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Abstract

The Cancer Genome Atlas (TCGA) represents one of several international consortia dedicated to 

performing comprehensive genomic and epigenomic analyses of selected tumour types to advance 

our understanding of disease and provide an open-access resource for worldwide cancer research. 

Thirty-three tumour types (selected by histology or tissue of origin, to include both common and 

rare diseases), comprising >11 000 specimens, were subjected to DNA sequencing, copy number 

and methylation analysis, and transcriptomic, proteomic and histological evaluation. Each cancer 

type was analysed individually to identify tissue-specific alterations, and make correlations across 

different molecular platforms. The final dataset was then normalized and combined for the 
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PanCancer Initiative, which seeks to identify commonalities across different cancer types or cells 

of origin/lineage, or within anatomically or morphologically related groups. An important resource 

generated along with the rich molecular studies is an extensive digital pathology slide archive, 

composed of frozen section tissue directly related to the tissues analysed as part of TCGA, and 

representative formalin-fixed paraffin-embedded, haematoxylin and eosin (H&E)-stained 

diagnostic slides. These H&E image resources have primarily been used to verify diagnoses and 

histological subtypes with some limited extraction of standard pathological variables such as 

mitotic activity, grade, and lymphocytic infiltrates. Largely overlooked is the richness of these 

scanned images for more sophisticated feature extraction approaches coupled with machine 

learning, and ultimately correlation with molecular features and clinical endpoints. Here, we 

document initial attempts to exploit TCGA imaging archives, and describe some of the tools, and 

the rapidly evolving image analysis/feature extraction landscape. Our hope is to inform, and 

ultimately inspire and challenge, the pathology and cancer research communities to exploit these 

imaging resources so that the full potential of this integral platform of TCGA can be used to 

complement and enhance the insightful integrated analyses from the genomic and epigenomic 

platforms.
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Introduction

Contemporary anatomical or surgical pathology practice encompasses not only the 

traditional morphological approach to diagnosis, but also, increasingly, molecular and 

genomic approaches for diagnostic, prognostic and theragnostic purposes. Digital pathology 

is also making advances in clinical practice and research, allowing an increased utilization of 

telepathology, and adding new analytical tools to the pathology toolkit. The past few years 

have seen the completion of The Cancer Genome Atlas (TCGA) Project, which has 

generated a wealth of raw molecular data and digital image data. Much insightful integration 

across the genomic and epigenomic platforms has occurred, and is published in numerous 

articles – both through primary TCGA publications and by extensive use of TCGA datasets 

to enhance the work of groups worldwide. The molecular resources of TCGA have 

contributed greatly to our understanding of the tumour types included, and represent a vast 

resource for advancing the field of pathology research and clinical practice. Other similar 

large-scale genomic analyses include the International Cancer Genome Consortium (ICGC), 

which was established with the goal of generating whole genome sequencing data, whole 

exome sequencing data, transcriptomic data and DNA methylation data on >25 000 tumour 

samples. Integrated projects such as the TCGA PanCancer Initiative and the ICGC 

PanCancer Analysis of Whole Genomes are further expanding the initial tumour type-

specific analysis to discover commonalities across different lines of differentiation and 

tissues of origin. Although TCGA has generated digital slide images for the majority of 

tumours, the digital imaging resource has been underrepresented among this impressive 

productivity and distinctly underutilized. This review will briefly introduce TCGA and the 
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PanCancer initiatives, and their application to the field of pathology, but will focus primarily 

on the largely untapped resource of digital histology analysis and the promise that it brings 

to improving our understanding of cancer biology and ultimately patient care.

Overview of TCGA and the PanCancer Initiative

TCGA was begun as a collaboration between the National Cancer Institute and the National 

Human Genome Research Institute. The goal of this massive project was to comprehensively 

characterize multiple molecular aspects of 33 selected cancer types (Table 1; Figure 1), 

including DNA sequence (all exomes and low-pass genomes for a subset), copy number and 

methylation, mRNA and microRNA (miRNA) expression, and the expression of selected 

proteins. Fresh frozen tumour and non-neoplastic tissues were submitted to the Biospecimen 

Core Resource (BCR) from contributing sites, along with pathology reports and clinical 

data, including treatment and patient outcomes. From these frozen tumour specimens, top 

and bottom frozen sections were obtained and scanned as part of the specimen curation 

protocol. In most cases, selected representative haematoxylin and eosin (H&E)-stained 

slides were also submitted for review, and these were digitally scanned. Molecular analyses 

were undertaken at designated Genome Characterization Centers and Genome Sequencing 

Centers. Raw data were integrated and analysed at Genome Data Analysis Centers. Disease 

Working Groups initially defined the key problems to be addressed, and the type and format 

of clinical data to be gathered for each tumour type from contributing sites. Finally, Analysis 

Working Groups composed of clinical and scientific experts reviewed the multiple platform 

analyses in order to better understand the findings, and developed resource publications to 

introduce the findings and encourage further work in the field. All datasets are publically 

available for further analysis through the Genomic Data Commons Data Portal (https://

gdc.cancer.gov), and have been widely utilized. In addition, a number of exceedingly useful 

data visualization and analysis tools were developed at the Genome Data Analysis Centers 

to allow data access and exploration through online interactive tools (examples: http://

firebrowse.org; http://cbioportal.org; http://explorer.cancerregulome.org; http://

bioinformatics.mdanderson.org/tcgambatch). Other multinational genomic efforts such as 

the ICGC followed similar workflows and resulted in equally valuable data resources, 

although an in-depth discussion is beyond the scope of this review. The ICGC datasets are 

publically available through the ICGC data portal (https://dcc.icgc.org/).

TCGA platforms

The core dataset generated by TCGA for each tumour sample included pathology data, 

digitized histology images, patient clinical and outcome data, whole exome sequencing on 

all cases, whole genome sequencing on a selected subset of cases, DNA copy number 

generated by the use of single-nucleotide polymorphism arrays, mRNA and miRNA 

expression data generated through microarrays in early analyses, or, subsequently, mRNA 

sequencing, miRNA sequencing and DNA methylation data generated via methylation 

arrays. Expression of selected proteins and phosphorylated epitopes was assessed with 

reverse-phase protein arrays. Data were assessed and correlated across the analytical 

platforms to create an integrated genomic and epigenomic view of cancer. Extensive high-

order analysis has been performed for all platforms except the scanned pathology images, 
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which have primarily been used for analog analysis by specialist pathologists to confirm the 

diagnosis and extract specific pathological characteristics.

The PanCancer analysis project

After examination of genomic, epigenomic, transcriptomic and proteomic alterations within 

individual tumour types segregated by tissue of origin, the second phase of the TCGA 

Research Network examined similarities and differences between tumour types and tissue 

sites under the umbrella of the PanCancer analysis project (PanCancer Initiative). The initial 

PanCancer12 effort published in 2013 incorporated data from 12 of the initial tumour types 

analysed in the TCGA marker articles [1]. The ongoing PanCancer33 initiative is 

characterizing all 11 000+ cases across 33 cancer types. It includes histology-specific 

analyses, such as the pan-squamous cell analysis incorporating data on squamous cell 

carcinomas of all available sites (head and neck, oesophagus, lung, cervix, and bladder 

urothelial carcinomas with squamous elements), as well as broad analyses across all cancers 

such as the mutational driver effort harnessing the power of the large datasets to identify rare 

driver mutations, or the panimmune initiative seeking to characterize the patterns and 

significance of immune infiltration across malignancies. These analyses, uniting datasets 

generated on different platforms at different institutions, and harnessing technological 

advances made over a period of multiple years, are made possible by broad normalization 

efforts to mitigate batch effects across all TCGA samples, such as those applied to the 

exome sequencing data for mutational calling.

Major findings from the PanCancer analysis project

Contemporary pathology must provide not only diagnostic information, but also prognostic 

and theragnostic features where possible. TCGA and PanCancer efforts incorporate the 

strengths of both traditional cancer studies by performing tissue-specific analyses (TCGA), 

and contemporary ‘basket’ approaches to biomarker investigation by investigating 

alterations affecting a small percentage of tumours with widely disparate origins to identify 

commonalities than can inform our understanding of tumour biology or clinical management 

(PanCancer analyses). Another advantage of this broad-based multiplatform approach is the 

ability to more comprehensively profile disparate alterations across cancers that affect the 

same cell signalling pathways; such convergence might be targetable by similar classes of 

agents.

Among the many insights gleaned from the initial PanCancer12 initiative was the 

demonstration that, for some cancer histologies, such as clear cell renal cell carcinoma, 

molecular alterations are very distinct from those of all other carcinomas, and that the 

tumours form a relatively homogeneous group. In contrast, other carcinomas, such as breast 

invasive ductal carcinoma, show considerable molecular divergence within a relatively 

homogeneous morphological group, despite the common site of origin, supporting different 

clinical approaches to therapy [2,3]. Moreover, carcinomas with similar histological features 

arising at different anatomical sites (e.g. squamous cell carcinoma of any site, or colonic and 

rectal adenocarcinoma) are more similar than they are different [4]. To some extent, these 

findings reflect an intuitive observation concerning the histological features of these 
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morphologically similar groups of tumours, and provide a rationale for interpreting 

histological findings in the context of revealed molecular signatures. It is of note that gene 

expression and methylation signatures do seem to reflect tissue of origin to a greater extent 

than genomic alterations in most cases, supporting the importance of cellular context in 

determining tumour cell phenotypes [4].

Molecular convergence across tissue types

At the genomic level, malignancies appear to be divided into two broad categories reflecting 

divergent oncogenic processes: copy number-driven and mutation-driven [5]. Malignancies 

in the PanCancer12 analysis with high levels of somatic copy number alterations were 

associated with early TP53 mutations, reflecting the importance of TP53 in regulating 

genomic stability, and included ovarian carcinoma, squamous cell carcinoma, breast invasive 

ductal carcinoma, uterine serous carcinoma, uterine carcinosarcoma, and pleomorphic adult 

sarcomas [6,7]. Mutation-driven malignancies included clear cell renal cell carcinoma, 

glioblastoma, acute myeloid leukaemia, colorectal adenocarcinoma, and uterine non-serous 

carcinomas. This analysis appears to hold whether one looks solely at defined driver 

mutations or considers the overall genomic structure and features of a cancer type [7].

Common somatic copy number alterations across malignancies include amplification of 

regions containing oncogenes [CCND1, CCNE1, MYC, epidermal growth factor receptor 
(EGFR), ERBB2, MCL1, and MDM2], or genes involved in telomere maintenance, histone 

modification, or chromatin remodelling (TERC, RMRP, WHSC1L1, BRD4, KAT6A, 

KAT6B, NSD1, and PHF1), emphasizing the importance of epigenetic factors in 

tumourigenesis [8]. Likewise, recurrent hotspot mutations in the chromatin modifier genes 

ARID1 and CTCF are frequent across multiple cancer lineages [5,9].

Squamous cell-like molecular classification

One of the major findings of the PanCancer12 initiative was the way in which carcinomas 

from different anatomical sites converged into molecularly similar types. For instance, in the 

multiplatform analysis, squamous cell carcinomas from the lung and head and neck 

clustered together with a subset of bladder carcinomas into a molecular subtype 

characterized by TP53 alterations, amplification of TP63, and high expression of immune-

related and proliferation genes [4]. To pathologists, this finding was not surprising, given 

that urothelial carcinoma commonly shows squamous differentiation, and up to 50% 

divergent squamous differentiation was allowed in the specimens subjected to expert 

pathology review for the bladder urothelial carcinoma tissue-specific analysis [10]. 

Pathologists are commonly asked in their daily practice to identify the site of origin for 

metastatic squamous cell carcinoma, and the molecular findings from this initial report 

reflect the challenges of deciphering tissue of origin for squamous cell carcinomas, which 

essentially comprise two relatively homogeneous molecular phenotypes [human papilloma 

virus (HPV)-associated (typically affecting squamous cell carcinomas of the oropharynx and 

female gynecologic squamous mucosal sites), and non-HPV associated]. These common 

alitiesmay reflect the essential final common pathways driving squamous differentiation in 

the malignant setting. The PanCancer33 analysis promises to expand the PanSquamous 
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analysis to include cervical squamous cell carcinoma, oesophageal squamous cell 

carcinoma, and the minor subset of bladder cancer showing squamous differentiation, in an 

attempt to identify additional commonalities across all anatomical sites, new molecular 

subtypes within squamous cell carcinoma, and tissue of origin-specific alterations.

Colorectal adenocarcinoma

Less surprisingly, colonic adenocarcinoma and rectal adenocarcinoma were noted to be 

nearly indistinguishable at the molecular level, reflecting the continuity of the lower 

gastrointestinal tract and known histological similarities. The main distinction within 

colorectal carcinoma is the increased frequency of hypermethylated and hypermutated DNA 

mismatch repair-deficient (resulting in microsatellite instability) and DNA polymerase-ε-

deficient carcinomas in the right colon; otherwise, non-hypermutated carcinomas showed 

identical genomic, epigenomic and transcriptomic alterations, independently of rectal or 

colon origin [11]. Interestingly, microsatellite-unstable colon cancers do show different 

histological features from microsatellite-stable cases [12]. This genotype– morphology 

association was recently demonstrated again by the use of scanned images of colorectal 

carcinoma contained in TCGA image archives [13].

BRAF mutations

One of the hopes of TCGA and the PanCancer Initiative is to identify alterations present 

across multiple cancer types that can be used to guide therapy. Indeed, the effort has 

identified numerous mutations that are present across disparate tumour types. Some of these 

alterations represent potentially attractive therapeutic targets, such as mutant BRAF, EGFR, 

or ARID1A. BRAF mutations have been found in multiple cancer types, including 

melanoma, thyroid carcinoma, and colorectal adenocarcinoma, as well as in a subset of 

pancreatic and lung adenocarcinomas [14–17]. The dramatic response of melanoma positive 

for BRAF p.V600E mutations to BRAF inhibitors such as vemurafenib or dabrafenib [18–

21] suggested that other malignancies harbouring the identical alteration might also respond. 

Unfortunately, reality has been somewhat more nuanced. Whereas BRAF inhibitors show 

promise in BRAF-mutated papillary thyroid carcinoma [22], patients with colorectal 

carcinomas with BRAF mutations (representing 10% of all colorectal adenocarcinoma) have 

shorter survival, and are less responsive to conventional chemotherapy than patients with 

other colorectal carcinomas [23]. In contrast to melanoma, which shows initial response 

rates of up to 80% prior to the development of resistance, colorectal adenocarcinomas with 

the identical BRAF p.V600E mutation respond to vemurafenib as a sole agent in <5% of 

cases [24]. Subsequent studies have shown that this resistance is most frequently due to an 

extracellular signal-related kinase-mediated feedback resulting in increased epidermal 

growth factor receptor activation – a process that does not occur in melanoma [23,25–28]. 

Others have reported that resistance in colorectal adenocarcinoma may also be due to 

phosphoinositide 3-kinase–AKT pathway activation, or alterations in other mitogen-

activated protein kinase pathway genes [23,26]. Studies are ongoing to identify 

combinatorial therapies to overcome these mechanisms of resistance. Thus, although 

disparate tumours may harbour several identical mutations or genomic alterations, creating 

the temptation to treat them in a similar fashion, these alterations must still be considered in 
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the context of other pathways that are active in the individual tumour type. Although this 

contextual information can be gleaned from genomic and epigenomic characterization, 

which sometimes also provides explanatory power, on a practical level the fastest, and most 

economical, way to assess tumour context is by pathological H&E evaluation, whereby a 

colorectal carcinoma can readily be distinguished from melanoma or papillary thyroid 

carcinoma with a rapid glance.

Obstacles such as the different responses of genetically similar but histologically different 

malignancies to targeted therapy illustrate the challenges of personalized medicine. We must 

learn from these experiences, and determine how to better predict how disparate tumour 

types with similar underlying molecular features will respond to targeted agents, and 

understand the mechanisms of any differential response. TCGA, the ICGC, and the 

PanCancer and PanCancer Analysis of Whole Genomes Initiatives, among other cancer 

type-specific initiatives, are producing molecular tools and cancer models that, coupled to 

histological evaluation, can probe these mysteries and build hypotheses that can then be 

tested with directed prospective or mechanistic studies.

Limitations of TCGA and PanCancer analysis projects

With the sole exception of cutaneous melanoma, all of the malignancies included in TGCA 

were required to be primary, untreated tumours. In addition, specimens were garnered from 

available frozen materials present at contributing tissue source sites. Therefore, the 

specimens included in TCGA may reflect bias in institutional biorepository collections, 

resulting from institutional research interests, operative patterns, or patient populations. 

Moreover, tumours routinely subjected to neoadjuvant therapy may not have been able to be 

included in TCGA, because of limited availability of untreated specimens. Because of the 

non-inclusion of metastatic disease or aggressive primary tumours subjected to neoadjuvant 

therapy, the mutational frequencies or prevalences may not translate to modern clinical 

oncology practices, in which, in many instances, genomic data and targeted therapy are 

driven more by metastatic, high-stage cases than by primary disease.

Finally, although TCGA and the PanCancer Initiative, as well as groups involved in the 

ICGC, have performed in-depth analysis and multidimensional correlations between 

genomic, transcriptomic, epigenomic and proteomic data, the rich dataset provided by the 

digital pathology images collected for quality assurance remains underutilized, although 

some of the current PanCancer projects have initiated efforts to extract features and data 

from this resource. Digital images of frozen sections, obtained from tissues immediately 

adjacent to materials submitted for genomic analysis, were evaluated by pathologists to 

broadly confirm the diagnosis, and to estimate the extent of necrosis and proportion of 

tumour cells to stroma and immune infiltrates, to ensure that minimum purity standards 

required for genomic analysis are being met (Figure 2). In many TCGA analyses, submitted 

diagnostic H&E pathology images were used by expert pathology committees to confirm the 

diagnosis of submitted tissues, or to identify specific pathological features, such as grade, 

mitotic activity, degree of lymphocytic infiltration, and the presence and type of 

heterologous elements (e.g. in uterine carcinosarcoma) or variant morphology (e.g. 

squamous or neuroendocrine differentiation in urothelial bladder carcinoma) [6,7,10,29,30]. 
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These facets are of undoubted importance, both for quality control of the analysed data, and 

to provide morphological correlates to molecular findings that might assist in translating 

molecular findings to clinical diagnostics. However, they barely scratch the surface of the 

potential of digital pathology images using computational histological approaches, which 

will be described in depth below.

Historical and contemporary clinical applications of digital pathology

To better understand the potential applications of the TCGA digital slide archive dataset, it is 

first helpful to review some historical highlights of digital pathology and contemporary 

applications in clinical diagnostics and research settings. One of the first applications of 

computer-assisted diagnosis was the invention of automated screening machines for Pap 

smear diagnosis; although devices first began trials in the 1950s, it was not until the 1990s 

that devices became commercially available. These devices rely on liquid cytology 

preparations for optimal visualization, and perform image segmentation to identify nuclei 

and extract features that can then be used to classify the cells as normal or atypical [31]. 

These automated screening machines are widely used today, but cases flagged as atypical 

must undergo rescreening by a cytotechologist or pathologist, and, for the most part, they are 

not intended to be used as a stand-alone replacement for human diagnosis.

Early clinical applications of digital pathology included semiquantitative analysis of 

immunohistochemical markers [e.g. oestrogen receptor (ER), progesterone receptor (PR), 

HER2, and Ki67] [32], although these have been somewhat slow to achieve widespread use. 

More recently, digital pathology applications have gained US Food and Drug Administration 

approval, including the Ventana Image Analysis System for HER2 [33] and programmed 

death-ligand 1 [34] scoring, and the Aperio eIHC IVD system for HER2 and ER/PR scoring 

[35], as well as the use of whole slide imaging for general review and interpretation of 

surgical pathology slides (https://www.fda.gov/newsevents/newsroom/pressannouncements/

ucm552742.htm). Digital pathology is mainly used in the USA for remote diagnosis of 

frozen sections during surgery, and to provide remote consultation services. In Europe, some 

practices have transitioned to fully digital workflows [36,37], establishing the feasibility of 

large-scale digital practice, and have reported improved ergonomics and efficiency. In 

addition to diagnostic uses, digital imaging has also created large archives that can be 

utilized for teaching purposes, such that multiple trainees can view the same slide 

simultaneously, and without risk of damage to the original patient materials. In many 

academic practices, the practice of scanning consultation cases for retention in the archives 

for future comparison with subsequent resections or recurrences has increased the ease of 

confirming diagnoses or assessing response to therapy.

Advances in slide-scanning microscopes, computing and image analysis algorithms over the 

past decade have greatly increased interest in digital pathology. Slide-scanning microscopes 

can now digitize an entire histological section at ×40 objective magnification, producing a 

‘whole slide image’ in under a minute, and are common fixtures in academic histology 

laboratories (Figure 3A). Images produced by slide-scanning microscopes typically contain 

billions of pixels and, as a result, are several gigabytes in size, even following image 

compression. As with genomic sequencing, increased storage density and processor 
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performance have made it possible to process multi-terabyte digital pathology datasets with 

intensive algorithms. This has produced remarkably advanced capabilities for extracting 

quantitative descriptions of histology from images produced by slide-scanningmicroscopes. 

Contemporary algorithms can identify and describe the shape, staining and texture of a 

million or more cell nuclei in a single image, or accurately delineate stromal regions or 

multicellular structures such as blood vessels.

An overview, albeit not exhaustive, of algorithmic capabilities is shown in Figure 3B. Image 

segmentation algorithms aim to explicitly delineate the boundaries of histological structures 

or image regions by using salient properties such as shape, colour, or texture, and constitute 

the first step in many computational histology analyses. Segmentation of nuclei or 

membrane segments can be used for immune-histochemical scoring. Feature extraction 

refers to the process of calculating quantitative descriptions of objects or image regions that 

capture shape, staining intensity or textural patterns with precise numerical values. Extracted 

features can be used to train machine-learning algorithms to classify different types of cells 

or tissues, or to make patient-level predictions about prognosis, grade, or histological 

subtype.

Examples of computer-aided diagnosis utilizing such algorithms and machine learning 

include: a neuroblastoma grading system for analysing stromal development and degree of 

differentiation [38], a system for identifying and counting centroblasts in follicular 

lymphoma [39], multiple systems for grading prostate adenocarcinoma by using nuclear 

morphology and glandular structure [40,41], and a grading system for breast cancer that 

characterizes epithelium, stroma, and their interfaces [42].

Computational pathology in TCGA

TCGA is unmatched in scale as a digital pathology dataset, containing >32 000 H&E-

stained images (20 099 frozen; 11 916 diagnostic) from >11 000 specimens, with >16 000 

gigabytes of pathology imaging data in total. These images are publically available through 

the Cancer Digital Slide Archive (http://cancer.digitalslidearchive.net/), a web-based 

resource for hosting digital pathology images [43]. The Cancer Digital Slide Archive 

enables users to search for slides by project and sample ID, and to review these multi-

gigapixel images within a web browser interface that provides fluid multiresolution zooming 

and panning. Combined with newly emerging image analysis capabilities, the TCGA digital 

pathology data present unique opportunities to investigate relationships between histological 

patterns and clinical outcomes, and the molecular basis of cancer phenomena such as 

immune infiltration, angiogenesis, and tumour–stromal interactions.

Several studies have been performed with TCGA digital pathology data to investigate 

genotype–phenotype correlations or histological biomarkers of patient outcomes. Although 

it is not possible to provide a complete review of these studies, we highlight several 

illustrative examples below with a focus on investigations using image analysis algorithms.
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The molecular correlates of nuclear pleomorphism in sarcomas

Nuclear pleomorphism has long been appreciated as a prognostic indicator in many cancers, 

and is routinely evaluated as part of the grading of sarcoma, breast carcinoma, and other 

malignancies. Although studies in a variety of carcinomas showed that nuclear 

pleomorphism correlated with increased DNA content (ploidy) [44–48], the more precise 

molecular correlates of pleomorphism are not well understood. The Sarcoma TCGA 

Analysis Working Group used image analysis methods to assess the relationships between 

nuclear pleomorphism, clonality, and genomic instability (Figure 4A). A nuclear 

morphology approach was used to segment >500 million nuclei in diagnostic images of 

sarcoma samples, and to calculate morphological features for each nucleus. A histogram of 

nuclear size was calculated for each patient, and used to generate variance, skew and 

kurtosis statistics that describe the variations in nuclear size within each tumour. These 

statistics were compared with estimates of subclonal genome fraction, genome doublings 

and unbalanced copy number segments obtained from copy number and DNA sequencing 

data to evaluate associations between nuclear pleomorphism and genomic complexity. This 

analysis revealed that pleomorphism in sarcomas is significantly correlated with both ploidy 

and genomic complexity, and that increasing pleomorphism is associated most strongly with 

increases in subclonality and increases in the number of unbalanced copy number segments 

[7].

Prognostic morphological and molecular correlates of triple-negative 

breast carcinoma

Digital pathology analysis was also used to identify survival-associated morphological 

features in frozen section images of triple-negative breast cancer [49]. Images were first 

segmented into ‘superpixels’ – small irregular image patches whose boundaries adapt to 

follow sharp gradients such as tumour–stroma interfaces. In dense superpixels that 

correspond to tumour regions, nuclei are segmented, and morphometric features are 

calculated to describe nuclear shape, staining, and texture. Stromal superpixels are identified 

according to their homogeneous texture, and the shape and texture of these stromal 

compartments are also measured. A total of 44 TCGA breast invasive ductal carcinoma 

samples were used as a discovery set to identify survival-associated features, and the 

prognostic accuracy of these features was validated with an institutional set of 143 breast 

invasive ductal carcinoma tissue microarrays. To further validate their findings, gene 

expression data from the TCGA were used to learn surrogate gene expression signatures of 

survival-associated morphological features. These surrogate signatures were validated in two 

additional independent datasets containing gene expression and outcomes. A similar analysis 

was performed with non-TCGA data [42].

Characterizing immune infiltrates in the PanCancer Initiative

As part of the PanCancer33 analysis effort, an immune working group was formed to 

describe and analyse the correlates of immune infiltration across TCGA projects. In addition 

to performing gene expression deconvolution analyses to measure the presence of immune 

infiltrates in TCGA, the group developed image analysis-based approaches to identify 
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tumour-infiltrating lymphocytes (TILs) in H&E images, and to describe their spatial 

distributions. A convolutional neural network was developed to classify 50-μm-square image 

patches for TIL content, and was trained and evaluated on 176 whole slide images of lung 

adenocarcinoma sections by use of a web-based interface [50,51]. This convolutional neural 

network was then adapted to 13 other tissue types to map the presence of TILs in >6000 

whole slide images. Spatial statistics of these TIL maps were used to compare TIL 

distributions in different cancer types, and with genomic profiles and patient outcomes. 

These analyses will be featured in the next PanCancer publication.

Necrosis and hypoxia in glioblastoma

In glioblastoma, the extent of necrosis and angiogenesis was measured in frozen section 

images by use of a combination of manual annotations and image analysis algorithms [52]. 

These measurements were correlated with gene expression profiles derived from adjacent 

tissues to determine the genes and molecular pathways that are correlated with hypoxia and 

the development of necrosis and angiogenesis. This study found that the mesenchymal gene 

expression-based subtype was highly correlated with the extent of necrosis in a tissue 

sample, and that master transcriptional regulators of the mesenchymal subtype, including 

CEBPB and STAT3, were among the genes most strongly correlated with necrosis. 

Immunohistochemical studies revealed that CEBPB was highly expressed in hypoxic 

perinecrotic cells, suggesting that the tumour microenvironment can significantly impact on 

gene expression-based classifications of glioma.

Microvascular phenotypes predict survival in lower-grade gliomas

Gliomas are highly vascular solid tumours, and the appearance of microvascular structures 

reflects the response of endothelial cells to aberrant signalling from neoplastic cells. 

Microvascular hypertrophy, visible as nuclear and cytoplasmic enlargement of endothelial 

cells, is an early transformation and indicator of increased transcriptional activation. 

Microvascular hyperplasia follows, as endothelial cells proliferate and become more 

clustered, producing multilayered microvascular structures. These changes are known to 

accompany disease progression, and precision computational histology approaches can be 

used to describe these non-tumour elements as prognostic biomarkers.

The authors developed a cytological classifier to identify vascular endothelial cell nuclei in 

diagnostic images of lower-grade gliomas, and generated morphological and spatial statistics 

of endothelial nuclei to describe the extent of microvascular hypertrophy and microvascular 

hyperplasia in each tumour (Figure 4B) [53]. An interactive classification system that 

enables pathologists to interact with large-scale nuclear morphometry data was used to 

generate training data, and to evaluate the accuracy of the vascular endothelial nuclei 

classifier. This system uses a framework called active learning, which directs users to label 

examples of cell nuclei. After classification of 360 million cell nuclei in 464 tumours from 

the TCGA lower-grade glioma project, the morphometric features and locations of positively 

classified cells were used to generate hypertrophy and hyperplasia scores for each tumour. 

Hypertrophy was scored by learning a non-linear model based on nuclear area, eccentricity 

and shape that scores individual nuclei in terms of hypertrophy. Hyperplasia was scored by 
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measuring the spatial clustering of vascular endothelial nuclei by use of the Ripley’s K-

function statistic. Prognostic models based on these scores were able to predict overall 

survival as accurately as manual histological grading.

Learning survival-associated patterns in lower-grade gliomas

Powell et al developed an approach to learn visual patterns associated with overall survival 

by using the lower-grade glioma data from TCGA, and a combination of image analysis and 

unsupervised machine learning (Figure 4C) [54]. Both cell of origin and grade are important 

predictors of outcome in lower-grade glioma, and the morphologies of neoplastic nuclei and 

their spatial distribution are important prognostic indicators. A colour deconvolution 

algorithm was used to digitally separate the H&E stains, generating a separate intensity 

image for each. Fields measuring 256×256μm were sampled at ×10 objective magnification. 

The haematoxylin component of each patch was used to derive textural features without 

explicitly segmenting the cell nuclei, and the eosin component was used to remove fields 

corresponding to artefacts (i.e. tissue folds) or fields containing primarily glass. The features 

generated from each field were used with a clustering algorithm to generate a ‘visual 

dictionary’ of clusters, each cluster representing a visual ‘word’ that describes some 

histological pattern observed in gliomas. This dictionary was used to describe the 

frequencies of visual words in each whole slide image. This study found that many of these 

words were associated with overall survival, and correlation between word frequency and 

gene expression identified signalling cascades associated with the visual words.

Conclusions

TGCA and PanCancer Initiatives have generated a rich and deep resource to enable future 

cancer studies. The publications and the associated publically available datasets are not 

intended to be the ‘last word’ in understanding of these diseases, but are meant to provide a 

stepping-stone to future analyses. Data types available include DNA sequence, copy number, 

and methylation data, transcriptomic data, including mRNA, miRNA and, in a subset of 

cases, long non-coding RNA, and proteomic data from reverse-phase protein array analysis. 

A major untapped resource of TCGA comprises the digital pathology images amassed from 

all 33 cancer types; emerging computational histological techniques to extract high-level 

data from these images combined with the detailed associated molecular data promise the 

ability to conduct detailed morphological–molecular studies to provide a deeper 

understanding of the mechanisms informing both histological appearance and tumour 

behaviour. In this review, we have presented a few tangible examples of how imaging data 

from TCGA have been used to gain unique insights into cancer biology, and it is our sincere 

hope that use of this data will grow in volume and strength over the coming months and 

years. The exploitation of this data will help to achieve the full potential of TCGA analysis 

and, ultimately, along with other work in the digital pathology space, influence clinical 

pathology practice by providing new tools and approaches for decision support. With 

appropriate clinical validation, these approaches can help to provide the information 

necessary for patient management in contemporary oncological pathology practice. 

Although these new methods are certainly not going to soon replace routine H&E diagnosis, 
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pathologists must remain open to testing, adopting and utilizing these new methods as 

appropriate in their practices, to provide optimal care for our patients.
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Figure 1. 
Overview of TCGA. Schematic representation of the 33 cancers analysed by the TCGA/

PanCancer Initiative organized by tissue of origin, and the data types acquired. Examples of 

the PanCancer analyses undertaken are listed on the right. TCGA tumour type abbreviation 

codes are as follows: ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; 

BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and 

endocervical adenocarcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; 

DLBC, diffuse large B-cell lymphoma; ESCA, oesophageal carcinoma; GBM, glioblastoma 

multiforme; HNSC, head and neck squamous cell carcinoma; KICH, chromophobe renal cell 

carcinoma; KIRC, clear cell renal clear cell carcinoma; KIRP, papillary renal cell carcinoma; 

LAML, acute myeloid leukaemia; LGG, lower-grade glioma; LIHC, hepatocellular 

carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, 

mesothelioma; OV, ovarian serous adenocarcinoma; PAAD, pancreatic adenocarcinoma; 

PCPG, phaeochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, 

rectal adenocarcinoma; SARC, adult soft tissue sarcoma; SKCM, cutaneous melanoma; 

STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumour; THCA, thyroid 

carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine 

carcinosarcoma; UVM, uveal melanoma.
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Figure 2. 
Tissue procurement in TCGA. (A) A Tissue Source Site (TSS) obtains samples from 

surgical resection. (B) A portion of this tissue is selected for submission to TCGA, and the 

BCR produces ‘top-section’ (TS) and ‘bottom-section’ (BS) slides for review to determine 

that the percentage necrosis and abundance and proportion of tumour cells are adequate for 

genomic analysis. (C) The middle portion of this tissue is used to extract RNA and DNA 

analytes for genomic analysis. (D) One or more ‘diagnostic’ formalin-fixed paraffin-

embedded (FFPE) slides are submitted to the BCR by the TSS for confirmation of 

histological diagnosis. These diagnostic slides originate from the same tumour, but their 

relationship to the material submitted for genomic analysis is unknown. The frozen sections 

provide the best representation of the tissue contents reflected in genomic signatures. 

However, the freezing artefacts in these slides can confound routine pathological 

examination or image analysis algorithms. The FFPE sections reveal cytological details, and 

have sufficient quality to confirm diagnosis, but the relationship or molecular similarity of 

these sections to the tissues submitted for genomic analysis is not as precise, as larger 

tumours may have considerable heterogeneity, and it is not always clear where the frozen 

tissue was sampled from relative to these H&E sections. The tradeoff between image quality 

and adjacency to genomic materials is an important consideration in designing an image 

analysis study of TCGA, and should be weighed on the basis of intratumoural heterogeneity 

and sensitivity of the image analysis algorithms to artefacts
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Figure 3. 
Whole slide imaging and image analysis. (A) Slide-scanning microscopes can rapidly 

digitize an entire glass slide, producing a ‘whole slide’ digital image. These devices can scan 

large batches of slides, producing >1000 scans in a single day. (B) Slides are digitized with a 

× 20 or ×40 objective, and this base magnification is used by the scanner software to 

produce a multiresolution image pyramid containing downsampled magnifications. This 

pyramidal format enables smooth zooming and interaction with the image, and provides 

additional resolutions for image analysis. (C) A large number of image analysis algorithms 

exist for analysing whole slide images (from left to right, top to bottom): image 

segmentation algorithms are used to automatically delineate the boundaries of structures 

such as cell nuclei; immunohistochemical scoring algorithms can be used to measure the 

subcellular localization and intensity of antigens; feature extraction can be used to calculate 

quantitative features describing the shape, colour and texture of tissue elements; machine-

learning algorithms can be used with imaging features to classify objects – here, a classifier 

was trained to identify mononuclear cells (green) in a glioma, and a heatmap indicating the 

concentration of positively classified cells in the slide is shown; measurements made by 

Cooper et al. Page 18

J Pathol. Author manuscript; available in PMC 2018 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



image analysis can be used to build prognostic models that can objectively discriminate 

patient outcomes.
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Figure 4. 
Image analysis studies of TCGA. (A) Nuclear morphometry was used to study the genomic 

correlates of nuclear pleomorphism in sarcomas. Image segmentation was used to delineate 

>500 million nuclei in diagnostic sarcoma images, and the area of each nucleus was 

calculated. The variance of nuclear area was calculated for 235 sarcomas, and compared 

with measurements of genome doublings and subclonality obtained from sequencing and 

copy number data. Increased pleomorphism was significantly associated with measures of 

genomic complexity, including genome doublings, subclonality, and aneuploidy. (B) 
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Machine learning was used to investigate microvascular phenotypes in lower-grade gliomas. 

A classifier was developed to identify vascular endothelial cells in gliomas (green). These 

classifications were used to measure to the clustering of endothelial cells and to model the 

morphological spectrum of endothelial nuclei in order to describe the extent of endothelial 

hyperplasia and hypertrophy in TCGA samples. These measurements were used as a 

biomarker to stratify overall survival, and were as effective at predicting outcomes as manual 

histological grading when combined with diagnostic genetic biomarkers. (C) Unsupervised 

machine learning was used to identify survival-associated patterns in lower-grade gliomas 

using TCGA data. Features describing the texture of haematoxylin were analysed in tiled 

high-power fields. These features were used to cluster the fields to define a dictionary of 

‘visual words’ that captures the frequent patterns in the tissue. The frequency of these words 

in each slide were used to predict patient survival and to identify molecular correlates of 

histological patterns. (D) Convolutional networks were used to map the spatial distribution 

of TILs in 13 cancer types as part of the recent PanCancer immune working group. A web-

based interface was used to train convolutional neural networks to identify patches 

containing TILs. These algorithms were then used to map the presence of TILs in >6000 

whole slide images.
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