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INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth leading cause of 
cancer mortality worldwide.1,2 The main cause of HCC is cir-
rhosis, which originates from infections caused by chronic 
hepatitis B virus, hepatitis C virus, or alcohol consumption.3,4 
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Various molecular targeted therapies and diagnostic modalities have been developed for the treatment of hepatocellular carcino-
ma (HCC); however, HCC still remains a difficult malignancy to cure. Recently, the focus has shifted to cancer metabolism for the 
diagnosis and treatment of various cancers, including HCC. In addition to conventional diagnostics, the measurement of en-
hanced tumor cell metabolism using F-18 fluorodeoxyglucose (18F-FDG) for increased glycolysis or C-11 acetate for fatty acid 
synthesis by positron emission tomography/computed tomography (PET/CT) is well established for clinical management of 
HCC. Unlike tumors displaying the Warburg effect, HCCs vary substantially in terms of 18F-FDG uptake, which considerably re-
duces the sensitivity for tumor detection. Accordingly, C-11 acetate has been proposed as a complementary radiotracer for de-
tecting tumors that are not identified by 18F-FDG. In addition to HCC diagnosis, since the degree of 18F-FDG uptake converted 
to standardized uptake value (SUV) correlates well with tumor aggressiveness, 18F-FDG PET/CT scans can predict patient out-
comes such as treatment response and survival with an inverse relationship between SUV and survival. The loss of tumor sup-
pressor genes or activation of oncogenes plays an important role in promoting HCC development, and might be involved in the 
“metabolic reprogramming” of cancer cells. Mutations in various genes such as TERT, CTNNB1, TP53, and Axin1 are responsible 
for the development of HCC. Some microRNAs (miRNAs) involved in cancer metabolism are deregulated in HCC, indicating that 
the modulation of genes/miRNAs might affect HCC growth or metastasis. In this review, we will discuss cancer metabolism as a 
mechanism for treatment resistance, as well as an attractive potential therapeutic target in HCC.
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Patients with early-stage HCC are often asymptomatic, and it 
is usually detected at intermediate or advanced stages in 
which patients cannot be treated by curative hepatic resection 
or liver transplantation.5 In addition, although surgical treat-
ment for early HCC has improved patient outcome, the risk of 
recurrence remains substantial and there is still no curative 
therapy for advanced HCC. Therefore, there is an increasing 
need for effective early diagnosis and development of novel 
therapeutics for HCC patients. Owing to its important role in 
metabolic reprogramming during carcinogenesis, cancer me-
tabolism has gained popularity in the fields of cancer diagno-
sis and therapy. This review summarizes the current state of 
research related to cancer metabolism, to help identify poten-
tial new therapeutic targets for HCC.
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CLINICAL APPLICATIONS OF 
METABOLIC IMAGING IN HCC 

Alpha-fetoprotein (AFP) was the first glycoprotein identified as 
a marker of HCC, and this protein is used to screen for this par-
ticular disease.6 However, approximately 30% of HCC patients 
maintain normal AFP levels, and some HCC patients also have 
relatively low levels of AFP.7 To overcome these problems, sev-
eral imaging techniques are used to diagnose patients with sus-
pected HCC, such as ultrasound, computed tomography (CT), 
magnetic resonance imaging (MRI), positron emission tomog-
raphy/computed tomography (PET/CT), and angiography.

Of the imaging modalities, clinical efficacy of functional imag-
ing based on cancer metabolism for the assessment of HCC has 
been actively investigated. F-18 fluorodeoxyglucose (18F-FDG), 
a surrogate for enhanced glucose metabolism, has been used 
widely for HCC. The uptake mechanism and biochemical path-
way of 18F-FDG metabolism has been extensively studied in vi-
tro and in vivo; transport through cell membrane via glucose 
transporter isoform 1 (GLUT1) and intracellular phosphorylation 
by hexokinase (HK) have been identified as key steps for subse-
quent accumulation in HCC.8-13 Many studies have shown up-
regulation of GLUT1 in HCC, but not in non-tumor liver tis-
sue.14,15 Amann, et al.15 demonstrated a positive correlation 
between GLUT1 expression and Ki-67 labeling index in patients 
with HCC, suggesting that its expression is associated with ad-
vanced tumor stage and poor differentiation. In addition, poor 
survival has been reported in patients with high tumor GLUT1 
expression, based on The Cancer Genome Atlas (TCGA) data 
set.16 A relationship between enhanced FDG uptake and dysreg-
ulation of epithelial-mesenchymal transition-related proteins 
was demonstrated in HCC through in vitro and patient tissue ex-
periments.16 Representative of the underlying biological charac-
teristics of tumor, 18F-FDG PET/CT images are predictive of tu-
mor recurrence or survival after various treatments.17 

Despite displaying increased glycolysis even with the presence 
of oxygen, the so-called Warburg effect, HCCs are notorious for 
exhibiting a wide spectrum of 18F-FDG uptake capabilities, con-
siderably reducing the sensitivity of tumor detection. Alternative-
ly, C-11 acetate has been proposed as a radiotracer for detecting 
tumors that are not identified based on 18F-FDG uptake (Figs. 1 
and 2). Acetate is a source of acetyl-CoA, and it plays an essential 
role in regulating the activity and expression of proteins involved 
in regulation of intracellular biomass, lipogenesis, and acetyla-
tion.18 Acetate was shown to be utilized by tumors as an alterna-
tive nutrient under low cellular glucose uptake conditions, and 
C-11 acetate accumulation in tumors has been found to be asso-
ciated with tumor progression.19 HCC has been reported to use 
acetate as a substrate for fatty acid biosynthesis through up-regu-
lation of acetyl-CoA synthase and monocarboxylate transporter 
(MCT).20 Recent studies have indicated that MCT1 is a novel im-
port system of acetate in non-glycolytic HCC tumors. Indeed, Fig. 
3 shows various expressions of GLUT1 and MCT1 in HCC pa-

tients with different levels of 18F-FDG and 11C-acetate uptake. It 
was demonstrated that absorption of acetate by MCT1 promotes 
oxidative phosphorylation and lipid metabolism in non-glycolyt-
ic HCC tumors.21 Accordingly, combining 18F-FDG PET/CT with 
C-11 acetate PET/CT could be useful to provide relevant infor-
mation on prognostic and molecular heterogeneity.

A B

Fig. 1. Hepatocellular carcinoma positive for F-18 fluorodeoxyglucose (A), 
but negative for C-11 acetate (B).

A B

Fig. 2. Hepatocellular carcinoma negative for F-18 fluorodeoxyglucose 
(A), but positive C-11 acetate (B).
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DIFFERENTIAL GENE EXPRESSION THAT 
ALTERS METABOLISM IN HCC CELLS 

HCC is a heterogeneous disease, both clinically and from a 
molecular standpoint. Different risk factors such as hepatitis 
virus infection, aflatoxin exposure, or alcohol abuse are linked 
to specific pathways, and these can be strongly associated with 
certain types of HCC. Based on the results of HCC tumor se-
quencing, different driver genes and associated oncogenic 
pathways have been identified, based on the composition of 
tumor source.22-25 Therefore, heterogeneity should be investi-
gated to determine the etiological cause and affected pathways 
of HCC. High levels of heterogeneity are clinically relevant, as 
they lead to inconsistent treatment outcomes. Recently, deep 
sequencing/next generation sequencing has provided new in-
sights into the complex molecular pathogenesis of HCC, in-
cluding the identification of novel oncogenic pathways and 
driver genes.25-33 Aberrant telomerase reverse transcriptase 
(TERT) activation is the most common somatic alteration ob-
served in HCC (~70%). In addition to TERT, CTNNB1, TP53, 
and Axin1 are mutated at high frequency in HCC. Table 1 sum-
marizes the most relevant mutations in HCC. 

Warburg effect occurs downstream of survival signaling path-
ways, which are altered by loss of tumor suppressor genes or acti-
vation of oncogenes such as c-Myc, Ras, Akt, TP53, and HIF-
1α.34-38 c-Myc was reported to result in mouse liver tumors with 
elevated glycolysis39. HIF-1α, a major transcription factor involved 
in hypoxic response of cancer cells,40 has been shown to play an 
important role in several cancers by promoting tumorigenesis, 
and might also be involved in the “metabolic reprogramming” of 
cancer cells.41,42 This activates the transcription of genes encoding 
angiogenic cytokines and growth factors, such as VEGF and gly-
colytic enzymes including hexokinase1 (HK1), hexokinase2 
(HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
and pyruvate kinase (PKM).43-45 Moreover, HIF-1α enhances che-
moresistance and radioresistance, whereas it suppresses differ-
entiation and apoptosis in HCC.46,47 As a result, elevated HIF-1α 
levels are associated with increased patient mortality and metas-
tasis in various tumors, including HCC.48-50

Certain gene mutations or loss-of-heterozygosity events alter 
metabolism in a HIF-1α-dependent manner. Although muta-
tions in PTEN gene rarely occur in HCC, frequent loss of hetero-
zygosity of PTEN allele has been identified (in 20−30% of HCC 
patients).51,52 The loss of PTEN plays a critical role in HCC pro-

C

A B

D

Fig. 3. Differences in the expression of glucose transport 1 (A and C) and monocarboxylate transporter 1 (B and D) in hepatocellular carcinoma (HCC) 
samples, based on 18F-fluorodeoxyglucose and 11C-acetate uptake. Human HCC samples were used. Immunohistochemistry (IHC) was performed as 
described previously.16 After antigen retrieval, IHC was performed using indicated antibodies. Scale bars: 40 μm.
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gression and patient outcome by increasing HIF-1α synthesis 
and stability.53,54 The modulation of HIF-1α expression by epider-
mal growth factor/phosphatidylinositol 3-kinase (PI3K)/PTEN/
AKT/FRAP pathway has implications in tumor angiogenesis.55 A 
few studies have shown that HIF-1 can be activated by Ras and 
membrane type-1 matrix metalloproteinases under normal oxy-
gen conditions in cancer cells, providing new insight into regula-
tion of cancer glycolysis beyond hypoxic condition.56,57 Bufalin, a 
cardiotonic steroid, was shown to suppress tumor invasion and 
metastasis by targeting HIF-1α via PI3K/AKT/mTOR pathway, 
and thus has potential for HCC targeted therapy.58

Numerous microRNAs (miRNAs) have been shown to be as-
sociated with HCC. Six miRNAs have been consistently reported 
to be dysregulated in HCC, when compared to their expressions 
in non-tumorous tissue.59-61 For example, miR-122 and miR-199a, 
which act as tumor suppressors by regulating the expression of 
cyclin G and components of PAK4/Raf/MEK/ERK pathway, are 
downregulated in this disease. Conversely, miR-21, miR-221, 
miR-222, and miR-224, which target various molecules including 

PTEN, SMAD4, CDKN1B, and CDKN1C, are upregulated in 
HCC. Some miRNAs that regulate cancer metabolism are also 
dysregulated in HCC. miR-34a plays a major role in regulation of 
cellular metabolism by targeting SIRT1, a key NAD-dependent 
deacetylating enzyme involved in a wide range of metabolic pro-
cesses including lipid metabolism, glucose metabolism, and ex-
pression of other metabolic regulators.62,63 This molecule inhibits 
cellular glycolysis by targeting HK1/2 and glucose-6-phosphate 
isomerase. miR-23a directly targets the key gluconeogenic en-
zyme glucose-6-phosphatase catalytic subunit (G6PC), and is 
significantly upregulated in primary human HCC.

NEW TREATMENTS TARGETING CANCER 
METABOLISM

Although sorafenib has limited efficacy, it is still the only stan-
dard treatment available for advanced HCC with portal vein 
invasion or extrahepatic spread.64,65 However, other molecules 

Table 1. List of the Most Relevant Mutations in Hepatocellular Carcinoma

De-regulated pathway Gene Frequency (%) Etiology enrichment
Telomere maintenanc TERT 70 Gain of function Alcohol

Cell cycle control

TP53 30 Loss of function HBV
RB1 8 Loss of function

CDKN2A 8 Loss of function Alcohol
CCND1 7 Gain of function
CCNE1 5 Gain of function

Wnt signaling

CTNNB1 30 Gain of function Alcohol
AXIN1 11 Loss of function
ZNRF3 3 Loss of function
AXIN2 1
APC 1 Loss of function

Chromatin remodeling

ARID1A 13

Loss of function

Alcohol
MLL4 10
ARID2 7
KMT2D 6
KMT2B 3
KMT2C 2

PI3K/mTOR signaling

TSC2 5 Loss of function
TSC1 3 Loss of function

DAPK1 3 Loss of function
PI3CA 3 Gain of function
mTOR 2 Gain of function

RAS/MAPK signaling

RPS6KA3 7 Loss of function
FGF19 4 Gain of function
NTRK3 3
EPHA4 3

JAK/STAT signaling
IL6ST 3

Gain of function
JAK1 1

Oxidative stress
NFE2L2 6 Gain of function
KEAP1 4 Loss of function
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are being developed for targeted therapy. Recent studies on 
metabolic regulation of cancer cell growth and metastasis 
have been actively performed. 2-deoxy-D-glucose (2-DG), a 
glucose analogue that is able to suppress glycolysis by com-
petitively inhibiting HK2, has an effect on HCC growth.66,67 
The combination of conventional therapy and 2-DG has been 
reported to synergistically inhibit the proliferation of sorafenib-
sensitive and sorafenib-resistant HCC cells.68 3-bromopyru-
vate (3-BP) directly inhibits HK2 activity and glycolysis path-
way. In vitro and in vivo studies have demonstrated the 
anticancer effects of 3-BP on HCC, and consequently, this 
drug has been approved by the FDA.69,70 

Facilitative glucose transporters (GLUTs) have emerged as 
key factors that are required for increasing glucose uptake by 
cancer cells.14,15 Therefore, small molecules targeting GLUT1 
will inhibit cancer cell growth or metastasis by reducing glu-
cose uptake. To increase GLUT1 targeting specificity, deriva-
tives of GLUT1 inhibitor, such as fasentin71,72 and WZB117,73 
have been investigated. Regulation of hypoxia by molecules, 
including HIF-1, is an attractive potential therapeutic target 
for HCC as well as other cancers. The HIF-1α mRNA antago-
nist EZN-2968, a novel inhibitor of hypoxia-induced gene ac-
tivation, is currently in Phase I trial for HCC patients.

CONCLUSIONS

Metabolic reprogramming is essential for angiogenesis, prolif-
eration, invasion, and metastasis of cancer. It is also associated 
with de-differentiation, anti-apoptotic properties, and resis-
tance to conventional chemotherapy and radiotherapy. In the 
future, cancer metabolism would represent an attractive po-
tential therapeutic target. With their development, PET/CT 
scans combined with various metabolic radiotracers will offer 
clinical importance in selecting patients who would benefit 
from novel drugs targeting different pathways related to cancer 
metabolism.
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