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Abstract

We consider the problem of model-based clustering in the presence of many correlated, mixed 

continuous and discrete variables, some of which may have missing values. Discrete variables are 

treated with a latent continuous variable approach and the Dirichlet process is used to construct a 

mixture model with an unknown number of components. Variable selection is also performed to 

identify the variables that are most influential for determining cluster membership. The work is 

motivated by the need to cluster patients thought to potentially have autism spectrum disorder 

(ASD) on the basis of many cognitive and/or behavioral test scores. There are a modest number of 

patients (486) in the data set along with many (55) test score variables (many of which are discrete 

valued and/or missing). The goal of the work is to (i) cluster these patients into similar groups to 

help identify those with similar clinical presentation, and (ii) identify a sparse subset of tests that 

inform the clusters in order to eliminate unnecessary testing. The proposed approach compares 

very favorably to other methods via simulation of problems of this type. The results of the ASD 

analysis suggested three clusters to be most likely, while only four test scores had high (> 0.5) 

posterior probability of being informative. This will result in much more efficient and informative 

testing. The need to cluster observations on the basis of many correlated, continuous/discrete 

variables with missing values, is a common problem in the health sciences as well as in many 

other disciplines.
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1 Introduction

Model-based clustering has become a very popular means for unsupervised learning1–4. This 

is due in part to the ability to use the model likelihood to inform, not only the cluster 

membership, but also the number of clusters M which has been a heavily researched 
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problem for many years. The most widely used model-based approach is the normal mixture 

model which is not suitable for mixed continuous/discrete variables. For example, this work 

is motivated by the need to cluster patients thought to potentially have autism spectrum 

disorder (ASD) on the basis of many correlated test scores. There are a modest number of 

patients (486) in the data set along with many (55) test score/self-report variables, many of 

which are discrete valued or have left or right boundaries. Figure 1 provides a look at the 

data across three of the variables; Beery_standard is discrete valued and ABC_irritability is 

continuous, but with significant mass at the left boundary of zero. The goals of this problem 

are to (i) cluster these patients into similar groups to help identify those with similar clinical 

presentation, and (ii) identify a sparse subset of tests that inform the clusters in an effort to 

eliminate redundant testing. This problem is also complicated by the fact that many patients 

in the data have missing test scores. The need to cluster incomplete observations on the basis 

of many correlated continuous/discrete variables is a common problem in the health sciences 

as well as in many other disciplines.

When clustering in high dimensions, it becomes critically important to use some form of 

dimension reduction or variable selection to achieve accurate cluster formation. A common 

approach to deal with this is a principal components or factor approach5. However, such a 

solution does not address goal (ii) above for the ASD clustering problem. The problem of 

variable selection in regression or conditional density estimation has been well studied from 

both the L1 penalization6–8 and Bayesian perspectives9–11. However, variable selection in 

clustering is more challenging than that in regression as there is no response to guide 

(supervise) the selection. Still, there have been several articles considering this topic; see 

Fop and Murphy12 for a review. For example, Raftery and Dean13 propose a partition of the 

variables into informative (dependent on cluster membership even after conditioning on all 

of the other variables) and non-informative (conditionally independent of cluster 

membership given the values of the other variables). They use BIC to accomplish variable 

selection with a greedy search which is implemented in the R package clustvarsel. 

Similar approaches are used by Maugis et al.14 and Fop et al.15. An efficient algorithm for 

identifying the optimal set of informative variables is provided by Marbac and Sedki16 and 

implemented in the R package VarSelLCM. Their approach also allows for mixed data types 

and missing data, however, it assumes both local and global independence (i.e., 

independence of variables within a cluster and unconditional independence of informative 

and non-informative variables, respectively). The popular LASSO or L1 type penalization 

has also been applied to shrink cluster means together for variable selection17–19. There have 

also been several approaches developed for sparse K-means and distance based 

clustering20–22.

In the Bayesian literature Tadesse et al.4 consider variable selection in the finite normal 

mixture model using reversible jump (RJ) Markov chain Monte Carlo (MCMC)23. Kim et al.
24 extend that work to the nonparametric Bayesian mixture model via the Dirichlet process 

model (DPM)25–28. The DPM has the advantage of allowing for a countably infinite number 

of possible components (thus making it nonparametric), while providing a posterior 

distribution for how many components have been observed in the data set at hand. Both 

Tadesse et al.4 and Kim et al.24 use a point mass prior to achieve sparse representation of the 
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informative variables. However, for simplicity they assume all non-informative variables are 

(unconditionally) independent of the informative variables. This assumption is frequently 

violated in practice and it is particularly problematic in the case of the ASD analysis as it 

would force far too many variables to be included into the informative set as is demonstrated 

later in this paper.

There is not a generally accepted best practice to clustering with mixed discrete and 

continuous variables. Hunt and Jorgensen29, Biernacki et al.30, and Murray and Reiter31 

meld mixtures of independent multinomials for the categorical variables and mixtures of 

Gaussian for the continuous variables. However, it may not be desirable for the dependency 

between the discrete variables to be entirely represented by mixture components when 

clustering is the primary objective. As pointed out in Hennig and Liao32, mixture models 

can approximate any distribution arbitrarily well so care must be taken to ensure the 

mixtures fall in line with the goals of clustering. When using mixtures of Gaussian 

combined with independent multinomials, a data set with many correlated discrete variables 

will tend to result in more clusters than a comparable dataset with mostly continuous 

variables. A discrete variable measure of some quantity instead of the continuous version 

could therefore result in very different clusters. Thus, a Gaussian latent variable 

approach33–37 would seem more appropriate for treating discrete variables when clustering 

is the goal. An observed ordinal variable xj, for example, is assumed to be the result of 

thresholding a latent Gaussian variable zj. For binary variables, this reduces to the 

multivariate probit model38,39. There are also extensions of this approach to allow for 

unordered categorical variables.

In this paper, we propose a Bayesian nonparametric approach to perform simultaneous 

estimation of the number of clusters, cluster membership, and variable selection while 

explicitly accounting for discrete variables and partially observed data. The discrete 

variables as well as continuous variables with boundaries are treated with a Gaussian latent 

variable approach. The informative variable construct of Raftery and Dean13 for normal 

mixtures is then adopted. However, in order to effectively handle the missing values and 

account for uncertainty in the variable selection and number of clusters, the proposed model 

is cast in a fully Bayesian framework via the Dirichlet process. This is then similar to the 

work of Kim et al.24, however, they did not consider discrete variables or missing data. 

Further, a key result of this paper is a solution to allow for dependence between informative 

and non-informative variables in the nonparametric Bayesian mixture model. Thus, this 

work overcomes the assumption of (global) independence between informative and non-

informative variables. Furthermore, by using the latent variable approach it also overcomes 

the (local) independence assumption among the informative/clustering variables often 

assumed when clustering data of mixed type12.

The solution takes a particularly simple form and also provides an intuitive means with 

which to define the prior distribution in a manner that decreases prior sensitivity. The 

component parameters are marginalized out to facilitate more efficient MCMC sampling via 

a modified version of the split-merge algorithm of Jain and Neal40. Finally, missing data is 

then handled in a principled manner by treating missing values as unknown parameters in 

the Bayesian framework41,42. This approach implicitly assumes a missing at random (MAR) 
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mechanism43, which implies that the likelihood of a missing value can depend on the value 

of the unobserved variable(s), marginally, just not after conditioning on the observed 

variables.

The rest of the paper is laid out as follows. Section 2 describes the proposed nonparametric 

Bayesian approach to clustering observations of mixed discrete and continuous variables 

with variable selection. Section 3 evaluates the performance of this approach when 

compared to other methods on several simulation cases. The approach is then applied to the 

problem for which it was designed in Section 4 where a comprehensive analysis of the ASD 

problem is presented. Section 5 concludes the paper. This paper also has supplementary 

material which contains derivations, full exposition of the proposed MCMC algorithm, and 

MCMC trace plots.

2 Methodology

2.1 Dirichlet Process Mixture Models

As discussed above, the proposed model for clustering uses mixture distributions with a 

countably infinite number of components via the Dirichlet process prior25,44,45. Let y = 

(y1, . . . , yp) be a p-variate random vector and let yi, i = 1, . . . , n, denote the ith observation 

of y. It is assumed that yi are independent random vectors coming from distribution F (θi). 

The model parameters θi are assumed to come from a mixing distribution G which has a 

Dirichlet process prior, i.e., the familiar model,

yi ∣ θi F(θi), θi G, G DP(G0, α), (1)

where DP represents a Dirichlet Process distribution, G0 is the base distribution and α is a 

precision parameter, determining the concentration of the prior for G about G0 44. The prior 

distribution for θi in terms of successive conditional distributions is obtained by integrating 

over G, i.e.,

θi ∣ θ1, …, θi − 1
1

i − 1 + α ∑
i′ = 1

i − 1
δ(θi′) + α

i − 1 + αG0, (2)

where δ(θ) is a point mass distribution at θ. The representation in (2) makes it clear that (1) 

can be viewed as a countably infinite mixture model. Alternatively, let Ω = [ω1, ω2, . . . ] 
denote the unique values of the θi and let ϕi be the index for the component to which 

observation i belongs, i.e., so that ωϕi = θi. The following model26 is equivalent to (2)
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P(ϕi = m ∣ ϕ1, …, ϕi − 1) =

1 if i = 1 and m = 1.
ni, m

i − 1 + α if ϕi′ = m for any i′ < i .
α

i − 1 + α if m = max (ϕ1, …, ϕi − 1) + 1.
0 otherwise,

(3)

with yi | ϕi, Ω ~ F(ωϕi), ωm ~ G0 and ni,m is the number of ϕi′ = m for i′ < i. Thus, a new 

observation i is allocated to an existing cluster with probability proportional to the cluster 

size or it is assigned to a new cluster with probability proportional to α. This is often called 

the Chinese restaurant representation of the Dirichlet process. It is common to assume that F 
is a normal distribution in which case ωm = (μm, Σm) describes the mean and covariance of 

the mth component. This results in a normal mixture model with a countably infinite number 

of components.

2.2 Discrete Variables and Boundaries/Censoring

Normal mixture models are not effective for clustering when some of the variables are too 

discretized as demonstrated in Section 3. This is also a problem when the data have left or 

right boundaries that can be achieved (e.g., several people score the minimum or maximum 

on a test). However, a Gaussian latent variable approach can be used to circumvent these 

issues. Suppose that variables yj for j ∈  are discrete, ordinal variables taking on possible 

values dj = {dj,1, . . . , dj,Lj} and that yj for j ∈  = c are continuous variables with lower 

and upper limits of bj and cj, which could be infinite. Assume for some latent, p-variate, 

continuous random vector z that

y j =
∑l = 1

L j d j, lI{a j, l − 1 < z j ≤ a j, l}
for j ∈ 𝒟

z jI{b j ≤ z j ≤ c j}
+ b jI{z j < b j}

+ c jI{z j > c j}
for j ∈ 𝒞

(4)

where IA is the indicator function equal to 1 if A and 0 otherwise, aj,0 = −∞, aj,Lj= ∞, and 

aj,l = dj,l for l = 1, . . . , Lj − 1. That is, the discrete yj are the result of thresholding the latent 

variable zj on the respective cut-points. The continuous yj variables are simply equal to the zj 

unless the zj cross the left or right boundary of what can be observed for yj. That is, if there 

are finite limits for yj, then yj is assumed to be a left and/or right censored version of zj, thus 

producing a positive mass at the boundary values of yj.

A joint mixture model for mixed discrete and continuous variables is then,

zi ∣ ϕi, Ω N(μϕi
, ∑ϕi

), (5)
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with prior distributions for ωm and ϕ = [ϕ1, . . . , ϕn]′ as in (3).

Binary yj such as gender can be accommodated by setting dj = {0, 1}. However, if there is 

only one cut-point then the model must be restricted for identifiability39; namely, if yj is 

binary, then we must set Σm(j, j) = 1. The restriction that Σm(j, j) = 1 for binary yj 

complicates posterior inference, however, this problem has been relatively well studied in 

the multinomial probit setting and various proposed solutions exist46. It is also straight-

forward to use the latent Gaussian variable approach to allow for unordered categorical 

variables47,46,48,49, however, inclusion of categorical variables also complicates notation and 

there are no such variables in the ASD data. For brevity, attention is restricted here to 

continuous and ordinal discrete variables.

2.3 Variable Selection

Variable selection in clustering problems is more challenging than in regression problems 

due to the lack of targeted information with which to guide the selection. Using model-based 

clustering allows a likelihood based approach to model selection, but exactly how the 

parameter space should be restricted when a variable is “out of the model” requires some 

care. Raftery and Dean13 defined a variable yj to be non-informative if conditional on the 

values of the other variables, it is independent of cluster membership. This implies that a 

non-informative yj may still be quite dependent on cluster membership through its 

dependency with other variables. They assumed a Gaussian mixture distribution for the 

informative variables, with a conditional Gaussian distribution for the non-informative 

variables and used maximum likelihood to obtain the change in BIC between candidate 

models. Thus, they accomplished variable selection with a greedy search to minimize BIC. 

They further considered restricted covariance parameterizations to reduce the parameter 

dimensionality (e.g., diagonal, common volume, common shape, common orientation, etc.). 

We instead take a Bayesian approach to this problem via Stochastic Search Variable 

Selection (SSVS)9,50 as this allows for straight-forward treatment of uncertainty in the 

selected variables and that due to missing values. Kim et al.24 used such an approach with a 

DPM for infinite normal mixtures, however, due to the difficulty imposed they did not use 

the same definition as Raftery and Dean13 for a non-informative variable. They defined a 

non-informative variable to be one that is (unconditionally) independent of cluster 

membership and all other variables. This is not reasonable in many cases, particularly in the 

ASD problem, and can result in negative consequences as seen in Section 3. Below, we 

layout a more flexible model specification akin to that taken in Raftery and Dean13 to allow 

for (global) dependence between informative and non-informative variables in a DPM.

Let the informative variables be represented by the model γ, a vector of binary values such 

that {yj : γj = 1} is the set of informative variables. A priori it is assumed that Pr(γj = 1) = 

ρj. Without loss of generality assume that y has elements ordered such that y = [y(1), y(2)], 

with y(1) = {yj : γj = 1} and y(2) = {yj : γj = 0}, and similarly for z(1) and z(2). The model in 

(5) becomes,
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zi ∣ γ, ϕi, Ω N(μϕi
, ∑ϕi

), (6)

with

μm =
μm1
μm2

, ∑m =
∑m11 ∑m12
∑m21 ∑m22

. (7)

From standard multivariate normal theory, [z(2) | z(1), ϕ = m] ~ N(μ2|1, Σ2|1) with 

μ2 ∣ 1 = μm2 + ∑m21∑m11
−1 (z(1) − μm1) and ∑2 ∣ 1 = ∑m22 − ∑m21∑m11

−1 ∑m12. Now in order for 

the non-informative variables to follow the definition of Raftery and Dean13, the μm and Σm 

must be parameterized so that μ2|1, Σ2|1 do not depend on m. In order to accomplish this, it is 

helpful to make use of the canonical parameterization of the Gaussian51,

z ∣ γ, Ω, ϕ = m 𝒩C(bm, Qm),

with precision Qm = ∑m
−1 and bm = Qmμm. Partition the canonical parameters as,

bm =
bm1
b2

, Qm =
Qm11 Q12
Q21 Q22

. (8)

Result 1—The parameterization in (8) results in (μ2|1, Σ2|1) that does not depend on m.

Proof: The inverse of a partitioned matrix directly implies that ∑2 ∣ 1 = Q22
−1, which does not 

depend on m. It also implies that −Q22
−1Q21 = ∑m21∑m11

−1 , and substituting Σmbm for μm in 

μ2|1 gives μ2 ∣ 1 = Q22
−1(b2 − Q21z(1)), which also does not depend on m.

The Q21 does not depend on m which implies the same dependency structure across the 

mixture components. This is a necessary assumption in order for z(2) to be non-informative 

variables, i.e., so that cluster membership conditional on z(1) is independent of z(2).

Now the problem reduces to defining a prior distribution for Ω, i.e., ωm = {bm, Qm}, m = 1, 

2, . . . , conditional on the model γ, that maintains the form of (8). Let ωm
(1) = {bm1, Qm11}

and ωm
(2) = ω(2) = {b2, Q21, Q22}. The prior distribution for Ω will be defined first 

unconditionally for ω(2) and then for ωm
(1), m = 1, 2, . . . , conditional on ω(2). There are 

several considerations in defining these distributions: (i) the resulting Qm must be positive 
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definite, (ii) it is desirable for the marginal distribution of (μm, Σm) to remain unchanged for 

any model γ to limit the influence of the prior for ωm on variable selection, and (iii) it is 

desirable for them to be conjugate to facilitate MCMC sampling26,40.

Let Ψ be a p × p positive definite matrix, partitioned just as Qm, and for a given γ assume 

the following distribution for ω(2),

Q22 𝒲(Ψ22 ∣ 1
−1 , η), b2 ∣ Q22 𝒩(0, 1

λQ22),
Q21 ∣ Q22 ℳ𝒩( − Q22Ψ21Ψ11

−1, Q22, Ψ11
−1),

(9)

where  denotes the Wishart distribution, and ℳ  denotes the matrix normal distribution.

The distribution of ωm
(1), conditional on ω(2) is defined implicitly below. A prior distribution 

is not placed on (bm1, Qm11), directly. It is helpful to reparameterize from (b2, Q22, Q21, 
bm1, Qm11) to (b2, Q22, Q21, μm1, Σm11). By doing this, independent priors can be placed on 

(b2, Q22, Q21) and (μm1, Σm11) and still maintain all of the desired properties as will be seen 

in Results 2 and 3.

The prior distribution of (μm1, Σm11) is

∑m11 ∼iid 𝒲−1 (Ψ11, η − p2), μm1 ∣ ∑m11 ∼ind 𝒩 (0, 1
λ∑m11), (10)

where −1 denotes the inverse-Wishart distribution and (μm1, Σm11) are independent of ω(2). 

The resulting distribution of (bm1, Qm11) conditional on (b2, Q22, Q21) is not a common or 

named distribution, but it is well defined via the relations, bm1 = ∑m11
−1 μm1 + Q12Q22

−1b2, and 

Qm11 = ∑m11
−1 + Q12Q22

−1Q21.

Result 2—The prior distribution defined in (9) and (10) results in a marginal distribution 
for (μm, Σm) of  ℐ  (0, λ, Ψ, η),i.e.,the same normal-inverse-Wishart regardless of γ.

Proof: It follows from Theorem 3 of Bodnar and Okhrin52 that Σm ~ ℐ  (η, Ψ). It remains 

to show μm | Σm ~  (0, (1/λ) Σm). However, according to (9) and (10) and the 

independence assumption,

μm1
b2

∑m 𝒩 0
0 , 1

λ

∑m11 0
0 Q22

.

Also, bm = Qmμm implies,
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μm1
μm2

=
I 0

−Q22
−1Q21 Q22

−1
μm1
b2

.

Using the relation Ax ~ (Aμ, AΣA′) for x ~  (μ, Σ) gives the desired result.

As mentioned above, the normal-inverse-Wishart distribution is conjugate for ωm in the 

unrestricted (no variable selection) setting. It turns out that the distribution defined in (9) and 

(10) is conjugate for the parameterization in (8) as well, so that the component parameters 

can be integrated out of the likelihood. Let the (latent) observations be denoted as 

Z = [z1′ , …, zn′ ]′, and the data likelihood as f(Z | γ, ϕ, Ω).

Result 3—The marginal likelihood of Z is given by

f (Z ∣ γ, ϕ) = ∫ f (Z ∣ γ, ϕ, Ω) f (Ω ∣ γ)dΩ

= π
− np

2 ∏
m = 1

M λ
nm + λ

p1
2

∣ Ψ11 ∣

η − p2
2 Γp1

nm + η − p2
2

∣ Vm11 ∣

nm + η − p2
2 Γp1

η − p2
2

λ
n + λ

p2
2

∣ Ψ11 ∣

p2
2 ∣ Ψ2 ∣ 1 ∣

η
2Γp2

n + η
2

∣ V11 ∣

p2
2 ∣ V2 ∣ 1 ∣

n + η
2 Γp2

η
2

,

where (i) M = max(ϕ), i.e., the number of observed components, (ii) p1 = Σγj is the number 
of informative variables, (iii) p2 = p − p1, (iv) nm is the number of ϕi = m, (v) Γp(·) is the 
multivariate gamma function, and (vi) Vm11, V11, V2|1 are defined as,

Vm11 = ∑
ϕi = m

(zi
(1) − zm1)(zi

(1) − zm1)′ +
nmλ

nm + λ zm1zm1′ + Ψ11,

V11 = ∑
i = 1

n
(zi

(1) − z1)(zi
(1) − z1)′ + nλ

n + λ z1z1′ + Ψ11,

V2 ∣ 1 = V22 − V21V11
−1V21′ ,

with zm1 = 1
nm

∑ϕi = m zi
(1), z1 = 1

n ∑i = 1
n zi

(1), z2 = 1
n ∑i = 1

n zi
(2),
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V22 = ∑
i = 1

n
(zi

(2) − z2)(zi
(2) − z2)′ + nλ

n + λ z2z2′ + Ψ22, and

V21 = ∑
i = 1

n
(zi

(2) − z2)(zi
(1) − z1)′ + nλ

n + λ z2z1′ + Ψ21 .

(11)

The derivation of Result 3 is provided in Web Appendix B.

2.4 Hyper-Prior Distributions

Kim et al.24 found there to be a lot of prior sensitivity due to the choice of prior for the 

component parameters. This is in part due to the separate prior specification for the 

parameters corresponding to informative and non-informative variables, respectively. The 

specification above treats all component parameters collectively, in a single prior, so that the 

choice will not be sensitive to the interplay between the priors chosen for informative and 

non-informative variables. A further stabilization can be obtained by rationale similar to that 

used in Raftery and Dean13 for restricted forms of the covariance (such as equal shape, 

orientation, etc.). We do not enforce such restrictions exactly, but one might expect the 

components to have similar covariances or similar means for some of the components. Thus 

it makes sense to put hierarchical priors on λ, Ψ, and η, to encourage such similarity if 

warranted by the data. A Gamma prior is also placed on the concentration parameter α, i.e.,

λ Gamma(Aλ, Bλ), Ψ 𝒲(P, N),
η − (p + 1) Gamma(Aη, Bη), α Gamma(Aα, Bα) . (12)

In the analyses below, relatively vague priors were used with Aλ = Bλ = Aη = Bη = 2. The 

prior for α was set to Aα = 2, Bα = 2, to encourage anywhere from 1 to 15 clusters from 100 

observations. The results still have some sensitivity to the choice of P. In addition, there are 

some drawbacks to Wishart priors which can be exaggerated when applied to variables of 

differing scale53,54. In order to alleviate these issues, we recommend first standardizing the 

columns of the data to mean zero and unit variance, then using N = p + 2, P = (1/N)I. 

Finally, the prior probability for variable inclusion was set to ρj =0.5 for all j. The data 

model in (4) and (6), the component prior distribution in (9) and (10), along with the hyper-

priors in (12), completes the model specification.

2.5 MCMC Algorithm

Complete MCMC details are provided in the Web Appendix C. However, an overview is 

provided here to illustrate the main idea. The complete list of parameters to be sampled in 

the MCMC are Θ = {γ, ϕ, λ, η, Ψ, α, Z̃}, where Z̃ contains any latent element of Z (i.e., 

either corresponding to missing data, discrete variable, or boundary/censored observation). 

The only update that depends on the raw observed data Y = [y1′ , …, yn′ ]′ is the update of Z̃ . 

All other parameters, when conditioned on Y and Z, only depend on Z. The Z̃ are block 
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updated, each with a MH step, but with a proposal that looks almost conjugate, and is 

therefore accepted with high probability; the block size can be adjusted to trade-off between 

acceptance and speed (e.g., acceptance ~ 40%). A similar strategy is taken with the Ψ 
update, i.e., a nearly conjugate update is proposed and accepted/rejected via an MH step. 

Because the component parameters are integrated out, the ϕi can be updated with simple 

Gibbs sampling26, however, this approach has known mixing issues40,55. Thus, a modified 

split-merge algorithm40 similar to that used in24 was developed to sample from the posterior 

distribution of ϕ. The remaining parameters are updated in a hybrid Gibbs, Metropolis 

Hastings (MH) fashion. The γ vector is updated with MH by proposing an add, delete, or 

swap move50. The λ, η, α parameters have standard MH random walk updates on log-scale. 

The MCMC routine then consists of applying each of the above updates in turn to complete 

a single MCMC iteration, with the exception that the γ update be applied Lg times each 

iteration.

Two modifications were also made to the above strategy to improve mixing. The algorithm 

above would at times have trouble breaking away from local modes when proposing ϕ and γ 
updates separately. Thus, an additional joint update is proposed for ϕ and γ each iteration 

which substantially improved the chance of a move each iteration. Also, as described in 

more detail in Web Appendix C, the traditional split merge algorithm proposes an update by 

first selecting two points, i and i′, at random. If they are from the same cluster (according to 

the current ϕ) it then assigns them to separate clusters and assigns the remaining points from 

that cluster to each of the two new clusters at random. It then conducts several (L) restricted 

(to one of the two clusters) Gibbs sampling updates to the remaining ϕh from the original 

cluster. The resulting ϕ* then becomes the proposal for a split move. We found that the 

following adjustment resulted in better acceptance of split/merge moves. Instead of 

assigning the remaining points to the two clusters at random, simply assign them to the 

closest of the two observations i or i′. Then conduct L restricted Gibbs sample updates to 

produce the proposal. We found little performance gain beyond L = 3. Lastly, it would be 

possible to instead use a finite mixture approximation via the kernel stick breaking 

representation of a DPM56,55. However, this approach would be complicated by the 

dependency between γ and the structure and dimensionality of the component parameters. 

This issue is entirely avoided with the proposed approach as the component parameters are 

integrated out. The code to perform the MCMC for this model has been made available in a 

GitHub repository at https://github.com/cbstorlie/DPM-vs.git.

2.6 Inference for ϕ and γ

The estimated cluster membership ϕ̂ for all of the methods was taken to be the respective 

mode of the estimated cluster membership probabilities. For the DPM methods, the cluster 

membership probability matrix P (which is an n× ∞ matrix in principle) is not sampled in 

the MCMC, and is not identified due to many symmetric modes (thus their can be label 

switching in the posterior samples). However, the information theoretic approach of 

Stephens57 (applied to the DPM in Fu et al.58) can be used to address this issue and relabel 

the posterior samples of ϕ to provide an estimate of P. The resulting estimate P̂ has ith row, 

mth column that can be thought of as the proportion of the relabeled posterior samples of ϕi 

that have the value m. While technically P is an n × ∞ matrix, all columns after M* have 
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zero entries in P̂, where M* is the maximum number of clusters observed in the posterior. 

For the results below, the point estimate of γ̂ is determined by γ̂
j = 1 if Pr(γj = 1) > ρj = 0.5, 

and γ̂
j = 0 otherwise.

3 Simulation Results

In this section the performance of the proposed approach for clustering is evaluated on two 

simulation cases similar in nature to the ASD clustering problem. Each of the cases is 

examined (i) without missing data or discrete variables/censoring, (ii) with missing data, but 

no discrete variables/censoring, (iii) with missing data and several discrete and/or censored 

variables.

The approaches to be compared are listed below.

DPM-vs – the proposed method.

DPM-cont – the proposed method without accounting for discrete variables/censoring (i.e., assuming all 
continuous variables).

DPM – the proposed method with variable selection turned off (i.e., a prior probability ρj = 1).

DPM-ind – the approach of Kim et al.24 when all variables are continuous (i.e., assuming non-informative 
variables are independent of the rest), but modified to treat discrete variables/censoring and missing 
data when applicable just as the proposed approach.

Mclust-vs – the approach of Raftery and Dean13 implemented with the clustvarsel package in R. When 
there are missing data, Random Forest Imputation59 implemented with the missForest package 
in R is used prior to application of clustvarsel. However, the Mclust-vs approach does not 
treat discrete variables differently and thus treats all variables as continuous and uncensored.

VarSelLCM – the approach of Marbac and Sedki16 implemented in the R package VarSelLCM. It allows for 
mixed data types and missing data, however, it assumes both local independence of variables within 
cluster and global independence between informative and non-informative variables.

Each simulation case is described below. Figure 2 provides a graphical depiction of the 

problem for the first eight variables from the first of the 100 realizations of Case 2(c). Case 1 

simulations resulted in very similar data patterns as well.

Case 1(a) – n = 150, p = 10. The true model has M = 3 components with mixing proportions 0.5, 0.25, 0.25, 
respectively, and y | ϕ is a multivariate normal with no censoring nor missing data. Only two variables 
y(1) = [y1, y2]′ are informative, with means of (2, 0), (0, 2), (−1.5, −1.5), unit variances, and correlations 
of 0.5, 0.5, −0.5 in each component, respectively. The non-informative variables y(2) = [y3, . . . , y10]′ are 
generated as iid (0, 1).

Case 1(b) –
Same as the setup in 1(a) only the non-informative variables y(2) are correlated with y(1) through the 
relation y(2) = By(1) + ε, where B is a 8 × 2 matrix whose elements are distributed as iid (0, 0.3), and 

ε 𝒩(0, Q22
−1), with Q22 ~ (I, 10).

Case 1(c) – Same as in 1(b), but variables y1, y6 are discretized to the closest integer, variables y2, y9 are left 
censored at −1.4 (~8% of the observations), and y3, y10 are right censored at 1.4.

Case 1(d) – Same as 1(c), but the even numbered yj have ~ 30% of the observations MAR.

Case 2(a) – n = 300, p = 30. The true model has M = 3 components with mixing proportions 0.5, 0.25, 0.25, 
respectively, y|ϕ is a multivariate normal with no censoring nor missing data. Only four variables (y1, y2, 
y3, y4) are informative, with means of (0.6, 0, 1.2, 0), (0, 1.5, −0.6, 1.9), (−2, −2, 0, 0.6) and all variables 
with unit variance for each of the three components, respectively. All correlations among informative 
variables are equal to 0.5 in components 1 and 2, while component 3 has correlation matrix, Σ311(i, j) = 
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0.5(−1)||i+j|| I{i ≠ j} +I{i=j}. The non-informative variables y(2) = [y5, . . . , y30]′ are generated as iid (0, 
1).

Case 2(b) –
Same as the setup in Case 2(a) only the non-informative variables y(2) are correlated with y(1) through the 
relation y(2) = By(1) + ε, where B is a 26 × 4 matrix whose elements are distributed as iid (0, 0.3), and 

ε 𝒩(0, Q22
−1), with Q22 ~ (I, 30).

Case 2(c) – Same setup as in Case 2(b), but now variables y1, y6, y11 are discretized to the closest integer, variables 
y2, y9, y10, y11 are left censored at −1.4 (~8% of the observations), and variables y3, y12, y13, y14 are right 
censored at 1.4.

Case 2(d) – Same as Case 2(c), but the even numbered yj have ~ 30% MAR.

For each of the eight simulation cases, 100 data sets were randomly generated and each of 

the five methods above was fit to each data set. The methods are compared on the basis of 

the following statistics.

Acc – Accuracy calculated as the proportion of observations in the estimated clusters that are in the same group as 
they are in the true clusters, when put in the arrangement (relabeling) that best matches the true clusters.

FI – Fowlkes-Mallows index of ϕ̂ relative to the true clusters.

ARI – Adjusted Rand index.

M – The number of estimated clusters. The estimated number of clusters for the Mclust-vs and VarSelLCM 
methods was chosen as the best of the possible M = 1, . . . 8 cluster models via BIC. The number of clusters 
for the Bayesian methods is chosen as the posterior mode and is inherently allowed to be as large as n.

p1 – The model size, p1 = Σj γ̂j.

PVC – The proportion of variables correctly included/excluded from the model, PVC = (1/p)ΣjI{γ̂j = γj}.

CompT – The computation time in minutes (using 20,000 MCMC iterations for the Bayesian methods).

These measures are summarized in the columns of the tables below by their mean (and 

standard deviation) over the 100 data sets. It appeared that 20,000 iterations (10,000 burn in 

and 10,000 posterior samples) was sufficient for the Bayesian methods to summarize the 

posterior in the simulation cases via several trial runs, however not every simulation result 

was inspected for convergence.

The simulation results from Cases 1(a)–(d) are summarized in Table 1. The summary score 

for the best method for each summary is in bold along with that for any other method that 

was not statistically different from the best method on the basis of the 100 trials (via an 

uncorrected paired t-test with α = 0.05). As would be expected, DPM-ind is one of the best 

methods on Case 1(a), however, it is not significantly better than DPM-vs or Mclust-vs on 

any of the metrics. VarSelLCM performs slightly worse than the top three methods in this 

case since the local independence assumption is being violated. All of the other methods 

solidly outperform DPM though, which had a difficult time finding more than a single 

cluster since it had to include all 10 variables. In Case 1(b) the assumptions of DPM-ind are 

now being violated and it is unable to perform adequate variable selection. It must include 

far too many non-informative variables due to the correlation within y(2) and between y(1) 

and y(2). The clustering performance suffers as a result and like DPM, it has difficulty 

finding more than a single cluster. VarSelLCM also struggles in this case for the same 

reason; the global independence assumption is being violated. Mclust-vs still performs well 

in this case, but DPM-vs (and DPM-cont) is significantly better on two of the metrics. In 
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case 1(c) DPM-vs is now explicitly accounting for the discrete and left/right censored 

variables, while DPM-cont does not. When the discrete variables are incorrectly assumed to 

be continuous it tends to create separate clusters at some of the unique values of the discrete 

variables. This is because a very high likelihood can be obtained by normal distributions that 

are almost singular along the direction of the discrete variables. Thus, DPM-vs substantially 

outperforms DPM-cont and Mclust-vs, demonstrating the importance of explicitly treating 

the discrete nature of the data when clustering. Finally, Case 1(d) shows that the loss of 30% 

of the data for half of the variables (including an informative variable) does not degrade the 

performance of DPM-vs by much. In this case Mclust-vs uses Random Forest Imputation to 

first impute the data, then cluster. The imputation procedure does not explicitly take into 

account of the cluster structure of the data, rather it could mask this structure. This is another 

reason that the performance is worse than the proposed approach which incorporates the 

missingness directly into the clustering model. Mclust-vs and VarSelLCM both have much 
faster run-times than the Bayesian methods, however, when there are local or global 

correlations and discrete variables and/or missing data, they did not perform nearly as well 

as DPM-vs.

The simulation results from Cases 2(a)–(d) are summarized in Table 2. A similar story line 

carries over into Case 2 where there are now p = 30 (four informative) variables and n = 300 

observations. Namely, DPM-vs is not significantly different from DPM-ind or Mclust-vs on 

any of the summary measures for Case 2(a), with the exception of computation time. DPM-

vs is the best method on all summary statistics (except CompT) by a sizeable margin on the 

remaining cases. While Mclust is much faster than DPM-vs, the cases of the most interest in 

this paper are those with discrete variables, censoring and/or missing data (i.e., Cases 1(c), 

1(d), 2(c), and 2(d)). In these cases, the additional computation time of DPM-vs might seem 

inconsequential relative to the enormous gain in accuracy. It is interesting that DPM-vs 

suffers far less from the missing values when moving from Case 2(c) to 2(d) than it did from 

Case 1(c) to 1(d). This is likely due to the fact that there are a larger number of observations 

to offset the additional complexity of a larger p. However, it is also likely that the additional 

(correlated) variables may help to reduce the posterior variance of the imputed values.

4 Application to Autism and Related Disorders

The cohort for this study consists of subjects falling in the criteria for “potential ASD” 

(PASD) on the basis of various combinations of developmental and psychiatric diagnoses 

obtained from comprehensive medical and educational records as described in Katusic et al.
60. The population of individuals with PASD is important because this group represents the 

pool of patients with developmental/behavioral symptoms from which clinicians have to 

determine who has ASD and/or other disorders. Subjects 18 years of age or older were 

invited to participate in a face-to-face session to complete psychometrist-administered 

assessments of autism symptoms, cognition/intelligence, memory/learning, speech and 

language, adaptive functions, and maladaptive behavior. In addition, guardians were asked to 

complete several self-reported, validated questionnaires. The goal is to describe how the 

patients’ test scores separate them in terms of clinical presentation and which test scores are 

the most useful for this purpose. This falls in line with the new Research Domain Criteria 

(RDoC) philosophy that has gained traction in the field of mental health research. RDoC is a 
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new research framework for studying mental disorders. It aims to integrate many levels of 

information (cognitive/self-report tests, imaging, genetics) to understand how all of these 

might be related to similar clinical presentations.

A total of 87 test scores measuring cognitive and/or behavioral characteristics were 

considered from a broad list of commonly used tests for assessing such disorders. A 

complete list of the individual tests considered is provided in Web Appendix A. Using expert 

judgment to include several commonly used aggregates in place of individual subtest scores, 

this list was reduced to 55 test score variables to be considered in the clustering procedure. 

Five of the 55 variables have fewer than 15 possible values and are treated here as discrete, 

ordinal variables. A majority (46) of the 55 variables also have a lower bound, which is 

attained by a significant portion of the individuals, and are treated as left censored. Five of 

the variables have an upper bound that is attained by many of the individuals and are thus 

treated as right censored. There are 486 observations (individuals) in the dataset, however, 

only 67 individuals have complete data, i.e., a complete case analysis would throw out 86% 

of the observations.

DPM-vs was applied to these data; four chains with random starting points were run in 

parallel for 85,000 iterations each, which took ~ 40 hours on a 2.2GHz processor. The first 

10,000 iterations were discarded as burn-in. More iterations were used here than in the 

simulation cases due to the fact that this analysis is slightly more complicated (e.g., more 

variables and observations) and it only needed to be performed once. MCMC trace plots are 

provided in Web Appendix D. All chains converged to the same distribution (aside from 

relabeling) and were thus combined.Four of the tests (Beery standard, CompTsc_ol, 

WJ_Pass_Comprehen, and Adaptive Composite) had a high (> 0.88) posterior probability of 

being informative (Table 3). There is also evidence that Ach_abc_Attention and 

Ach_abc_AnxDep are informative. The posterior samples were split on which of these two 

should be included in the model (they were only informative together for 0.1% of the 

MCMC samples). The next highest posterior inclusion probability for any of the remaining 

variables was 0.17 and the sum of the inclusion probabilities for all remaining variables was 

only 0.28. Thus, there is strong evidence to suggest that only five of the 55 variables are 

sufficient to inform the cluster membership.

A majority (54%) of the posterior samples identified three components/clusters, with 0.12 

and 0.25 posterior probability of two and four clusters, respectively. The calculation of ϕ̂ 

also resulted in three components. Figure 3 displays the estimated cluster membership via 

pairwise scatterplots of the five most informative variables on a standardized scale. 

Ach_abc_Attention has also been multiplied by minus one so that higher values imply better 

functioning for all tests. The corresponding mean vectors of the three main components are 

also provided in Table 3. There are two groups that are very distinct (i.e., Clusters 1 and 2 

are the “high” and “low” groups, respectively), but there is also a “middle” group (Cluster 

3). Cluster 3 subjects generally have medium-to-high Adaptive_Composite, 

WJ_Pass_Comprehen, and Ach_abc_Attention scores, but low-to-medium Beery_standard 

and WJ_Pass_Comprehen.
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Figure 4(a) provides a 3D scatter plot on the three most informative variables, highlighting 

separation between Cluster 1 and Clusters 2 and 3. However, Clusters 2 and 3 are not well 

differentiated in this plot. Figure 4(b) shows a 3D scatter plot on the variables CompTsc_ol, 

WJ_Pass_Comprehen, and Ach_Attention, illustrating differentiation between Clusters 2 

and 3.

The goal of this work is not necessarily to identify clusters that align with clinical diagnosis 

of ASD, i.e., it is not a classification problem. The Research Domain Criteria (RDoC) 

philosophy is to get away from subjective based diagnosis of disease. The hope is that these 

clusters provide groups of similar patients that may have similar underlying physiological 

causes and can be treated similarly (whether the clinical diagnosis was ASD or not). That 

being said, the “high” cluster aligned with no clinical diagnosis of ASD for 92% of its 

subjects, while the “low” cluster aligned with positive clinical ASD diagnosis for 50% of its 

subjects. As these clusters result from a bottom-up, data-driven method, they may prove 

useful to determine imaging biomarkers that correspond better with cluster assignment than 

a more subjective diagnosis provided by a physician. This will be the subject of future work.

5 Conclusions & Further Work

In this paper we developed a general approach to clustering via a Dirichlet process model 

that explicitly allows for discrete and censored variables via a latent variable approach, and 

missing data. This approach overcomes the assumption of (global) independence between 

informative and non-informative variables and the assumption of (local) independence of 

variables within cluster often assumed when clustering data of mixed type. The MCMC 

computation proceeds via a split/merge algorithm by integrating out the component 

parameters. This approach was shown to perform markedly better than other approaches on 

several simulated test cases. The approach was developed for moderate p in the range of 

~10–300. The computation is (p3), which makes it ill-suited for extremely large 

dimensions. However, it may be possible to use a graphical model61,62 within the proposed 

framework to alleviate this burden for large p.

The approach was used to analyze test scores of individuals with potential ASD and 

identified three clusters. Further, it was determined that only five of the 55 variables were 

informative to assess the cluster membership of an observation. This could have a large 

impact for diagnosis of ASD as there are currently ~100 tests/subtest scores that could be 

used, and there is no universal standard. Further, the clustering results have served to 

generate hypotheses about what might show up in brain imaging to explain some of the 

differences between potential ASD patients. A follow-up study has been planned to 

investigate these possible connections.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
3D scatter plot of three of the test score variables for potential ASD subjects.
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Figure 2. 
Pairwise scatter plots of the first eight variables for simulation Case 2(c).
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Figure 3. 
Pairwise scatter plots of the standardized version of the five most informative variables in 

Table 3 with estimated cluster membership above the diagonal and the raw data below.
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Figure 4. 
Three dimensional scatter plots of the tests on standardized scale: (a) The most informative 

three variables with estimated cluster membership. (b) Observations plotted on the variables 

CompTsc_ol, WJ_Pass_Comprehen, and Ach_abc_Attention, to better illustrate the 

separation of clusters 2 and 3.
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Table 3

Posterior inclusion probabilities and sample means for the six most informative tests.

Variable Pr(γj = 1)
Cluster Means

1 2 3

Beery_standard 1.000 0.77 −1.02 −0.44

CompTsc_ol 1.000 0.46 −1.21 −0.01

WJ_Pass_Comprehen 0.944 0.38 −1.26 0.30

Adaptive_Composite 0.889 0.44 −0.68 0.16

ach_abc_Attention 0.460 −0.18 0.21 0.04

ach_abc_AnxDep 0.427 −0.04 0.06 −0.01
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