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ABSTRACT: Near-infrared (NIR)-driven rhodopsins are of
great interest in optogenetics and other optobiotechnological
developments such as artificial photosynthesis and deep-tissue
voltage imaging. Here we report that the proton pump
proteorhodopsin (PR) containing a NIR-active retinal analogue
(PR:MMAR) exhibits intense NIR fluorescence at a quantum
yield of 3.3%. This is 130 times higher than native PR (Lenz, M.
O.; et al. Biophys J. 2006, 91, 255−262) and 3−8 times higher
than the QuasAr and PROPS voltage sensors (Kralj, J.; et al.
Science 2011, 333, 345−348; Hochbaum, D. R.; et al. Nat.
Methods 2014, 11, 825−833). The NIR fluorescence strongly
depends on the pH in the range of 6−8.5, suggesting potential
application of MMAR-binding proteins as ultrasensitive NIR-driven pH and/or voltage sensors. Femtosecond transient
absorption spectroscopy showed that upon near-IR excitation, PR:MMAR features an unusually long fluorescence lifetime of
310 ps and the absence of isomerized photoproducts, consistent with the high fluorescence quantum yield. Stimulated Raman
analysis indicates that the NIR-absorbing species develops upon protonation of a conserved aspartate, which promotes charge
delocalization and bond length leveling due to an additional methylamino group in MMAR, in essence providing a secondary
protonated Schiff base. This results in much smaller bond length alteration along the conjugated backbone, thereby conferring
significant single-bond character to the C13C14 bond and structural deformation of the chromophore, which interferes with
photoinduced isomerization and extends the lifetime for fluorescence. Hence, our studies allow for a molecular understanding of
the relation between absorption/emission wavelength, isomerization, and fluorescence in PR:MMAR. As acidification enhances
the resonance state, this explains the strong pH dependence of the NIR emission.

Rhodopsins are retinal-binding photoactivatable proteins1,2

with great impact as modular tools in optogenetics,2,3

voltage sensing,4−6 and artificial or engineered photosyn-
thesis.7,8 A major challenge is designing microbial rhodopsins
that can be activated by near-infrared light (NIR) for deep-
tissue in vivo application or spectral window extension in
oxygenic photosynthesis. There are several strategies for
accessing red-shifted absorbance bands, e.g., by directed or
random mutagenesis techniques,9 designing chimaeric pro-
teins,10 and screening algal genomes.11 However, NIR-
absorbing species that sufficiently maintain their desired
activity have not yet been achieved with those approaches.
Recently, NIR-driven proton-pumping and fluorescent rho-
dopsins were engineered using retinal analogues. Even though
the retinal analogues need to be supplied to activate their
function, in vivo applications have proved feasible.8,12,13

Native rhodopsins have a very low fluorescence quantum
yield on the order of 10−4−10−5;14,15 in fact, it is 2.6 × 10−4 in
proteorhodopsin (PR).16 The D97N mutant of PR (PR-D97N,
also known as PROPS), which cannot sustain outward proton-
pumping activity, has a relatively high fluorescence yield (ΦFL

≈ 0.01) and constitutes a suitable membrane voltage sensor in
E. coli.4 Since then, various voltage sensors were designed
based on microbial rhodopsins for visualization of action
potentials of neurons, in particular, QuasArs5,6,13 and
Archons.17 For an ideal pH or voltage sensor, a high
fluorescence quantum yield and strong pH dependence of
the emission intensity around physiological pH are required.
Moreover, NIR absorption/emission will be beneficial for
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deeper tissue imaging where NIR has low absorbance and
scattering.13,18 We previously reported that PR reconstituted
with the retinal analogue 3-methylamino-16-nor-1,2,3,4-
didehydroretinal (PR:MMAR, Figure 1a) shows far red-shifted
absorbance and retains pump activity under illumination.12

Similar long-wavelength absorption bands were observed in
bacteriorhodopsin reconstituted with azulenic or merocyanine
dyes, but these proteins were photochemically inactive.19,20

Figure 1b shows the PR:MMAR absorbance spectrum at pH
7.0, reproduced from ref 12, exhibiting a broad, heterogeneous
absorption with bands and shoulders at around 570, 690, and
760 nm. The NIR absorption band near 760 nm has a low
amplitude at this pH but increases dramatically upon
acidification (Figure S1). We recorded the fluorescence
properties of PR:MMAR to investigate potential application
of MMAR-based microbial rhodopsins as a pH and/or voltage
sensor. Figure 1c shows pH-dependent emission spectra of
PR:MMAR at pH 6.0−8.5 with 760 nm excitation.
Independent of the pH value, the emission peak was centered
at 820 nm, which is about 120 nm red-shifted from native
PR.16 The excitation spectrum of the 820 nm emission at pH
7.0 overlaps with the 1-transmittance spectrum as shown in
Figure S2, clearly indicating that the NIR (>750 nm)
absorbing form is the major emissive species. A fluorescence
quantum yield of 3.3% was measured with 760 nm excitation at
pH 7.0, which is 130-fold higher than that of native PR16 and
3−8 -fold higher than that of PROPS4 and QuasArs.5

Importantly, a strong pH dependence for the fluorescence
intensity was observed over the pH range of 6.0−8.5 (Figure
1c), which clearly corresponds with the pH-dependent
absorbance band near 760 nm (Figure S1). Considering this
combination of properties, i.e., high fluorescence quantum
yield, NIR absorption/emission, and strong pH dependence in
the pH range of 6.0−8.5, we would advocate MMAR-binding
retinal proteins as very promising candidates for ultrasensitive
NIR pH and/or voltage sensors.
To elucidate the molecular origin of the intense fluorescence

of PR:MMAR and its relation to the broad absorption profile,
we applied broad-band femtosecond transient absorption
spectroscopy up to the submillisecond time scale.21−24 Figure

2a shows a kinetic trace at 750 nm upon excitation at 730 nm
at pH 7.0 (blue symbols), where the NIR-absorbing state is
selectively excited. Figure 2b shows the results of global
analysis in terms of a sequential model (evolution-associated
difference spectra, EADS, top panel) and a parallel, sum-of-
exponentials model (decay-associated difference spectra,

Figure 1. Chemical structure of MMAR and absorption/fluorescence spectra of PR:MMAR. (a) Structure of native retinal and its analogue
MMAR. (b) Absorption spectra of native PR (PR:A1) and PR:MMAR at pH 7.0. (c) pH-dependent emission spectra of PR:MMAR at pH 6.0−8.5,
at 760 nm excitation.

Figure 2. (a) Time traces of transient absorption experiments of
PR:MMAR at pH 7 detected at 750 nm, upon 620 nm excitation (red
circles) or 730 nm excitation (blue circles). The solid lines show
fitting curves. (b) Evolution-associated difference spectra (EADS)
(top) and decay-associated difference spectra (DADS) (bottom)
upon excitation at 730 nm with fitted lifetimes indicated. The reader
is referred to the Methods section for the interpretation of EADS and
DADS.
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DADS, bottom panel). Kinetic traces and fits are presented in
Figure S3. Three time constants are required to fit the data: 90
fs, 44 ps, and 310 ps. The gray EADS, which is created
instantaneously after application of the pump pulse, has a
negative signal from 620 to 720 nm that is assigned to ground-
state bleach and a positive absorption at 580 nm that is
assigned to excited-state absorption. This state evolves to the
red EADS in 90 fs, which represents a further rise of the
excited-state absorption band at 580 nm, with the ground state
bleach at >650 nm remaining constant. The 90 fs time
constant is assigned to ultrafast propagation out of the
Franck−Condon region. The red EADS evolves to the blue
EADS in 44 ps and involves only minor spectral changes. It is
assigned to a minor population (<5%) that has an excited-state
lifetime of 44 ps. Finally, the blue EADS has a lifetime of 310
ps and decays to zero amplitude.
We conclude that upon excitation at 730 nm, the excited

state decays almost single-exponentially to zero in 310 ps. In
addition, no photoproduct is detected, which implies that
isomerization of the MMAR chromophore is largely sup-
pressed. The excited-state lifetime (i.e., fluorescence lifetime)
of 310 ps is unusually long for retinal proteins, which generally
feature subpicosecond and picosecond lifetimes,1,16,21,25−30

and is consistent with the high fluorescence quantum yield.
The absorption spectrum of PR:MMAR is very broad,

suggesting the presence of multiple spectral species (Figures 1b
and S1). Upon excitation at shorter wavelengths, dynamics
quite distinct from that at 730 nm excitation are observed.
Upon 620 nm excitation, a multiexponential excited-state
decay was observed with lifetimes of 6.4, 34, and 290 ps
(Figure 2a, red symbols), along with formation of a
photoproduct that resembles the well-known C13C14
isomerized K-intermediate in microbial rhodopsins. Excitation
at 510 and 670 nm gave similar results, albeit with different
relative amplitudes of the lifetimes. A detailed account and
global analysis of the excited-state dynamics at 620, 510, and

670 nm excitation wavelengths is presented in Figures S4−S6.
Figure S7 shows that the 34 ps component is related to
formation of the K-like isomerized photoproduct and that the
6.4 and 310 ps components represent nonproductive excited-
state decay pathways to the initial ground state. In addition, in
the cases that K was observed, the photocycle proceeded by
formation of an M-like intermediate on submicrosecond and
microsecond time scales, indicative of proton transfer from the
MMAR Schiff base to Asp-97. We conclude that the broad
absorption that spans the green to the NIR wavelengths is
caused by three distinct electronic substates that have
particular lifetimes and photochemical reactivity. Yet, the
NIR absorption band near 760 nm is the only one presenting a
single long-living excited-state component and significant
fluorescence.
Proton-pumping activity in starved E. coli cells expressing

PR:MMAR was observed at pH 7 with 617, 660, and 730 nm
continuous LED illumination,12 which appears to be at odds
with the present observation that for the NIR-absorbing
species identified above the K- and M-like photoproducts were
not detected. We first note that proton transfer from the
protonated RSB may not be absolutely essential for proton-
pumping in PR.31 Alternatively, PR:MMAR may behave
slightly differently in DDM micelles (this study) as compared
to the E. coli membrane environment (ref 12), although no
such differences were observed for native PR.32 It must be
noted, however, that the proton-pumping rate of PR:MMAR is
significantly smaller than that of native PR (PR:A1),12

indicating that this process is less robust in PR:MMAR and
that the observed small difference between detergent-isolated
PR:MMAR (no M-like state formation detected upon NIR
excitation) and membrane-bound PR:MMAR (low proton-
pumping activity under NIR illumination) may indeed relate to
the microenvironment. It should also be noted that
fluorescence and proton-pumping are not mutually exclusive
for microbial rhodopsins.6

Figure 3. pH-dependent ground-state stimulated Raman spectra of PR:MMAR. (a,b) Raman spectra at pH 7.0 at 750−1300 and 1450−1700 cm−1,
respectively; (c,d) pH-dependent Raman spectra over the same vibrational ranges. The spectra were normalized at the 1004 cm−1 band.
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To investigate the ground-state configuration of the MMAR
chromophore and its electronic structure, we applied
preresonance watermarked stimulated Raman spectrosco-
py.33−35 Figure 3a shows the ground-state stimulated Raman
spectrum of PR:MMAR from 750 to 1300 cm−1 at pH 7.0.
Various modes (1169, 1191, and 1216 cm−1) comply with C−
C stretching modes in the native all-trans retinal chromophore
in bacteriorhodopsin and PR.36,37 We furthermore identify
isolated hydrogen-out-of-plane (HOOP) modes (856 cm−1),
coupled HOOPs (947, 957 cm−1), and methyl rock (1004
cm−1).36 The 1250 cm−1 band is assigned to the aromatic
amine C−N stretch that is particular to the MMAR
chromophore.38 Figure 3c shows stimulated Raman spectra
over the same vibrational range between pH 6.0 and 9.0. The
spectra were normalized at the 1004 cm−1 band. The ethylenic
isolated (C−H) and coupled (H−CC−H) wags or
HOOP vibrations are very sensitive to skeletal deformation:
the strong increase of bands near 860 (isolated wags) and 950
cm−1 (coupled wags) upon lowering the pH is indicative of
increasing distortion of the chromophore. The overall band
distribution in the region of 1100−1220 cm−1 hardly varies
over this pH range, except for a slight shift in frequencies, an
increase in the intensity of the 1191 cm−1 mode (C14−C15
stretch39) with increasing pH, and concomitantly a more
pronounced shoulder at ca. 1150 cm−1, possibly reflecting
deprotonation of the Asp97 counterion.32 It should be noted
that the C−C stretching modes are largely insensitive to
electron delocalization,36,40 consistent with the very small
frequency shifts at pH values between 6.0 and 9.0. The
decrease of the 1191 cm−1 mode upon lowering the pH
remains currently unexplained.
In the CC stretching region (∼1500−1600 cm−1) at pH

7.0 (Figure 3b,d), several Raman bands can be observed at
1482, 1501, 1528, 1580, and 1605 cm−1, which are strongly
pH-dependent. Those at 1482, 1501, 1580, and 1605 cm−1 are
very small at pH 8.5 and 9.0 and strongly increase upon
acidification, while the single very strong band at 1532 cm−1

slightly downshifts to 1528 cm−1 and substantially decreases
upon acidification. This pH dependence reflects that of the
absorbance spectrum (Figure S1). Although some appear at an
unusually low frequency, the bands between 1450 and 1550
cm−1 represent CC stretching modes.36,41 This assignment
stems from the observation that the CC stretching
frequency is correlated with the degree of electron delocaliza-
tion in the chromophore and hence inversely correlated with
the absorption maxima.42−44 Accordingly, the 1532 cm−1

mode would correspond to an absorbance band at around

560 nm, and the 1501 and 1482 cm−1 modes correspond to
bands at around 690 and 750 nm, respectively, in excellent
agreement with the absorbance spectra in Figure S1.
The 1655 cm−1 signal is assigned to the CNH stretching

mode, which is an indicator for the protonated retinal Schiff
base widely seen in native rhodopsins.41,45 Remarkably, the
1655 cm−1 mode was replaced upon acidification by two peaks
at ∼1580 and ∼1605 cm−1. If those peaks would represent a
CC stretching mode, we would expect a short-wavelength
(blue-shifted below 400 nm) absorption species to appear at a
lower pH, but this is not observed in the absorption spectra
(Figure S1). Therefore, we do not assign the 1580 and 1605
cm−1 bands to CC stretching modes but rather propose the
formation of resonance species upon protonation of the Asp97
counterion, resulting in extensive electron delocalization
involving both −N−C− elements (Figure 4). Because the
pKa of the primary counterion (Asp97) varies between 6.5 and
7.7,12,46−49 this counterion is largely protonated at acidic pH,
resulting in a weakened hydrogen bond between the retinal
Schiff base and the counterion complex and less effective
charge stabilization at the protonated retinal Schiff base.
However, importantly, in MMAR, the charge can effectively
delocalize toward the other methyl−N−C group on the
aromatic ring at the other end of the chromophore, allowing a
boundary structure with a second protonated Schiff base
(Figure 4, right bottom), leading to a strong reduction in bond
length alteration over the conjugated double bond system. This
interpretation agrees with a lower CNH stretch vibration
frequency for both Schiff bases (Figure S8) as well as a strong
increase of the bands at around 1250 cm−1 upon protonation
(Figure S8), which could reflect an aromatic secondary amine
stretch.38 Presumably, the two boundary structures shown in
Figure 4 are in a pH-dependent equilibrium, resulting in a
complex system of resonance states, yielding the heteroge-
neous absorbance and vibrational profiles of PR:MMAR under
alkaline and acidic conditions. Such charge delocalization
induced upon protonation will result in further hybridization of
molecular orbitals, leading to the lower-energy broad
absorbance bands near 690 and 760 nm.
With the above results in hand, we are able to paint a

molecular picture of the strong pH-dependent NIR fluo-
rescence of PR:MMAR. Ultrafast spectroscopy revealed at least
three distinct electronic substates. Upon NIR excitation at
730−760 nm, only the NIR fraction is populated and strong
fluorescence results owing to the long excited-state lifetime of
∼300 ps, while under these conditions, no C13C14
isomerization was detected. The stimulated Raman spectros-

Figure 4. Boundary structures of MMAR in PR under alkaline and neutral/acidic conditions. The secondary site for Schiff base protonation is
shown in the lower right panel.
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copy data confirm that such distinct electronic substates exist
through the observation of three distinct CC vibrational
bands. Strikingly, upon acidification, a band rises that we
attribute to the advent of resonance states that feature a
boundary structure with another, secondary protonated Schiff
base on the methyl−N−C group at the aromatic ring (Figure
4, bottom right). Notably, the NIR absorption and emission
bands at 760 and 820 nm will originate from a state with a
highly delocalized electron distribution, reminiscent of azulenic
dyes50 and cyanine dyes.51,52 This will result in much smaller
bond length alteration along the conjugated backbone, thereby
conferring significant single-bond character to the C13C14
bond and structural deformation of the chromophore, which
interferes with photoinduced isomerization and extends the
lifetime for fluorescence. This notion is crucial because in
microbial rhodopsins, light-driven isomerization about the
C13C14 double bond is strongly catalyzed by the protein
matrix and constitutes the principal excited-state deactivation
channel. Thus, our study allows for a molecular understanding
of the striking features of this promising retinal analogue
protein system: strong pH-dependent NIR absorbance and
fluorescence intensity and an excitation-wavelength-dependent
photocycle. Additional molecular engineering of the protein
and/or ligand may lead to further optimization of selected
properties.
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