil and principal plane positions relative to the sensor plane are presented in 
Table B.1 of the Supplementary Information. While these measurements are valid for the camera at infinity focus, 
changing the focusing distance of the lens will result in a shift of the pupil locations. This can be calculated by 
treating the compound camera lens as a single thin lens with the principal planes12.

Focus Adjustment.  The effective focal length (EFL) of the system is denoted f. Consider the distance between 
the front principal plane and the object plane on which the system is focused (hereinafter s, see Fig. 3), and the 
distance between the rear principal plane and the sensor plane (hereinafter ′s ). Clearly ′ =s f  when the lens is 
focused at infinity; thus, from Table B.1, f = (51.5 ± 0.1) mm.

The examined system is equipped with a prime lens—that is, focusing is achieved by the simultaneous move-
ment of all lens elements back and forth within the lens enclosure as a single system. To achieve a finite focusing 
distance rf away from the sensor plane, the lens elements must shift forward by a distance δz (Fig. 3). Denote the 
distance between P and P′ as zp. Then, = − − ′s r z sf p  and δ′ = +s f z. Therefore,

δ δ
=

− − +
+

+f r z f z f z
1 1

( )
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(6)f p

from which δz and Δz as defined in Fig. A.1 can be calculated for path-length error computation (see 
Supplementary Information A). This characterization method can be applied to prime lens systems in general. 
Zoom lenses are more complex due to their adjustable focal lengths; more detailed specifications are necessary 
for a complete characterization.

Pupil Sizes.  The pupil sizes d and d′ remain to be determined. The geometry of Fig. 1 indicates ε ε= +d z z/( )o
2

o
2 1/2 

and ε ε′ = ′ ′ +d z z/( )i
2

i
2 1/2, where ε and ε′ are the reference length scales measured from the optical axis to the farthest 

point on the pupil. To measure ε and ε′, the lens was detached from the camera body, and a second camera was used to 
photograph the entrance and exit pupils. The shapes and sizes of the pupils were determined using computational 
edge-detection (see Fig. B.1 of the Supplementary Information), on which pup, ε and ε′ can be defined.

Sensor Response.  For incident light of intensity I0 and wavelength λ0, dimensionless relative radiant expo-
sures can be mapped to pixel values ζ ∈ [0, 1] via the sensor response function   as follows:

ζ φ λ= I t( / ( )), (7)0 0 0

where t is the exposure time. The physical validity of this mapping is detailed in Supplementary Information B. 
The trichromatic approach adopted therefore requires only empirical determination of   and φ0 for each colour 
channel. Figure 4 shows the individual response curves for each colour channel obtained by capturing images of 
the object at different exposure times and averaging the channel-specific pixel value within a fixed predefined 
region on the image. The nonlinearity at low exposure times is attributed to semiconductor non-idealities. The 
peak wavelengths of each channel (600 nm, 530 nm, and 450 nm for R, G and B respectively) were estimated 
based on existing quantum efficiency curves of similar camera models34.

Figure 3.  Geometric schematic of a prime lens system focused at a distance rf away from the sensor plane R.
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Model Verification
To demonstrate the accuracy of the presented computational method, sets of theoretical predictions are compared 
against experimental measurements. The benchmark experiment setup is first described, followed by compari-
sons between experimental results and theoretical predictions.

Experimental Setup.  The characterization of the imaging device used has previously been detailed. The 
object in the benchmark experiment comprised a 20W LED floodlight with 5000 K colour temperature, over 
which a diffuser film was placed. A circular mask of diameter 10.5 mm was then mounted to create a uniform 
circular light source. The distance from the object to the imaging sensor plane was constant at 100.0 ± 0.1 cm. All 
experiments were conducted in a dark room to minimize ambient light pollution of images. The object occupied 
approximately 10% of the captured image area, and was axially aligned to ensure it remained within the isopla-
natic patch.

The post-processing applied to these experimental images and theoretical predictions were identical. In par-
ticular, an RGGB Bayer pattern was used, and a white balance of [R, G, B] = [2, 1, 2] was applied to account for 
the ratio of red-, green- and blue-channel pixels on the imaging sensor. Conversion to geometrical scale was 
performed using a pixel size of 3.917 × 3.917 μm35. A gamma compression was also applied in accordance with 
the sRGB standard (see Supplementary Information A). No additional scaling was performed; the accuracy of the 
calculated magnification can thus be verified.

Results.  Corresponding theoretical predictions were computed using the presented method. Matrix sizes of 
m = n = 3750 were adopted for sufficient null padding, followed by a cropping to 1250 × 1250 px to enhance visual 
clarity.

We compare theoretical predictions and experimental results for both a focused, diffraction-limited image 
as well as a severely defocused image. For each set of comparisons, image intensity profiles are plotted with cir-
cular as well as cross-sectional sampling (Fig. 5). Comparisons between rendered sRGB colour images are also 
presented (Fig. 6), for which the Mean Square Error (MSE)36 and Structural Similarity Index (SSIM)37 are used as 
quantitative measures for the accuracy of the predictions.

Focused Images.  The focused configuration comprises ro = rf = 100.0 cm, t = 2.5 s, and a f/22 aperture. Excellent 
agreement on image intensity profiles can be observed in Fig. 5(a–c). Clearly noticeable in Fig. 5(a) is the number 
of distinct diffraction spikes (14), twice that of the number of edges on the polygonal aperture (7). Indeed, for 
even-sided apertures, the number of observable diffraction spikes will typically be identical to the number of 
aperture edges; whereas for odd-sided apertures, the number of diffraction spikes will be twice the aperture edge 
count. A qualitative explanation is presented in Supplementary Information A.

Defocused Images.  The defocused configuration comprises ro = 100.0 cm, rf = 45.0 cm, t = 1.6 s, and a f/22 
aperture, corresponding to a 4.78 mm defocus. Excellent accuracy of theoretical predictions can be observed in 
Fig. 5(d–f). A comparison between Fig. 5(a) and 5(d) makes explicit the effects of defocus on the starburst effect, 
where for similar sampling radii, the inner “spikes” are blurred out and merge with the larger “rays” emanating 
from the centre of the imaged light source. This effect is well visualized when comparing the rendered focused 
and defocused images in Fig. 6. Clearly, a good overall agreement has been achieved.

Colour Images.  Figure 6 compares the final predicted colour images from the computational method with 
experiments, for both the focused and defocused imaging system configuration. A slight alternation in the inten-
sity of the diffraction spikes is visible in Fig. 6(b), suggesting non-idealities in the MTF of the lens system used. 
Excellent colour agreement is evident for both focused and defocused images. In addition, excellent results are 
obtained for the MSE (<0.1%) and SSIM (>95%) comparison tests, detailed in Table 1.

Conclusion
This paper has discussed a rigorous framework for calculating the image of a starburst-affected scene viewed  
through an imaging system with arbitrary focus and aperture geometry, based fundamentally on a physically-valid 
Fourier optics formulation. Following the computation of channel-specific pixel values via a numerical 
double-transform method, we also propose a post-processing pipeline accommodating various image adjust-
ments standard in modern imaging equipment. The final result is a direct analogue of images captured by imaging 

Figure 4.  Empirically characterized best-fit response curves for each colour channel.
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apparatus, inclusive of light transport effects within the apparatus, demosiacing mechanisms on the imaging 
sensor, and implicit programmatic image adjustments. Such comprehensiveness represents a key advancement 
over existing literature.

Notably, excellent agreement between predictions and real-world experimental measurements were observed, 
for both focused and defocused configurations. These benchmark results indicate outstanding accuracy of our 
computational method. The trichromatic approach enables the prediction of blurred colour images unachievable 
with existing monochromatic, unaberrated methods; the required characterization of light sources with unknown 

Figure 5.  Image intensity profiles sampled along different paths, for both focused and defocused 
configurations: (a/d) circle of radius 0.335 umax centered at the origin, (b) horizontal line 0.35 vmax from the top, 
(e) horizontal line 0.3 vmax from the top, and (c/f) horizontal line vmax from the top. umax and vmax respectively 
denote half the spatial width and height of the cropped images. Lines and dots represent theoretical predictions 
and experimental measurements respectively; their colours represent the three colour channels (red, green, 
blue). The uncertainties in ζ and u-coordinate are approximately 7 × 10−5 and 3.917 μm respectively for all plots.

Figure 6.  Comparison of theoretical image predictions and recorded experiment images, for both focused and 
defocused scenarios. All images are adjusted to sRGB colour space. Calculated MSE and SSIM metrics for these 
images are presented in Table 1. The horizontal arrows along the left side of each figure indicate the level of the 
cross-sections sampled in Fig. 5.

Focused Defocused

MSE (×10−3) SSIM MSE (×10−3) SSIM

R 0.311 0.965 0.478 0.951

G 0.270 0.950 0.381 0.960

B 0.868 0.973 0.676 0.966

B/W 0.304 0.979 0.403 0.968

Table 1.  Calculated MSE and SSIM for focused and defocused comparisons. Grayscale images were calculated 
from truecolour RGB images (Fig. 2) with weighting factors of [0.2989, 0.5870, 0.1140] for [R, G, B] channels 
respectively and then gamma compressed, as described by Equation (A.1) of the Supplementary Information. 
The low MSE (<0.1%) and high SSIM metrics (>95%) indicate good agreement between theoretical predictions 
and experiment data.
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spectral power distributions is also greatly simplified, a notable advantage over full polychromatic approaches. 
Our study has also presented key methods for the characterization of optical parameters of imaging systems, 
including edge-detection techniques for pupil geometry determination and the measurement of sensor response 
curves—these methods can be utilized to characterize other systems, on which computational predictions can 
then be made.

The presented results are of great relevance to the modelling and reduction of diffraction spikes in telescope 
and telemetry acquisition systems, critical for data accuracy1–3,9; the Bahtinov mask-facilitated automated focus-
ing of telescopes may also be improved, and spider-diffraction phenomena typically encountered in reflecting 
telescopes may also be optimized16. The framework may also be applied for the accurate generation of starburst 
visual effects in photorealistic computer graphics and the computation of diffraction spikes observed by the 
human eye, taking into account aberration effects38,39. Extension of the computational framework to model x-ray 
diffraction40–42 and complex diffraction phenomena43–45 is also plausible, due to its mathematical and structural 
generality.

Data Availability
The datasets are available from the corresponding author on reasonable request.
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