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Abstract

Macroscopic pKa values were calculated for all compounds in the SAMPL6 blind prediction 

challenge, based on quantum chemical calculations with a continuum solvation model and a linear 

correction derived from a small training set. Microscopic pKa values were derived from the gas-

phase free energy difference between proto- nated and deprotonated forms together with the 

Conductor-like Polarizable Continuum Solvation Model and the experimental solvation free 

energy of the proton. pH- dependent microstate free energies were obtained from the microscopic 

pKas with a maximum likelihood estimator and appropriately summed to yield macroscopic pKa 

values or microstate populations as function of pH. We assessed the accuracy of three approaches 

to calculate the microscopic pKas: direct use of the quantum mechanical free energy differences 

and correction of the direct values for short-comings in the QM solvation model with two different 

linear models that we independently derived from a small training set of 38 compounds with 

known pKa. The predictions that were corrected with the linear models had much better accuracy 

[root-mean-square error (RMSE) 2.04 and 1.95 pKa units] than the direct calculation (RMSE 

3.74). Statistical measures indicate that some systematic errors remain, likely due to differences in 

the SAMPL6 data set and the small training set with respect to their interactions with water. 

Overall, the current approach provides a viable physics-based route to estimate macroscopic pKa 

values for novel compounds with reasonable accuracy.
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1 Introduction

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) challenges 

allow the molecular modeling community to assess, in “blind” conditions, the accuracy and 

efficiency of current computational chemistry methods and tools, leading to continuous 

improvements of the available computational methods. The previous SAMPL challenges [1–

5] involved hydration free energy calculations, with the exception of the last edition, 

SAMPL5, which was dedicated to the prediction of distribution coefficients [6]. Our past 

participations in SAMPL challenges [7–9] represented unique opportunities for us to test our 

approaches and to develop and improve new computational tools. In 2018, the SAMPL6 

challenge focused on the prediction of microscopic and macroscopic pKa values for 

fragment-like organic compounds.

The equilibrium acid dissociation reaction in aqueous solution

HA(s) H(s)
+ +A(s)

− (1)

with acid dissociation constant Ka= A− H+ / HA  is of broad importance in biological 

systems, in synthetic chemistry, and pharmacology [10–14]. The pKa, defined as

pKa = − log10
Ka
c0

(2)

for the standard state concentration c0 = 1 mol/l, measures thermodynamic acidity. The 

theoretical prediction of pKa values is an ongoing challenge [15]. In the narrow realm of 

protein biochemistry, good progress has been made in calculating the physiologically 

important changes in pKas of standard amino acid residues in different environments with 

accuracies better than 1 pKa unit [12], especially with constant pH molecular dynamics 

simulations [16–19], which have been applied to study a wide range of phenomena [20–22]. 

Absolute pKa calculations of arbitrary molecules using physics-based quantum chemistry 

approaches (as opposed to machine learning (ML) ones) have been more challenging and 

accuracy of 1 pKa unit has been difficult to achieve consistently [15, 23] whereas a range of 

methods can achieve “chemical accuracy” (defined as 2.5 pKa units by Ho and Coote [15]). 

The clear advantage of ab initio approaches is that they can be applied to any novel 

compound. Here we report on pKa calculations of the 24 compounds in the SAMPL6 

challenge (Fig. 1) with a quantum-chemical approach originally developed by Muckerman et 

al [24]. The SAMPL6 compounds are, however, chemically more complex and 23 contain 

multiple titratable protons and, in some cases, tautomers so that macroscopic pKa have to be 

calculated.
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The calculation of microscopic pKas, i.e., the free energy difference for the deprotonation 

reaction Eq. 1 at the standard state (concentration 1 mol/l and temperature T = 298.15 K, 

indicated by the superscript “*”)

pKa =
ΔG(s)*

RTln10 , (3)

is straightforward using quantum chemical gas-phase calculations. However, it is well-

known [15, 23] that direct calculations lead to large errors in the calculated pKas, mainly due 

to the poor continuum solvation models that have to be employed in order to obtain free 

energies in solution. One approach to correct for these systematic errors is to generate a 

model to correct the raw quantum chemical free energies [24]. We generated linear models 

from a training set with 38 simple compounds with experimentally known pKa (Fig. 2 and 

3). We fit a global model to all the data (the global linear model) and we split the training set 

with a simple classifier, namely the charge of the acid, yielding a piecewise linear model 

with separate linear functions for neutral and cationic acids. We calculated the macroscopic 

pKas for all 24 SAMPL6 compounds and compared the accuracy of the three approaches 

[QM computed (raw), linear fit global, and linear fit piecewise].

2 Methods

Following Muckerman et al [24], our strategy was to compute gas-phase free energy 

differences

ΔG(g)
ο = Gο(A(g)

− ) + Gο(H(g)
+ ) − Gο(HA(g)) (4)

(denoted as standard state free energies at 1 atm pressure and 298.15 K) for the 

deprotonation reaction for all titratable protons,

HA(g) H(g)
+ +A

(g)⋅
− (5)

To obtain solution free energy differences corresponding to Eq. 1,

ΔG(s)* =  G*(A(s)
− ) + G*(H(s)

+ ) − G*(HA(s)) (6)

(where the standard state refers to 1 mol/l), a solvation free energy contribution ΔGsolv
ο  is 

added to the gas-phase free energies of the acid HA and the base A− from Eq. 4,

G(s)* = G(g)
ο + ΔGο * + ΔGsolv

ο = G
(g)
ο + ΔGsolv* (7)
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with ΔG ∘ * = 1.894 kcal/mol accounting for the change in standard state in the gas phase. 

The free energy of the proton in the gas phase is calculated analytically in the ideal gas limit 

(the Sackur-Tetrode equation [25]), Gο H(g)
+ = − 6 . 28 kcal/mol, and for the solvation free 

energy of the proton we chose the same value as Muckerman et al [24], G*(HA(s)) = −272.2 

kcal/mol although other values are also discussed in the literature [15, 26]. With ΔG(s)*  , the 

pKa is calculated from Eq. 3.

As described in detail in Section 2.2, the directly calculated pKa values have fairly poor 

accuracy and thus we derive a simple linear estimator to correct for shortcomings in the 

solvation model [24]. The linear model is based on our own training data set (described in 

the next section) and the resulting estimator ℒ is applied to the pKa from Eq. 3 to obtain 

improved predictions for the SAMPL6 data set, pKa=ℒ[pKa
calc].

2.1 Data sets

The QM1 subset of the training set contains 21 neutral acids belonging to several chemical 

families (Fig. 2): mono- (1), di- (2) and tri- (3) protic inorganic acids, aliphatic (4) and 

aromatic (5) sulfonic acids, diversely substituted carboxylic acids (6–11) and alcohols (12–
17), phenols (18 and 19), phthalimide (20) and uracil (21). The experimental pKa values of 

these compounds range from −3.00 to 17.10 (Table 1). The QM2 subset contains 17 

compounds that are cationic acids (Fig. 3): hydrazine (22), guanidine (23), aliphatic mono- 

(24), di- (25) and tri- (26) substituted amines, diversely substituted aromatic amines (27–31) 

and pyridines (32–38). These compounds possess experimental pKa values from 0.49 to 

13.60 (Table 1).

The SAMPL6 data set consisted of 24 fragment-like small organic molecules (Fig. 1) with 

unknown pKa values that were selected for their similarity to kinase inhibitors and for 

experimental tractability. It was provided by the SAMPL6 organizers through the public 

repository https://github.com/MobleyLab/SAMPL6 as computer-generated microstates in 

SMILES format. The protonation state for each microstate was computed with an in-house 

script using the C ACT VS Chemoinfor- matics Toolkit [27] (Xemistry GmbH, https://

www.xemistry.com/), allowing the classification of microstates in two groups, neutral acids 

and cationic acids, for which different correction factors were applied in the approach using 

the piecewise linear model.

Three-dimensional coordinates for all compounds were generated in MOL2 format using 

CORINA version 3.60 (http://www.molecular-networks.com), then converted into the 

Gaussian input format using an in-house script. The PDF 3d files, which can be visualized 

with Adobe Acrobat Reader (https://get.adobe.com/fr/reader/) were generated with Cactvs.

2.2 Quantum chemical microscopic pKa calculations

Gas-phase geometry optimization and frequency calculation of the protonated and 

deprotonated forms were performed at the B3LYP/6–311+G(d,p) level using Gaussian 09 

version D.01 [28] to obtain ΔG(s)
ο . A single-point free energy evaluation at the same level 
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using the Conductor-like Polarizable Continuum Solvation Model (CPCM) [29–32] and 

UAHF radii as implemented in Gaussian 09 version D.01 [28] yielded the solvation free 

energy ΔGsolv
ο  so that ΔG(s)*  (Eq. 7) and an estimate for the pKa associated with this 

protonation/deprotonation event could be calculated via Eqs. 6 and 3.

In some cases, the geometry optimization did not converge with Gaussian 09 version D.01, 

but was successful with the version A.02 of Gaussian 09. Geometry optimization for 

microstates SM04_micro016, SM07_micro016, SM17_micro008 and SM17_micro009 
did not converge in any conditions.

Muckerman et al [24] recognized systematic errors related to the solvation contribution 

ΔGsolv*  as responsible for poor accuracy, namely the solvation model under-solvates weak 

acids and over-solvates strong acids. They proposed a physically-motivated correction

ΔGcorr* (HA): = RTln10 ⋅ (pKa
exp − pKa

calc) (8)

to ΔGsolv°  with the linear model

ΔGcorr* = a0+ a1 ⋅ pKa
exp . (9)

The parameters a0 and a1 are determined from a training set by linear regression. In order to 

apply the correction Eq. 9 to compounds with unknown pKa, a linear estimator ℒ can be 

derived by substituting pKa
exp ≈ pKa

calc+ ΔGcorr* /(RTln10) in Eq. 9 and solving for ΔGcorr*  to 

yield

ΔGcorr* = c0 + c1 ⋅ pKa
calc with (10a)

c0 =
a0

1 − λa1
(10b)

c1 =
a1

1 − λa1
,  and λ := (RT  ln10)−1 (10c)

The linear estimator ℒ with parameters a0 and a1 for the microscopic pKa is
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pKa = ℒ[pKa
calc] = pKa

calc + λΔGcorr* =
λa0

1 − λa1
+ 1

1 − λa1
⋅ pKa

calc ⋅ (11)

2.3 Microstates vs Macrostates

We consider each tautomer of the acid HA and the base A− as a microstate with label i. The 

set of microstates with the same total number of protons Ni = N is labeled the macrostate N. 

The macroscopic pKa characterizes the transitions between any of the microstates with N 
protons to any microstate with N − 1 protons.

In general, the free energy difference between two states (micro or macro states) that are 

separated by a single protonation process (i.e., the free energy to go from N to N − 1 

associated protons) is

ΔGN, N − 1 = − ΔGN − 1, N = − β−1ln P(N − 1)
P(N) (12)

where P(N − 1) and P(N) are the probabilities of observing the system with N − 1 and N 
associated protons respectively and β = (RT)−1. The Henderson-Hasselbalch equation

pKa = pH − log10
A−

[HA] =  pH − 1
ln10ln A−

[HA] (13)

can be rewritten in terms of the free energy of protonation ΔGN − 1, N (Eq. 12) to give

pKa = pH −
βΔ GN − 1, N

ln10 , (14a)

ΔGN − 1, N = β−1ln10 ⋅ (pH − pKa) . (14b)

2.4 Calculation of macroscopic pKas from microscopic pKas

The microscopic pKa values correspond to free energy differences 

ΔGi j(pH) = G j(pH) − Gi(pH) between microstates i and j (Eq. 14b); for notational convenience 

we drop the explicit pH dependence in the following for all free energies. Each state has a 

pH-dependent associated free energy Gi, which is not known. Constructing the Gi from the 

differences between them is not straightforward because these calculated free energy 

differences come with unknown errors that prevent, for example, that the sum along any 

closed thermodynamic cycle i j k ⋅ ⋅ ⋅ i is exactly zero as required by the fact that 
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the Gi are thermodynamic state functions. We construct a set of M microstate free energies 

Gi i = 1
M  that is most consistent with the calculated (“measured”) {ΔGij} using a maximum-

likelihood estimator [33] based on the likelihood function

L Gi ΔGi j = ∏
i j

exp − 1
2[(G j − Gi) − ΔGi j]

2 , (15)

where we assumed normal distribution of errors with constant standard deviation. The 

product runs over all pairs (i, j) for which calculated ΔGij are available. L is proportional to 

the probability Ρ({ΔGij}|{Gi}) that we could observe the measured data (all the calculated Δ 
Gij) if we were given a specific set of the Gi (our model parameters). Maximizing the log-

likelihood ln L (using functions in SciPy [34]) as a function of all the Gi provides the set 

Gi i = 1
M  that is most consistent with the given measurements {Δ Gij}. Further details and 

more general applications of this approach will be published elsewhere (I.M. Kenney et al, 
in preparation).

In order to calculate the macroscopic pKas, we begin by calculating the free energy of 

protonation using principles of equilibrium statistical mechanics [25]. The probability of 

observing a macrostate with N associated protons is

P(N) = Z−1∑
i

e
−βGiδNi, N (16)

where the sum is over all accessible microstates with free energy Gi, δΝi,N is unity when the 

microstate i has N protons and null otherwise, and Z is the partition function, defined by

Z = ∑
j

e
−βG j . (17)

Eq. 16 combined with the general expression for the free energy of protonation (Eq. 12) 

yields the effective macroscopic protonation free energy as a function of the Gi,

ΔGN − 1, N = β−1ln
∑ie

−βGiδNi, N − 1

∑ie
−βGiδNi, N

⋅ (18)

ΔGN-1,N is a function of the pH of the system and the microscopic pKas relevant to the 

macrostate N. Together with Eq. 14a, Eq. 18 allows us to calculate the macroscopic pKa 

value for removing the Nth proton from a molecule. With all microstate free energies 
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Gi i = 1
M  known for a given pH value it is also straightforward to compute the pH-dependent 

microstate probabilities

pi(pH) = Z(pH)−1e
−βGi(pH)

(19)

where all terms depend on pH.

2.5 Error analysis

The difference between experimental and computed pKa values (“signed error”) for each 

compound, labeled with its identification code ‘id’, was calculated as

Δid = pKa,id − pKa,id
exp. (20)

The root-mean-square error (RMSE) was determined from the individual errors Δ as

RMSE = Δ2 = N−1∑
id

N
Δid

2 , (21)

the mean absolute error (MAE) as

MAE = 〈| Δ | 〉 = N−1∑
id

N
Δid , (22)

and the signed mean error (ME, also called the “mean signed error”, MSE) as

ME = 〈Δ〉 = N−1∑
id

N
Δid . (23)

We also report the Pearson correlation coefficient R2 and the slope m of a linear regression 

to the data, as computed with the function scipy.stats.linregress( ) in the SciPy package [34].

The quantum chemical single point free energy calculations do not have a statistical error 

and we have not yet implemented the calculation of an error bound in the maximum 

likelihood estimator for the Gi. Therefore, all pKa are provided without a statistical error. 

Judging from the performance of the training data set and the post- hoc analysis of the 

SAMPL6 compounds (see Results), the accuracy of the calculated pKa values is 1–2 pKa 

units.
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Calculated pKa were compared to experimental values with the script typeIII_analysis.py as 

provided by the SAMPL6 organizers in the public repository https://github.com/MobleyLab/

SAMPL6. Calculated values were matched to experimental ones with the Hungarian 
algorithm, which finds the optimum pairing between two sets by minimizing the linear sum 

of squared errors.

3 Results and Discussion

3.1 Training data set

The first step in our protocol was the design of a training data set containing 38 structurally-

diverse, simple organic and inorganic compounds with known pKa values. This global data 

set could be classified by the charge of the acid and split into two subsets. The neutral acids 

(named QM1, Fig. 2) contained 21 compounds and the second set, the positively-charged 

acids (named QM2, Fig. 3), contained the remaining 17 compounds. The structures were 

chosen from different chemical families in order to obtain for the two subsets a relatively 

homogeneous distribution of data points over a wide range of values (see Table 1 for the 

experimental pKas).

Predicted pKa values were computed for all compounds from the training data set using the 

protocol described by Muckerman et al [24] (see the Methods section for details). The 

correlation of these computed values with the experimental pKas is shown in (Fig. 4a), with 

a Pearson correlation coefficient R2 = 0.96 (Table 1). The corresponding ΔGcorr*  values were 

obtained using Eq. 8 and plotted against the experimental pKa values. A global linear fit 

model, with a slope of a1 = −0.61 and an intercept of a0 = 2.75 (parameters in Eq. 9), was 

derived by using all compounds as a single data set (Fig. 4b). Alternatively, a piecewise 

linear fit model was derived by considering separately the two QM1 and QM2 subsets (Fig. 

4c). In this latter case we obtained the parameters in Eq. 9 with a slope of 

a1
QM1 = a1

QM2 = − 0.62 for both subsets and intercept values of a0
QM1 = 1.30 and a0

QM2 = 4.65

for the QM1 and QM2 subsets, respectively.

The linear estimators associated with these models (Eq. 10a) were calculated using Eq. 11. 

These corrections were applied to the whole training set, and to the QM1 and QM2 subsets, 

respectively, in order to evaluate to which extent the systematic errors related to the 

prediction method were removed compared with the pKa values obtained directly from the 

ab initio calculations (Table 1). We can see that in all cases the corrected pKa values are 

much closer to the experimental values, with the global model behaving slightly better than 

the piecewise model, as shown by, for instance, the smaller RMSE 1.66 vs 1.85 for the 

whole training set.

3.2 Macroscopic pKa

The microscopic pKa values for the SAMPL6 data set were computed using the same 

protocol as for the training data set (595 individual transformations). Again, the corrections 

from the global linear model were applied to the whole SAMPL6 data set and alternatively, 

those from the piecewise linear model to individual subsets of the SAMPL6 data set 

containing the neutral acids and the cationic acids, respectively.
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Starting from these three sets of results (obtained directly from ab initio free energies or 

after correction with the two linear models, global and piecewise) we calculated pH-

dependent microstate free energies and macroscopic pKa values (Table 2). These results, 

formatted using the SAMPL6 submission template, were used as input for the 

typeIII_analysis.py script in order to compare to the experimental values that were 

provided by the SAMPL6 organizers together with the analysis scripts. The input files with 

our results formatted as comma-separated value (CSV) files and the optimized structures for 

all microstates in MOL2 and pdf3d format are provided in the Electronic Supplementary 

Material. During the challenge we submitted macroscopic pKa values only for three 

compounds (SM15, SM20 and SM22). Here we describe the macroscopic pKa predictions 

for the entire SAMPL6 data set.

Using this protocol we could predict the macroscopic pKa values for the 24 SAMPL6 

compounds with a RMSE of about 2 pKa units when the corrections were applied and of 

3.74 pKa units when the ab initio free energies were used directly. The relative poor 

accuracy when directly using the quantum chemical free energies is in line with previous 

studies [15, 24].

The signed errors of individual predictions represented in Fig. 5 show that most of the 

prediction errors after correction are positive, with the notable exception of compound 

SM05 for which these errors are consistently negative. High prediction errors (3 −4 pKa 

units) are obtained for compounds SM03 and SM08, whereas compounds SM01, SM04, 

SM10, SM13, SM18, SM20, and SM24 are predicted with errors of about 2 – 3 pKa units. 

The representation of the prediction errors in the order of increasing absolute experimental 

pKa values (Fig. S3, Electronic Supplementary Material) shows that these are not related. 

Therefore, the source of remaining errors after correction should be sought elsewhere. As 

shown in Fig. 6, the results for the SAMPL6 data set are fairly insensitive to the fitting 

approach used (global or piecewise linear model), further indicating some level of 

robustness. Other statistical measures such as Pearson correlation coefficient R2 = 0.86 and 

the slope of the linear regression m = 1.17 (for the piecewise linear model, see Table 2 for 

almost identical values for the global linear model) indicate encouraging correlations but the 

large mean error (1.42 for the piecewise linear model and 1.24 for the global linear model) 

hint at remaining systematic errors.

The fact that the linear fit did not remove these systematic errors implies that the training 

data set did not include properties that are important for the SAMPL6 data set and hence the 

linear or piecewise linear estimator cannot correct model errors related to these properties. In 

order to quantify similarities and differences between the two datasets we analyzed a 

number of chemical properties (see section Properties of the training and SAMPL6 data sets 
with Fig. S1 in the Electronic Supplementary Material file for details). Overall, the most 

obvious differences between our training and the SAMPL6 data set are the higher flexibility 

of the SAMPL6 molecules (with a median three and maximum ten rotatable bonds versus a 

median zero and maximum three, Fig. 7a) and the greater capability to accept hydrogen 

bonds (median four and maximum eight hydrogen bond acceptors versus median two and 

maximum ten; Fig. 7b), which correlates with a larger polar surface area (see Fig. S2 in the 

Electronic Supplementary Material file). However, Fig. 7c shows that the training 
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compounds have more hydrogen bond acceptors for the same number of heavy atoms than 

the SAMPL6 compounds, i.e., for their larger size, the SAMPL6 compounds have fewer 

acceptors than one would expect from simple extrapolation of the training compounds. 

Similarly, the polar surface area of the SAMPL6 compounds would be overestimated from 

the training set (Fig. S2). These differences suggest that the interactions with water through 

hydrogen bonds are stronger in the training set than in the SAMPL6 set, which could lead to 

a systematic error in the estimator that was derived from the training set.

In the post-challenge analysis, we also tested the introduction of a conformational search 

step in our protocol and evaluated its influence on the quality of our predictions using two 

model compounds, SM06 and SM20. The complete results are presented in the 

Conformational search section of the Electronic Supplementary Material file. In brief, for 

SM06 the new microscopic pKa value of SM06_micro011 brought no changes in the 

predicted macroscopic pKa values and for SM20 we obtained macroscopic pKa prediction 

errors 1.8–2.4 pKa units higher compared with the values obtained without conformational 

search. It seems that, at least for these two compounds, the conformational search does not 

yield any substantial improvements in the prediction of macroscopic pKa values.

3.3 Microstate probabilities

The SAMPL6 organizers recently made available experimental assignments of microstates 

with corresponding microstate pKa for a number of compounds [36] (https://github.com/

MobleyLab/SAMPL6/blob/master/physical_properties/pKa/experimental_data/

NMR_microstate_determination/). Here we focus on SM14 as an example. Fig. 8 compares 

our computed microstate probabilities pi (Eq. 19) to the ones derived from the experimental 

assignments of states SM14_micro003, SM14_micro002, and SM14_micro001. The 

important calculated microstates (from the linear piecewise model) were SM14_micro003 
(N = 3 protons), SM14_micro004 and SM14_micro002, both with N = 2 protons, and 

SM14_micro001 (N = 1).The calculated microscopic pKa for the deprotonation of 

SM14_micro003 to SM14_micro002 was 2.1, similar to the experimental value 2.58 

± 0.01. The microscopic pKa corresponding to the deprotonation of SM14_micro002 to 

SM14_micro001 was calculated as 4.6, also similar to the experimental one, 5.30 ± 0.01. A 

second microstate SM14_micro005 exists with the same number of protons as 

SM14_micro002 but both experiment and our computations indicated that this second state 

is suppressed and plays no role. Our calculations, however, assigned a higher population to 

SM14_micro004 than to SM14_micro002, in contrast to the experimental findings, which, 

based on NMR nitrogen chemical shift measurements in the aprotic solvent acetonitrile-d3 

under pH titration, identified SM14_micro002 as the dominant intermediate state. The 

partial agreement between these detailed experiments and our calculations is encouraging 

but a single comparison does not allow us to draw any broader conclusions except perhaps to 

highlight the ease with which our partition function-based formalism can be used to compute 

microscopic populations.

3.4 Computation time

The total computational cost required by this project was 641 CPU-days on a Linux cluster 

making use of Intel Xeon E5–4627 v3 CPUs running at 2.60 GHz. Given that 344 
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microstates were computed, each microstate required 1.86 CPU-days on average. The 

calculations were carried out in parallel on 8 cores, so the average wall clock time for a 

microstate was 5.6 hours in these conditions. The most rigid compound, SM22, was the 

fastest with 1 CPU-hour for one microstate, whereas one of the biggest and most flexible 

compounds from the SAMPL6 data set, SM18, required about 3.2 CPU-days for one 

microstate.

4 Conclusions

Compared to other methods in the SAMPL6 challenge, our approach has below- average 

accuracy (Fig. 9 and Figs. S4–S7 in the Electronic Supplementary Material) and its 

computational cost is also higher than ML-based approaches (not considering the cost for 

compiling and validating the data and training the ML model). A key advantage of our 

approach is its generality as it does not depend on training on specific data sets although 

below we note that the quality of the training set for the correction step is a possible concern. 

With the linear model, which was derived from a very small and simple training set (38 

compounds), we remove some of the errors related to the QM method used and its 

implementation in Gaussian (e.g., the implicit solvation model). The quality of the 

prediction is mostly independent of the structure, i.e., it can predict organic compounds from 

different families and even inorganic compounds with similar level of accuracy. In 

comparison, purely ML-based methods are trained on large experimental data sets 

(containing several thousands or tens of thousands compounds) and they can be vulnerable 

to chemical families that are not represented in the training set. Our approach appears 

reasonably robust because for our training set we obtain the same slope on the global data 

set and on the individual subsets, which are chemically quite different. The results for the 

SAMPL6 data set are also fairly insensitive to the fitting approach used (global or piecewise 

linear model), further demonstrating robustness. The correlations with experimental data are 

generally good but suffer from systematic errors, possibly from differences between the 

training set and the SAMPL6 set that bias the estimator that is needed to correct the raw QM 

pKa values. The statistical measures indicate clear room from improvement. It appears that a 

better correction scheme, using a larger data set that better matches the test data set with 

respect to its hydrogen bonding properties and is generally more representative of drug-like 

molecules could improve the predictions, perhaps in conjunction with more sophisticated 

classifiers and estimators than simple separation by charge and linear regression. We expect 

that improvements in the model physics, namely in the treatment of solvation, could also 

lead to further increases in accuracy.

We currently consider the method described here (and originally developed by Muckerman 

et al [24]) as an acceptable compromise between speed, accuracy and generality across the 

chemical space. It seems especially useful when one encounters novel compounds and wants 

to assess them based on their absolute pKa values. The calculations are tractable with typical 

computational resources, absolute pKas are accurate to about 2 units (within the “chemical 

accuracy” range [15]) and do not seem to be biased with respect to specific chemical groups, 

and thus the relative ordering of compounds is also meaningful.
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Fig. 1. 
Chemical structures of the SAMPL6 data set. SM20 is the only compound that contains a 

single titratable proton; all other compounds contain multiple titratable protons and, in some 

cases, tautomers.
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Fig. 2. 
Chemical structures of the QM1 training data set (neutral acids); see also Table 1.
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Fig. 3. 
Chemical structures of the QM2 training data set (cationic acids); see also Table 1.
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Fig. 4. 
Training data set. The pKa of the training data set compounds are used to derive a simple 

linear model that relates the free energy correction ΔGcorr*  to the experimental pKa. Two 

linear models were derived: a global linear model (black dashed line), utilizing all data, and 

a piecewise linear model that applies to either neutral acids (subset QM1, blue) or to 

positively charged acids (subset QM2, green). a: Correlation between experimental and 

calculated pKa of the training data set. The dashed line indicates ideal correlation with the 

gray band indicating 1 pKa unit deviation. b: Global linear fit of the calculated ΔGcorr*  to the 

experimental pKa. c: Linear fits of the calculated ΔGcorr*  to the experimental pKa, split 

between the QM1 and the QM2 subsets. In (b) and (c) the dashed lines are linear models to 

the data, with shaded bands indicating 95% confidence intervals from 1000 bootstrap 

samples.
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Fig. 5. 
Signed error Δid of individual predictions. The calculated pKa was matched to the 

experimental pKa for each compound (indicated by the SAMPL6 pKa ID) and the deviation 

from the experimental value represented as a bar. Observations for the same compound have 

the same color. a: pKa were directly estimated from the quantum mechanical free energy 

differences. b: The quantum mechanical pKa were corrected with the global linear model. c: 

compounds were corrected depending on their membership in subsets 1 or 2 with the 

piecewise linear model.
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Fig. 6. 
Correlation between experimental and calculated pKa values for the SAMPL6 compounds. 

a: pKa were directly estimated from the quantum mechanical free energy differences. b: The 

quantum mechanical pKa were corrected with the global linear model. c: compounds were 

corrected depending on their membership in subsets 1 or 2. The black dashed line indicates 

ideal correlation, the shaded green bars show 0.5 and 1 pKa units deviation from ideal. Blue 

lines are linear regression fits to the data, with the blue shaded area indicating the 95% 

confidence interval from 1000 bootstrap samples.
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Fig. 7. 
Comparison of chemical properties of the training (light blue) and SAMPL6 (orange) data 

sets. a: normalized histograms of the number of rotatable bonds; b: normalized histograms 

of the number of hydrogen bond acceptors; c: correlation between the number of heavy 

atoms and the number of acceptors with linear regressions shown as solid lines and their 

95% confidence interval from 1000 bootstraps indicated by shaded areas.
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Fig. 8. 
Microstate probabilities pi for SM14. a: Computed microstate probabilities (for the 

piecewise linear fit) are shown as heavy solid lines and experimentally derived probabilities 

as thin dashed lines. The experimental pi were calculated in the same way as the calculated 

ones (Eq. 19) by directly using the experimental microstate pKas. b: Microstate diagram 

with arrows indicating deprotonation. Bold numbers near solid arrows are the calculated 

microstate pKa (from (a)) and italic numbers near dashed arrows are the experimental 

numbers, assigned to the experimentally identified microstate transitions. The gray solid 

arrows with gray bold numbers indicate the calculated macroscopic pKa from N = 3 protons 

(microstate SM14_micro003) to N = 2 protons (mixture of SM14_micro002 and 

SM14_micro004, indicated by the orange box) to N = 1 proton in SM14_micro001 (and 

SM14_micro005, which is not shown because computation and experiment indicate that it is 

suppressed relative to SM14_micro001).
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Fig. 9. 
RMSE of all SAMPL6 submissions (blue), including our new calculations for all SAMPL6 

compounds (red) and for completeness our original submissions (gray), which only included 

predictions for SM15, SM20, and SM22 and is only of limited statistical validity because of 

the large variance of the RMSE itself for only three samples [37]. The submission IDs p0jba 
and xxxc correspond to the piecewise linear model, 35bdm and xxxb to the global linear 

model, and xxxa to directly using the quantum chemical free energies. Other IDs belong to 

other regular SAMPL6 submissions. The error bars indicate 95% confidence intervals from 

1000 bootstrap samples.
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Table 1

Experimental and computed pKa values for the compounds from the QM1 (Fig. 2) and QM2 (Fig. 3) training 

data sets. The difference Δ (Eq. 20) between computed and experimental pKa values is shown for each 

compound. The experimental values were taken from Muckerman et al [24] and from Lundblad and 

Macdonald [35]. The root-mean-square error (RMSE), the mean absolute error (MAE), and the signed mean 

error (ME) were calculated according to Eqs. 21–23.

id Exp. QM computed
ΔGcorrection*

Linear fit global Linear fit piecewise

pKa pKa Δ pKa Δ pKa Δ

1 −1.40 −4.01 −2.61 3.56 0.43 1.83 −0.31 1. 09

2 2.15 1.75 −0.40 0.54 2.88 0.73 2.14 −0.01

3 −3.00 −10.32 −7.32 9.98 −0.68 2.32 −1.41 1.59

4 −1.90 −2.92 −1.02 1.39 0.08 1.98 −0.65 1.25

5 −2.80 −3.44 −0.64 0.88 −0.54 2.26 −1.27 1.53

6 3.77 5.16 1.39 −1.89 4.00 0.23 3.26 −0.51

7 4.76 7.27 2.51 −3.42 4.69 −0.07 3.94 −0.82

8 1.68 4.73 3.05 −4.16 2.56 0.88 1.82 0.14

9 0.23 −1.82 −2.05 2.80 1.55 1.32 0.82 0.59

10 1.38 4.06 2.68 −3.65 2.35 0.97 1.61 0.23

11 4.21 6.77 2.56 −3.49 4.31 0.10 3.56 −0.65

12 15.54 23.37 7.83 −10.68 12. 14 −3.40 11.37 −4.17

13 15.90 22.73 6.83 −9.31 12.39 −3.51 11.62 −4.28

14 12. 43 14. 22 1.79 −2.44 9.99 −2.44 9.22 −3.21

15 17.10 22.61 5.51 −7.51 13.22 −3.88 12.44 −4.66

16 9.30 8.57 −0.73 0.99 7.83 −1.47 7.07 −2.23

17 5.40 4.28 −1.12 1.53 5.13 −0.27 4.38 −1.02

18 9.95 14.99 5.04 −6.87 8.28 −1.67 7.51 −2.44

19 7.14 8.26 1.12 −1.53 6.33 −0.81 5.58 −1.56

20 8.30 13.49 5.19 −7.08 7.14 −1.16 6.38 −1.92

21 9.50 13.81 4.31 −5.87 7.97 −1.53 7.2 −2.30

RMSE (QM1) 3.86 1.90 2.19

MAE (QM1) 3.13 1.56 1.72

ME (QM1) 1.61 −0.36 −1.11

R2 (QM1) 0.97

m (QM1) 1.45

22 8.12 9.05 0.93 −1.26 7.01 −1.11 7.93 −0.19

23 13.60 18.94 5.34 −7.28 10. 8 −2.80 11.7 −1.90

24 9.30 8.48 −0.82 1.12 7.83 −1.47 8.75 −0.55

25 11.27 8.18 −3.09 4.22 9.19 −2.08 10.1 −1.17

26 10.72 12. 64 1.92 −2.61 8.81 −1.91 9.72 −1.00

27 4.62 2.91 −1.71 2.33 4.59 −0.03 5.53 0.91

28 0.98 −4.10 −5.08 6.93 2.07 1.09 3.02 2.04
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id Exp. QM computed
ΔGcorrection*

Linear fit global Linear fit piecewise

pKa pKa Δ pKa Δ pKa Δ

29 3.89 1.50 −2.39 3.26 4.09 0.20 5.02 1.13

30 5.36 5.35 −0.01 0.01 5.1 −0.26 6.04 0.68

31 1.53 −3.20 −4.73 6.44 2.45 0.92 3.4 1.87

32 5.24 4.67 −0.57 0.78 5.02 −0.22 5.95 0.71

33 0.49 −0.96 −1.45 1.98 1.73 1.24 2.69 2.20

34 0.81 −1.37 −2.18 2.98 1.96 1.15 2.91 2.10

35 1.86 0.14 −1.72 2.35 2.68 0.82 3.63 1.77

36 9.60 11.07 1.47 −2.00 8.04 −1.56 8.95 −0.65

37 6.70 7.89 1.19 −1.63 6.03 −0.67 6.96 0.26

38 7.33 8.22 0.89 −1.21 6.47 −0.86 7.39 0.06

RMSE (QM2) 2.60 1.30 1.33

MAE (QM2) 2.09 1.08 1.13

ME (QM2) −0.71 −0.44 0.49

R2 (QM2) 0.96

m (QM2) 1.45

RMSE (Global) 3.35 1.66 1.85

MAE (Global) 2.66 1.35 1.46

ME (Global) 0.58 −0.40 −0.40

R2 (Global) 0.96

m (Global) 1.44
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Table 2

Experimental and computed pKa values for the compounds from the SAMPL6 data set (Fig. 1). The difference 

Δ (Eq. 20) between computed and experimental pKa values is shown for each compound. The experimental 

values were provided by the SAMPL6 organizers. The root- mean-square error (RMSE), the mean absolute 

error (MAE), and the signed mean error (ME) were calculated according to Eqs. 21–23. The Pearson 

correlation coefficient R2 and the slope m were calculated from a linear regression.

Compound pKa Exp. QM computed Linear fit global Linear fit piecewise

ID ID pKa pKa Δ pKa Δ pKa Δ

SM01 pKal 9.53(1) 15.81 6.28 12.33 2.80 11.55 2.02

SM02 pKal 5.03(1) 6.97 1.94 6.21 1.18 7.14 2.11

SM03 pKa1 7.02(1) 1.40 −5.62 11.06 4.04 10.27 3.25

SM04 pKa1 6.02(1) 9.58 3.56 8.06 2.04 8.98 2.96

SM05 pKa1 4.59(1) 0.95 −3.64 2.02 −2.57 2.17 −2.42

SM06 pKa1 3.03(4) 1.54 −1.49 2.54 −0.49 3.81 0.78

SM06 pKa2 11.74(1) 17.43 5.69 13.45 1.71 12.95 1.21

SM07 pKa1 6.08(1) 8.44 2.36 7.23 1.15 8.15 2.07

SM08 pKa1 4.22(1) 10.17 5.95 8.43 4.21 7.80 3.58

SM09 pKa1 5.37(1) 6.99 1.62 6.23 0.86 7.16 1.79

SM10 pKa1 9.02(1) 14.82 5.80 11.81 2.79 12.31 3.29

SM11 pKa1 3.89(1) 4.39 0.50 4.53 0.64 3.75 −0.14

SM12 pKa1 5.28(1) 6.55 1.27 5.96 0.68 6.89 1.61

SM13 pKa1 5.77(1) 9.23 3.46 7.79 2.02 8.72 2.95

SM14 pKa1 2.58(1) −0.31 −2.89 1.16 −1.42 1.56 −1.02

SM14 pKa2 5.30(1) 5.68 0.38 5.34 0.04 5.15 −0.15

SM15 pKa1 4.70(1) 5.51
0.81 5.21

a 0.51
6.14

b 1.44

SM15 pKa2 8.94(1) 14.49 5.55
11.41

a 2.47
10.64

b 1.70

SM16 pKa1 5.37(1) 5.04 −0.33 4.88 −0.49 6.17 0.80

SM16 pKa2 10.65(1) 15.92 5.27 12.40 1.75 11.69 1.04

SM17 pKa1 3.16(1) 2.26 −0.90 2.96 −0.20 3.90 0.74

SM18 pKa1 2.15(2) 1.91 −0.24 2.80 0.65 3.29 1.14

SM18 pKa2 9.58(3) 3.54 −6.04 13.27 3.69 12.49 2.91

SM18 pKa3 11.02(4) 17.14 6.12 13.88 2.86 13.54 2.52

SM19 pKa1 9.56(2) 4.81 −4.75 11.78 2.22 11.00 1.44

SM20 pKa1 5.70(3) 10.04 4.34 8.34
a

2.64 7.58
b

1.88

SM21 pKa1 4.10(1) 4.68 0.58 4.63 0.53 5.56 1.46

SM22 pKa1 2.40(2)
−0.10

−2.50
1.32

a
−1.08 2.02

b −0.38

SM22 pKa2 7.43(1) 9.44 2.01 7.93
a

0.50 7.41
b

−0.02

SM23 pKa1 5.45(1) 5.53 0.08 5.23 −0.22 6.16 0.71

SM24 pKa1 2.60(1) 6.13 3.53 5.65 3.05 5.25 2.65

RMSE 3.74 2.04 1.95
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Compound pKa Exp. QM computed Linear fit global Linear fit piecewise

ID ID pKa pKa Δ pKa Δ pKa Δ

MAE 3.08 1.66 1.68

ME 1.25 1.24 1.42

R2 0.58 0.87 0.86

m 1.45 1.31 1.17

a
These results represent our submission 35bdm to SAMPL6.

b
These results represent our submission pQjba to SAMPL6.
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