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Metabolomics—the study of small metabolites in a system—has 
been successfully applied in the plant sciences to investigate plant 
development (Watanabe et al., 2013; Hu et al., 2016), characterize 
plant response to abiotic stresses (Caldana et al., 2011; Maruyama 
et al., 2014), and diagnosis plant diseases (Cevallos-Cevallos et al., 
2009, 2011). Among various metabolomics tools, the use of gas 
chromatography–mass spectrometry (GC-MS) has been recom-
mended for the assessment of plant varieties with different mor-
phologies (Cevallos-Cevallos et al., 2012), because metabolites have 
shown a more relevant relationship to plant phenotypes than genes 
(Fiehn, 2001; Yogendra et al., 2014). Therefore, metabolomics tools 
have the potential for characterizing morphological alterations in 
plants and detecting somaclonal variants.

Banana (Musa L. spp.; Musaceae) is one of the most cultivated 
crops worldwide and a major source of income for millions of peo-
ple in many countries (Yeturu et al., 2016). The world’s total pro-
duction of banana was estimated at 113 million tons in 2016, with 
Ecuador standing out as the top banana-exporting country (Food 

and Agriculture Organization of the United Nations, 2017). Banana 
plants are commonly produced by in vitro micropropagation tech-
niques focusing on the generation of phenotypically uniform plant-
lets from a parent plant. However, phenotypic variations—known 
as somaclonal variations (SV)—are commonly observed in about 
6% to 69% of the Musa spp. plants regenerated by tissue culture 
(Sahijram et al., 2003). Various types of atypical plant morpholo-
gies have been associated with SV, with dwarfism being the most 
common SV observed (Reuveni and Israeli, 1990).

Plants showing SV are commonly considered to be of inferior 
quality and reduced commercial value when compared to the pa-
rental clones (Sahijram et al., 2003; Oh et al., 2007), but improved 
characters of somaclonal variants have also been reported (Bairu 
et al., 2010). Dwarf variants of the ‘Williams’ banana cultivar can 
bear shorter fruits of atypical shapes (Israeli et  al., 1991) but can 
show faster growth and flowering rates (Israeli et  al., 1991) than 
normal plants. Additionally, the stocky build of dwarf bananas 
suggests a higher resistance to physical damages and advantages of 
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PREMISE OF THE STUDY: The production of banana (Musa spp.; Musaceae) plants is affected 
by various types of somaclonal variations (SV), including dwarfism. However, methods for 
specific detection of SV are still scarce. To overcome this, a metabolite-based method for 
detection of dwarf variants was evaluated.

METHODS: The gas chromatography–mass spectrometry (GC-MS) metabolite profile of dwarf 
banana variants was investigated and compared to that of normal-healthy (N) and cucumber 
mosaic virus (CMV)–infected plants using principal components analysis and partial least 
squares discriminant analysis (PLS-DA).

RESULTS: Significant differences among the sample groups were observed in 82 metabolites. 
Rhamnose was exclusively present in dwarf plants but allothreonine and trehalose were 
present in all but SV samples. Cellobiose was only detected in N plants, while 45 other 
metabolites, including methyl-glucopyranoside, allopyranose, lactose, phenylalanine, and  
l-lysine were detected in all but CMV-infected samples. PLS-DA models were able to detect 
SV, CMV, and N plants with 100% accuracy and specificity.

DISCUSSION: The GC-MS metabolite profile can be used for the rapid, specific detection of 
SV at early plant production stages. This is the first metabolite-based characterization and 
detection of somaclonal variation in plants.
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cultivation convenience, field management, and labor savings when 
compared to normal clones (Ferrero-Serrano and Assmann, 2016).

Detection of SV in Musa spp. has traditionally been carried out 
through visual examination of the plants. Dwarf off-types have been 
detected by observing the plant height, leaf index (leaf length/width; 
Rodrigues et al., 1998), and pseudostem thickness (Oh et al., 2007) 
at the greenhouse production stage. However, banana morphologi-
cal traits can also be affected by environmental factors (Bairu et al., 
2010) and biotic stresses such as cucumber mosaic virus (CMV) 
infections (Yeturu et al., 2016), rendering visual diagnosis of SV un-
reliable. CMV can be transmitted by more than 80 aphid species 
and infect almost 1200 plant species including bananas (Zitter and 
Murphy, 2009), making CMV one of the most widespread banana 
viruses worldwide (Basavaraj et  al., 2017). CMV can be detected 
wherever bananas are grown (Dheepa and Paranjothi, 2010), and 
Musa spp. plants infected by CMV can show symptoms resembling 
those of SV, including growth deficiency and leaf distortion (Yeturu 
et  al., 2016), leading to problems of misdiagnosis between CMV 
and SV. Therefore, non-visual methodologies need to be applied for 
the detection of SV in Musa spp. at early plant production stages, 
and the specificity of SV diagnosis methods must be validated 
against CMV-infected plants.

Various DNA-based methodologies have been proposed to as-
sess genetic stability as a means to infer SV in micropropagated 
banana plants, including random-amplified polymorphic DNA 
(RAPD) (Sheidai et al., 2008), inter-simple sequence repeat (ISSR) 
(Ray et al., 2006), amplified fragment length polymorphism (AFLP) 
(Sahijram et  al., 2003), and representational difference analysis 
(RDA) (Oh et  al., 2007), among others. However, SV in clones 
showing polymorphic DNA was not phenotypically confirmed, and 
no association between DNA markers and alterations of visual traits 
was made.

Biochemical methods have also been suggested to detect dwarf 
banana variants, including the quantification of gibberellic acids 
(GAs) (Chen et  al., 2016). However, GA is not the only endoge-
nous signal that induces plant growth, and GA-unresponsive dwarf 
variants have been reported (Sun, 2000). Moreover, the specificity 
of biochemical tests against CMV-infected plants has not been eval-
uated. Specificity of biochemical methods for detection of various 
plant conditions can be significantly improved using a group of me-
tabolites instead of a single marker (Cevallos-Cevallos et al., 2009), 
but no metabolomics-based characterization of banana dwarf var-
iants can be found in the literature. Despite the importance of SV 
to the banana industry, reliable methods for the early and specific 
detection of SV in Musa spp. are still unavailable.

This research aimed to describe the GC-MS metabolite profile of 
normal, dwarf, and CMV-affected banana plants at the greenhouse 
establishment stage and propose a metabolomics-based method for 
detection of dwarf variants.

METHODS

Plant material

Plants of the ‘Williams’ cultivar were obtained from a commer-
cial banana propagation facility in Guayaquil, Ecuador, during 
2015 and 2016. Plants in the greenhouse establishment phase (3–4 
months) propagated from the same parental clone were selected 
for this study as suggested in previous reports (Rodrigues et al., 

1998; Bairu et  al., 2010). A total of 20 SV (dwarf variants), 16 
normal-healthy (N), and 15 CMV-infected plants were collected. 
Only clones showing significantly shorter heights and smaller 
leaf indexes than standard normal plants were considered as 
dwarf variants (Israeli et al., 1991), whereas plants showing CMV 
symptoms, including yellow stripes on leaves, leaf distortion, and 
stunting of growth were preliminarily selected as putative CMV-
infected plants. The presence of CMV was then confirmed using a 
commercial triple antibody sandwich ELISA kit (Agdia, Elkhart, 
Indiana, USA) and CMV-positive samples were selected for the 
study. The presence of CMV was also assessed in the SV and N 
samples yielding negative ELISA results. Plants were transported 
to our research facilities and kept at 28°C, 70% relative humidity 
with natural light (12 h) in a greenhouse, and watered every 48 h 
until analyzed (2 weeks).

Metabolite analysis

For metabolite characterization, small (5 × 5 cm) pieces were si-
multaneously extracted from the center of three different leaves 
from each plant using a scalpel while avoiding the midrib. 
Metabolite extraction, separation, and detection were executed on 
each leaf piece as described elsewhere (Cevallos-Cevallos et  al., 
2011, 2012). Briefly, each leaf piece was ground under liquid ni-
trogen and 800 mg were mixed with 2 mL of an 8  : 1  : 1 metha-
nol  :  water  :  chloroform solution followed by incubation at 7°C 
for 48 h. Extracts were then centrifuged at 21130 × g for 2 min 
using an Eppendorf 5424 microcentrifuge (Hamburg, Germany) 
and the pellet was discarded. Aliquots of 650 μL of each extract 
were transferred into 2-mL vials and incubated with the cap open 
in a water bath at 50°C until dry. A total of 150 μL of N-methyl-N-
trimethylsilyltrifluoroacetamide (MSTFA) was added to the dried 
samples and incubated at 85°C for 90 min. Different amounts of 
MSTFA, different incubation temperatures, and different reaction 
times were tested but yielded lower numbers of detected peaks and 
poorer reproducibility, as reported in previous studies (Cevallos-
Cevallos et al., 2011) and validated in this research. The solution 
(1 μL) was then splitlessly injected into a GC-MS. The injector was 
at 250°C, the initial oven temperature was 80°C held for 1 min, 
the temperature rate was 7°C/min, and the final temperature of 
300°C was held for 5 min. Ultrapure helium was used as the car-
rier gas at 1 mL/min. The GC-MS interface was set to 280°C, and 
after 8 min of solvent delay the scan was recorded with a frequency 
of 4 Hz. Data were acquired using ChemStation E.02.02 software 
(Agilent Technologies, Santa Clara, California, USA), and differ-
entially expressed metabolites were putatively identified by MS 
spectra matching using two databases: the National Institute of 
Standards and Technology (NIST) Mass Spectral Library (NIST 
11) and the Wiley Registry of Mass Spectral Data, 9th ed. (Wiley 
9) (McLafferty, 2009). Metabolite identity was then confirmed by 
comparing the linear retention index of each compound with that 
of the pure standard using our internal database. All metabolites 
were quantified by estimating the peak area using the ChemStation 
software as suggested for untargeted analysis (Maridueña-Zavala 
et  al., 2017; Cevallos-Cevallos et  al., 2018). Preliminary GC-MS 
runs showed that peaks were too close to each other throughout 
the chromatogram and the use of internal standards would have 
interfered with the chromatographic peaks. For this reason, nor-
malization and quality control (QC) techniques not relying on in-
ternal standards were applied, including normalization to the total 
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area (Cevallos-Cevallos et al., 2012; Wu and Li, 2016) and QC by 
running the same sample after specific intervals (Warth et al., 2015; 
Maridueña-Zavala et al., 2017). The quality of the GC-MS runs was 
assessed by running one selected extract every five runs and esti-
mating the variations in retention time and peak areas. Maximum 
acceptable coefficient of variation was 30% for a given metabolite 
in QC runs (Warth et  al., 2015; Maridueña-Zavala et  al., 2017). 
Three replicates were run for each analysis.

Data analysis

Peak areas of each metabolite were used for data analysis. Peaks 
detected in less than one of six measurements were marked as 
potential metabolite carry-over and were excluded from the anal-
ysis (Warth et al., 2015). Data were normalized to the total area 
and aligned using in-house protocols based on metabolite com-
parisons of the MS spectra and retention times (Cevallos-Cevallos 
et  al., 2011). Differentially expressed metabolites were selected 
based on Student’s t-test comparisons of SV or CMV against N 
plants at the 0.05 significance level and reported as the logarithm 
base 2 of the fold change of each compound. Affected metabolic 
pathways were estimated using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Pathway database (Kanehisa and Goto, 
2000; Maridueña-Zavala et al., 2017) with Musa acuminata Colla 
as the model organism. Multivariate data analysis was carried out 
using XLSTAT 2018 (Addinsoft, Paris, France) and included prin-
cipal component analysis (PCA) as well as partial least squares 
discriminant analysis (PLS-DA) with jacknife cross-validation 
and estimation of variable importance in the projection (VIP). 
Metabolites with VIP values above 2 (Steinfath et al., 2010) and 
the differentially expressed metabolites selected by Student’s t-test 
(Cevallos-Cevallos et  al., 2009) were considered to be potential 
biomarkers for SV.

For SV detection, three PLS-DA models were created using the 
metabolite profile of 36 samples, and each model targeted the de-
tection of the SV, CMV, or N sample class, respectively. Each model 
was built by assigning scores of 1 for samples belonging to the target 
class and zero for the other samples, and plants with model predic-
tion values above 0.5 were assigned to the target class. The models 
were then validated using the remaining 15 plants.

RESULTS

A total of 466 metabolite peaks were detected in the GC-MS runs, 
but Student’s t-test comparisons with N plants revealed that only 82 
metabolites were differentially expressed (P < 0.05) in SV or CMV-
infected samples. Table  1 shows all the differentially expressed 
metabolites and the pathways potentially affected in SV and CMV-
infected plants.

All SV samples were characterized by the presence of rhamnose 
as this metabolite was not detected in N or CMV-infected plants. 
Similarly, only SV samples showed undetectable levels of allothre-
onine and trehalose. Significantly higher levels of nine other me-
tabolites, including methyl glucofuranoside, ribonic acid, fructose, 
hexadecenoic acid, allofuranose, butanedioic acid, and glucopyra-
nosiduronic acid, were also characteristic of SV when compared 
to N samples. Conversely, the levels of 13 metabolites were sig-
nificantly lower in SV than N plants, including octadecanoic 
acid, glyceryl-glycoside, dihydro-3,4-dimethyl-2(3H)-furanone, 

stigmasterol, ribono-1,4-lactone, 3-penten-2-one, mannobiose, 
maltose, and cellobiose. Significant differences (P < 0.05) between 
SV and CMV-infected samples were observed in 68 metabolites, 
including 47 upregulated and 21 downregulated in SV when com-
pared to the CMV-infected plants using Student’s t-tests. Among 
them, sugars and sugar derivatives such as rhamnose, fructose, me-
thyl glucofuranoside, allopyranose, lactose, and galacturonic acid; 
amino acids including phenylalanine and l-lysine; and organic ac-
ids like butanoic acid and 2-butenedioic acid were among the sig-
nificantly upregulated metabolites. Likewise, some sugars and sugar 
derivatives like ribonic acid, allofuranose, sucrose, mannobiose, 
and trehalose; organic acids like butanedioic and hexadecenoic ac-
ids; and amino acids such as allo-threonine, leucine, and isoleucine 
were among the significantly downregulated metabolites.

Results of the Student’s t-tests showed significant differences 
(P < 0.05) in the levels of 76 metabolites, including 24 metabolites 
upregulated and 52 downregulated in CMV-infected plants when 
compared to N plants. Among the upregulated metabolites, two 
metabolites (tricosane and ethyl-d-glucopyranoside) were exclu-
sively detected in CMV samples. Other upregulated metabolites 
included sugars and sugar derivatives such as trehalose, ribitol, 
methyl galactopyranoside, sucrose, ribofuranose, allofuranose, and 
mannobiose; amino acids like allothreonine, leucine, and isoleu-
cine; and organic acids such as hexadecenoic and butanedioic acids. 
Among the downregulated metabolites, 45 metabolites including 
sugars and sugar derivatives such as methyl glucofuranoside, cello-
biose, methyl galactoside, fructopyranose, lactose, and galacturonic 
acid; amino acids like phenylalanine, l-lysine, and asparagine; and 
organic acids like butanoic, 2-butenedioic, 9,12-octadecadienoic, 
and linolenic acids were only absent in plants infected with CMV. 
The disaccharide cellobiose was detected in N plants only.

Pathway mapping suggests a significant upregulation of the fruc-
tose and mannose metabolism in SV plants, but other metabolic 
pathways were significantly downregulated in the dwarf variants, 
including fatty acid degradation, starch and sucrose metabolism, bi-
osynthesis of unsaturated fatty acids, and steroid biosynthesis path-
ways. Similarly, various pathways were significantly downregulated 
in CMV samples, including fructose and mannose metabolism, 
galactose metabolism, starch and sucrose metabolism, biosynthe-
sis of unsaturated fatty acids, fatty acid degradation, biosynthesis 
of amino acids, butanoate metabolism, steroid biosynthesis, and 
purine metabolism, whereas other pathways were significantly 
upregulated, including valine, leucine, and isoleucine biosynthe-
sis; glycine, serine, and threonine metabolism; tyrosine metabo-
lism; and riboflavin metabolism, as well as the pentose phosphate 
pathway.

Multivariate PCA showed a clear grouping of the CMV-infected 
plants and a partial grouping of the SV and N samples (Fig. 1A). 
Principal components (PC) 1 and 2 accounted for 30.74% of the 
total variation, and sample grouping occurred mostly on PC1. All 
CMV-infected plants were characterized with high positive scores 
on PC1, whereas SV samples showed low negative score values. All 
N samples yielded highly negative score values in PC1. The metab-
olites with the highest absolute loading values in PC1 were sugars 
and sugar derivatives such as mannobiose, l-altrose, galacturonic 
acid, hexopyranose, glucopyranosiduronic acid, d-glucosone, and 
methyl galactopyranoside; organic acids including propanoic, bu-
tanedioic, octadecanoic, hexadecanoic, linolenic, and 2-butenedioic 
acids; and other metabolites such as glyceryl-glycoside and butanal 
(Fig. 1B).
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TABLE 1.  Metabolites that were differentially expressed in dwarf (SV) and cucumber mosaic virus (CMV)–infected plants compared to normal-healthy (N) samples.*

Metabolite

Relative intensity† Log2 FC§

Potential pathwaysN SV CMV SV-N SV-CMV CMV-N

Rhamnose 0.00 ± 0.00a 0.09 ± 0.01b 0.00 ± 0.00a >10 >10 ND Fructose and mannose metabolism
d-Mannitol 0.27 ± 0.05a 0.36 ± 0.07a 0.15 ± 0.01b 0.41 1.26 −0.85 Fructose and mannose metabolism
Fructose 0.13 ± 0.06a 0.79 ± 0.22b 0.00 ± 0.00a 2.57 >10 <−10 Fructose and mannose metabolism, 

galactose metabolism
Fructopyranose 1.44 ± 0.39a 2.30 ± 0.36a 0.00 ± 0.00b 0.68 >10 <−10 Fructose and mannose metabolism, 

galactose metabolism
Fructofuranose 2.38 ± 0.36a 2.96 ± 0.76a 0.00 ± 0b 0.32 >10 <−10 Fructose and mannose metabolism, 

galactose metabolism
Glucose 0.78 ± 0.13a 0.93 ± 0.12a 0.04 ± 0.01b 0.27 4.50 −4.24 Starch and sucrose metabolism, galactose 

metabolism, fructose and mannose 
metabolism

Mannopyranose 3.32 ± 0.81a 4.01 ± 1.18a 0.00 ± 0.00b 0.27 >10 <−10 Fructose and mannose metabolism, 
galactose metabolism

Sucrose 0.63 ± 0.09a 1.54 ± 0.45a 5.16 ± 0.99b 1.28 −1.75 3.03 Galactose metabolism (produced), starch 
and sucrose metabolism (consumed) 

d-Lactose 0.50 ± 0.06a 0.66 ± 0.09a 0.00 ± 0.00b 0.40 >10 <−10 Galactose metabolism
Maltose 0.17 ± 0.05a 0.01 ± 0.00b 0.00 ± 0.00b −4.88 >10 <−10 Starch and sucrose metabolism 
Trehalose 0.01 ± 0.01a 0.00 ± 0.00a 1.01 ± 0.15b <−10 <−10 6.63 Starch and sucrose metabolism 

(consumed)
Cellobiose 0.03 ± 0.01a 0.00 ± 0.00b 0.00 ± 0.00b <−10 ND <−10 Starch and sucrose metabolism
Linolenic acid 1.27 ± 0.45a 0.36 ± 0.08a 0.00 ± 0.00b −1.81 >10 <−10 Biosinthesis of unsaturated fatty acids
Hexadecanoic acid 0.14 ± 0.03a 0.37 ± 0.05b 1.27 ± 0.20c 1.42 −1.78 3.20 Consumed by fatty acid degradation, 

produced by fatty acid enlongation
9,12-Octadecadienoic acid 0.12 ± 0.03a 0.09 ± 0.02a 0.00 ± 0.00b −0.36 >10 <−10 Biosynthesis of unsaturated fatty acids
Octadecanoic acid 0.98 ± 0.14a 0.58 ± 0.12b 0.02 ± 0.01c −0.75 4.82 −5.57 Biosynthesis of unsaturated fatty acids
Phenylalanine 0.20 ± 0.05a 0.32 ± 0.06a 0.00 ± 0.00b 0.69 >10 <−10 Biosynthesis of amino acids
Cystathionine 0.02 ± 0.01a 0.04 ± 0.01a,b 0.00 ± 0.00b 0.61 >10 <−10 Biosynthesis of amino acids
l-Isoleucine 0.11 ± 0.02a 0.09 ± 0.02a 0.54 ± 0.04b −0.26 −2.56 2.30 Valine, leucine, and isoleucine 

biosynthesis, biosynthesis of amino acids
l-Leucine 0.14 ± 0.03a 0.11 ± 0.02a 2.29 ± 0.49b −0.37 −4.43 4.06 Valine, leucine, and isoleucine 

biosynthesis, biosynthesis of amino acids
l-Lysine 0.10 ± 0.02a 0.08 ± 0.03a 0.00 ± 0.00b −0.41 >10 <−10 Biosynthesis of amino acids, lysine 

biosynthesis
l-Asparagine 0.27 ± 0.10a 0.08 ± 0.02a 0.00 ± 0.00b −1.70 >10 <−10 Biosynthesis of amino acids, alanine, 

aspartate, and glutamate metabolism
Allothreonine 0.00 ± 0.00a 0.00 ± 0.00a 0.18 ± 0.03b <−10 <−10 6.09 Glycine, serine, and threonine  

metabolism
Butanoic acid 0.14 ± 0.06a 0.11 ± 0.03a 0.00 ± 0.00b −0.32 >10 <−10 Butanoate metabolism
2-Butenedioic acid 0.04 ± 0.01a 0.03 ± 0.01a 0.00 ± 0.00b −0.34 >10 <−10 Butanoate metabolism
Tyramine 0.01 ± 0.00a 0.02 ± 0.00a 0.07 ± 0.01b 1.38 −2.05 3.43 Tyrosine metabolism
Stigmasterol 0.53 ± 0.13a 0.19 ± 0.06b 0.00 ± 0.00c −1.44 >10 <−10 Steroid biosynthesis
Ribitol 0.02 ± 0.01a 0.08 ± 0.04a 0.38 ± 0.04b 2.25 −2.18 4.43 Riboflavin metabolism, pentose 

glucoronate interconversions
Adenosine 0.13 ± 0.03a 0.08 ± 0.02a 0.00 ± 0.00b −0.75 >10 <−10 Purine metabolism
Ribofuranose 0.16 ± 0.04a 0.18 ± 0.06a 0.74 ± 0.09b 0.20 −2.01 2.21 Pentose phosphate pathway
Methyl galactoside 1.38 ± 0.62a 2.53 ± 0.72a 0.00 ± 0.00b 0.88 >10 <−10 NF
Methyl galactopyranoside 0.02 ± 0.01a 0.01 ± 0.00a 0.19 ± 0.02b −1.14 −4.63 3.49 NF
Allopyranose 1.92 ± 0.78a 5.36 ± 1.55a 0.00 ± 0.00b 1.48 >10 <−10 NF
Allofuranose 0.80 ± 0.16a 1.39 ± 0.20b 3.11 ± 0.46c 0.81 −1.16 1.97 NF
l-Threitol 0.08 ± 0.01a 0.12 ± 0.01a 1.58 ± 0.19b 0.64 −3.76 4.40 NF
Methyl glucofuranoside 0.05 ± 0.02a 0.40 ± 0.08b 0.00 ± 0.00c 3.04 >10 <−10 NF
NI1 0.03 ± 0.03a 0.24 ± 0.08b 0.00 ± 0.00a 2.97 >10 <−10 NF
Ribonic acid 0.04 ± 0.02a 0.24 ± 0.06b 0.49 ± 0.03c 2.68 −1.03 3.71 NF
NI2 0.03 ± 0.01a 0.11 ± 0.02b 0.06 ± 0.02a,b 1.90 0.89 1.01 NF
Galactopyranosyl bromide, 

tetraacetate
0.22 ± 0.07a 0.81 ± 0.20b 0.00 ± 0.00c 1.88 >10 <−10 NF

NI3 0.04 ± 0.01a 0.07 ± 0.02a 0.00 ± 0.00b 0.85 >10 <−10 NF
NI4 0.05 ± 0.02a 0.09 ± 0.03a,b 0.11 ± 0.01b 0.84 −0.34 1.18 NF
NI5 2.09 ± 0.56a 3.55 ± 0.85a,b 4.06 ± 0.49b 0.77 −0.19 0.96 NF
l-Altrose 2.03 ± 0.36a 3.00 ± 0.45a 0.07 ± 0.01b 0.56 5.41 −4.84 NF
NI6 0.04 ± 0.01a 0.07 ± 0.03a,b 0.00 ± 0.00b 0.56 >10 <−10 NF

(Continues)
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FIGURE 1.  Score (A) and loading plot (B) of the principal components analysis (PCA) run on dwarf (SV), normal-healthy (N), and cucumber mosaic 
virus (CMV)–infected plants. Values in parentheses represent the percentage of the variance explained by each component.

Metabolite

Relative intensity† Log2 FC§

Potential pathwaysN SV CMV SV-N SV-CMV CMV-N

Glucopyranosiduronic acid 0.33 ± 0.04a 0.48 ± 0.04a 0.25 ± 0.03b 0.55 0.97 −0.42 NF
Propanoic acid 0.34 ± 0.04a 0.45 ± 0.08a,b 0.55 ± 0.06b 0.43 −0.28 0.71 NF
d-glucosone 0.17 ± 0.06a 0.22 ± 0.06a 2.04 ± 0.13b 0.38 −3.23 3.60 NF
Hexopyranose 3.52 ± 1.24a 4.57 ± 0.95a 0.00 ± 0.00b 0.38 >10 <−10 NF
Docosane 0.05 ± 0.01a 0.06 ± 0.02a 0.29 ± 0.04b 0.38 −2.28 2.66 NF
Butanedioic acid 0.45 ± 0.07a 0.57 ± 0.09a 1.20 ± 0.07b 0.34 −1.08 1.42 NF
NI7 2.38 ±0.36a 2.96 ± 0.76a 0.00 ± 0.00b 0.32 >10 <−10 NF
Galacturonic acid 0.15 ± 0.03a 0.18 ± 0.02a 0.00 ± 0.00b 0.27 >10 <−10 NF
Phosphate 0.49 ± 0.08a 0.59 ± 0.07a 0.00 ± 0.00b 0.26 >10 <−10 NF
Methyl glucopyranoside 1.41 ± 0.31a 1.69 ± 0.47a 0.55 ± 0.15b 0.26 1.63 −1.37 NF
Niacin 0.06 ± 0.02a 0.06 ± 0.03a,b 0.00 ± 0.00b 0.15 >10 <−10 NF
Phosphoric acid propyl ester 0.48 ± 0.15a 0.49 ± 0.22a,b 0.11 ± 0.07b 0.05 2.21 −2.17 NF
Phenylethanolamine 0.07 ± 0.02a 0.07 ± 0.03a 0.25 ± 0.02b −0.06 −1.81 1.75 NF
NI10 11.59 ± 1.58a 10.37 ± 1.33a 0.00 ± 0.00b −0.16 >10 <−10 NF
7,7′,8,8′,11,11′,12,12′,15,15′- 

decahydro-carotene
0.33 ± 0.15a 0.24 ± 0.11a 0.00 ± 0.00b −0.48 >10 <−10 NF

1-benzopyran-4-one 0.31 ± 0.09a 0.22 ± 0.06a 0.00 ± 0.00b −0.51 >10 <−10 NF
Quinic acid 0.59 ± 0.11a 0.42 ± 0.12a 0.00 ± 0.00b −0.51 >10 <−10 NF
l-Threonic acid 3.77 ± 0.79a 2.45 ± 0.45a,b 1.60 ± 0.39b −0.63 0.61 −1.24 NF
NI11 1.35 ± 0.33a 0.85 ± 0.21a 0.01 ± 0.00b −0.67 6.62 −7.30 NF
4-O-β-Galactopyranosyl-d-

mannopyranose
0.06 ± 0.02a 0.04 ± 0.00a 0.00 ± 0.00b −0.74 >10 <−10 NF

Glyceryl-glycoside 2.42 ± 0.39a 1.31 ± 0.19b 0.00 ± 0.00c −0.89 >10 <−10 NF
NI12 0.12 ± 0.04a 0.06 ± 0.02a 0.00 ± 0.00b −1.02 >10 <−10 NF
NI13 0.15 ± 0.05a 0.07 ± 0.04a,b 0.00 ± 0.00b −1.12 >10 <−10 NF
Dihydro-3,4-dimethyl-2(3H)-

furanone
0.05 ± 0.01a 0.02 ± 0.00b 0.00 ± 0.00c −1.17 >10 <−10 NF

NI14 0.12 ± 0.05a 0.05 ± 0.02a 0.00 ± 0.00b −1.22 >10 <−10 NF
NI15 0.34 ± 0.08a 0.14 ± 0.03b 0.00 ± 0.00c −1.29 >10 <−10 NF
NI16 0.16 ± 0.04a 0.06 ± 0.01b 0.00 ± 0.00c −1.39 >10 <−10 NF
Ribono-1,4-lactone 0.12 ± 0.02a 0.04 ± 0.01b 0.10 ± 0.03a,b −1.45 −1.19 −0.26 NF
NI17 0.23 ± 0.05a 0.08 ± 0.02b 2.42 ± 0.32c −1.48 −4.87 3.39 NF
3-Penten-2-one 0.21 ± 0.06a 0.07 ± 0.02b 0.00 ± 0.00c −1.65 >10 <−10 NF
NI18 0.05 ± 0.02a 0.02 ± 0.01a,b 0.00 ± 0.00b −1.68 >10 <−10 NF
Mannobiose 4.03 ± 1.09a 1.13 ± 0.55b 15.40 ± 1.52c −1.84 −3.77 1.93 NF
NI19 0.37 ± 0.11a 0.09 ± 0.03b 0.00 ± 0.00c −2.03 >10 <−10 NF
NI20 0.58 ± 0.17a 0.13 ± 0.03b 0.00 ± 0.00c −2.20 >10 <−10 NF
NI21 0.34 ± 0.15a 0.05 ± 0.01a 0.00 ± 0.00b −2.88 >10 <−10 NF
Tricosane 0.00 ± 0.00a 0.00 ± 0.00a 0.69 ± 0.09b ND <−10 >10 NF
Ethyl-d-glucopyranoside 0.00 ± 0.00a 0.00 ± 0.00a 0.02 ± 0.00b ND <−10 >10 NF

Note: NF = not found; NI = not identified.
*Metabolites with zero area values were below the detection limit of the GC-MS instrument.
†Different letters represent significant differences in the relative intensities of each metabolite when comparing N, SV, and CMV samples.
§Values represent the logarithm base 2 of the fold change (log2 FC) in metabolite intensity between two sample classes.

TABLE 1.  (Continued)
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Prediction models for N, SV, and CMV sample classes were 
built using PLS-DA. The models consisted of two PLS compo-
nents and yielded total R2 and Q2 values of 0.87 and 0.71, re-
spectively (Table 2). A 100% classification accuracy was observed 
in all samples used for calibration of each model, and the PLS 
scores plot showed a more marked grouping of SV, N, and CMV-
infected samples than PCA (Fig. 2A). The metabolites with the 
highest VIP scores (from 1.5 to 2.0) for the three models were 
sugars and sugar derivatives such as methyl glucopyranoside, 
glucopiranosiduronic acid, sucrose, gluconic acid, ribofuranose, 
mannitol, lactose, and galactopyranose; organic acids including 
butanedioic, 2-butenedioic, and propanoic acids; amino acids 
like leucine, allo-threonine, and serine; and the aldehyde bu-
tanal (Fig.  2B). However, none of the metabolites showed VIP 
values above 2 and were not considered among the potential 
biomarkers for SV. The potential of the three models combined 
for SV diagnostic was tested with 15 plants not previously used 
for model calibration, including five N, six SV, and four CMV-
infected plants. The models were 100% accurate in all validation 
tests (Fig. 3).

DISCUSSION

A novel metabolite-based approach using PLS-DA to detect SV in 
banana plants is presented, and a number of metabolite biomarkers 
of banana SV were discovered and validated. Metabolite biomarkers 
can be qualitative (presence/absence) or quantitative (abundance) 
(Cevallos-Cevallos et al., 2009). Quantitative biomarkers can be se-
lected based on VIP values (Steinfath et  al., 2010) or differential 
expression assessment by Student’s t-test (Cevallos-Cevallos et al., 
2009), among other methods. Because VIP values were below 2, we 
used the P values obtained by Student’s t-tests to select potential 
quantitative biomarkers.

Among the qualitative biomarkers of SV, rhamnose can be pro-
duced in banana plants through the fructose and mannose pathway; 
derivatives of this metabolite are required for the synthesis of im-
portant cell wall components in plants (Oka et al., 2007). Therefore, 
the presence of this monosaccharide in SV samples only might have 
contributed to the thicker pseudostem observed in the dwarf var-
iants when compared to the N or CMV-infected plants (Oh et al., 
2007; Ferrero-Serrano and Assmann, 2016). Trehalose—another 
qualitative biomarker of SV plants—is produced in plants through 
the dephosphorylation of trehalose-6-phosphate (T6P) catalyzed 
by T6P phosphatase (TPP) (Grennan, 2007). T6P is considered an 
important signaling metabolite that is involved in the regulation of 
plant growth (O’Hara et al., 2013). Molecules of T6P are produced 
by T6P synthase (TPS), and alterations in this enzyme have been 
shown to inhibit plant growth and trehalose production (O’Hara 
et al., 2013). The undetectable levels of trehalose in SV plants sug-
gest aberrations in TPP or TPS activity resulting in the accumula-
tion or absence of T6P, respectively. Both the absence and excess of 
T6P have caused stunted growth in plants (O’Hara et al., 2013) and 

FIGURE 3.  Validation of the SV (A), N (B), and CMV (C) models. SV = dwarf; N = normal-healthy; CMV = cucumber mosaic virus–infected.

TABLE 2.  Quality values for the PLS-DA prediction models.

Model R2 Q2

CMV 0.972 0.957
N 0.799 0.578
SV 0.838 0.599
Total 0.870 0.711

Note: CMV = cucumber mosaic virus–infected plants; N = normal-healthy plants; Q2 = 
goodness of prediction obtained from the jacknife cross-validation data; R2 = coefficient 
of determination for multivariate analysis; SV = dwarf plants.

FIGURE 2.  Scores (A) and variable importance in the projection (B) plots of the partial least squares discriminant analysis (PLS-DA) run on dwarf (SV), 
normal-healthy (N), and cucumber mosaic virus (CMV)–infected samples. NI = unidentified metabolites; VIP = variable importance in the projection. 
VIP bars are presented as mean and standard deviation of the metabolites with VIP scores of 1.5 or greater.
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may have contributed to the dwarfism observed in the SV samples. 
Further research is needed to elucidate the T6P metabolism in SV 
plants. Similarly, allothreonine—undetected in SV plants only—is 
produced by the glycine, serine, and threonine metabolism pathway, 
but the role of this amino acid in plant development is still unclear.

Cellobiose was the only qualitative (presence) biomarker of N 
plants only. This disaccharide is an intermediary metabolite in the 
synthesis of cellulose, a main constituent of plant cell walls (Maleki 
et  al., 2016). The deposition of cellulose in the cell wall is essen-
tial to plant growth, and deficient cellulose production has yielded 
dwarfed plant mutants (Taylor, 2008). The absence of cellobiose in 
SV and CMV-infected plants suggests reduced cellulose synthesis 
that may have contributed to the stunted growth observed in the 
samples.

The CMV-infected plants showed 47 qualitative biomarkers out 
of which 45 were absence biomarkers (Table 1). The only CMV pres-
ence biomarkers were tricosane and ethyl-d-glucopyranoside, and 
further research is needed to establish the role of both metabolites 
in CMV plant infection. Reduction in levels of various metabolites 
has previously been reported in plant infection (Cevallos-Cevallos 
et al., 2012), and an overall reduced metabolism may be occurring 
in CMV-infected plants. Particularly, the absence of l-lysine might 
have contributed to the stunted growth of plants infected with the 
virus as this metabolite has been reported to participate in reactions 
associated with plant growth and development (Tomar et al., 2013).

The downregulated pathways observed in SV and CMV plants, 
including fatty acid degradation, starch and sucrose metabolism, 
biosynthesis of unsaturated fatty acids, and steroid biosynthesis 
pathways, suggest overall inhibited assimilatory processes in the 
plant samples (Rojas et  al., 2014). Upregulated pathways specific 
to CMV-infected plants included the metabolism of various amino 
acids (e.g., tyrosine, leucine, isoleucine, glycine, serine, and thre-
onine) previously reported to accumulate in plants infected with 
pathogens. Furthermore, the upregulation of the pentose phosphate 
pathway—observed in the CMV plants—has been suggested to pro-
mote the generation of reactive oxygen species and pathogenesis-
related proteins in infected plants (Rojas et al., 2014).

A clear PCA and PLS-DA class grouping was observed CMV-
infected samples, whereas separation between SV and N samples 
was less obvious, suggesting similarities in the GC-MS metabolite 
profile of both groups. SV and N plants were not affected by biotic 
stresses as the CMV-infected plants were, and biotic stress has been 
shown to yield a higher number of metabolic differences than those 
caused by abiotic conditions in plants (Cevallos-Cevallos et  al., 
2011).

PLS-DA with validation using additional data sets was selected 
for the development of prediction models because this method is 
not sensitive to multicollinearity (Palermo et al., 2009; Worley and 
Powers, 2012) and has been reported to yield better class separation 
than other techniques such as random forest (Gromski et al., 2015). 
Additionally, the three classes analyzed in this experiment prevent 
the use of procedures designed to solve a two-class problem, includ-
ing the support vector machines algorithm. PLS-DA has yielded 
similar results than the commonly used principal component–dis-
criminant function analysis (PC-DFA), but the ability to rank the 
variables responsible for class separation is greater in PLS-DA when 
compared to PC-DFA (Gromski et al., 2015). The VIP scores were 
used for variable selection as this technique has outperformed other 
methods including PLS, PCR, and Lasso regression coefficients 
(Palermo et al., 2009).

The PLS-DA prediction models were able to accurately classify 
the samples showing dwarf SV. Metabolite-based PLS models have 
been successfully used to predict phenotypic traits in plants, includ-
ing the susceptibility to black spot bruising and chip quality in po-
tato tubers (Steinfath et al., 2010). To the best of our knowledge, this 
is the first report of a metabolite-based PLS-DA model for diagnosis 
of dwarf bananas. The proposed methodology could be directly ap-
plied in banana plant production facilities to detect dwarf variants 
and discriminate SV from CMV-infected bananas before releasing 
the plants to the field as SV diagnosis using only visual symptoms 
can be highly unreliable. A symptoms-based preselection of plants 
is required before this methodology is used. Further research is 
needed to assess the suitability of metabolomics-based prediction 
models to detect SV in banana plants at the early production stages 
and before the first symptoms appear.

DNA markers have also been proposed to detect SV in banana 
plants, but these markers have not been shown to have any associa-
tion with plant phenotypic variations. For instance, the use of RAPDs 
was able to detect 51.4% genetic variation in banana plants produced 
by tissue culture (Sheidai et al., 2008), but SV was not phenotypically 
confirmed and no association between DNA markers and alterations 
of visual traits was made. Similarly, an ISSR-based study reported 
about 5.0% genetic variation in micropropagated Musa spp., but 
morphological variations were not observed in the generated clones 
(Ray et al., 2006). The PLS-DA model proposed in this study repre-
sents the first SV diagnosis method at the phenotypic level.

The proposed models were also able to diagnose CMV infection 
in banana plants at the greenhouse establishment phase. Metabolite-
based PLS models have been used for prediction of plant pathogen 
infections, including the presence of Botrytis cinerea in commer-
cial berry groves (Hong et  al., 2012). Results show the potential 
of metabolite-based PLS models to detect CMV in young banana 
plants, but further model development is needed for CMV detec-
tion in adult plants from commercial groves, as the disease mostly 
occurs in banana fields where various subgroups of the pathogen 
can be present (Yeturu et al., 2016).

In conclusion, the metabolite profile of plants with dwarf SV 
offered additional insights into banana dwarfism and provided a 
novel alternative for the specific detection of dwarf banana variants. 
Because of the observed metabolome–phenotype relationships, 
metabolite-based detection of dwarf SV has the potential to become 
a superior SV diagnosis tool when compared to molecular-based 
methods. This is the first metabolite-based characterization and 
detection of somaclonal variation, showing the potential of metab-
olomics tools to understand and selectively detect phenotypic var-
iations in plants.
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