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Abstract

Genetic studies have identified associations between gene mutations and clear cell renal cell 

carcinoma (ccRCC). Since the complete gene mutational landscape cannot be characterized 

through biopsy and sequencing assays for each patient, non-invasive tools are needed to determine 

the mutation status for tumors. Radiogenomics may be an attractive alternative tool to identify 

disease genomics by analyzing amounts of features extracted from medical images. Most current 

radiogenomics predictive models are built based on a single classifier and trained through a single 

objective. However, since many classifiers are available, selecting an optimal model is 

challenging. On the other hand, a single objective may not be a good measure to guide model 

training. We proposed a new multi-classifier multi-objective (MCMO) radiogenomics predictive 

model. To obtain more reliable prediction results, similarity-based sensitivity and specificity were 

defined and considered as the two objective functions simultaneously during training. To take 

advantage of different classifiers, the evidential reasoning (ER) approach was used for fusing the 

output of each classifier. Additionally, a new similarity-based multi-objective optimization 

algorithm (SMO) was developed for training the MCMO to predict ccRCC related gene mutations 

(VHL, PBRM1 and BAP1) using quantitative CT features. Using the proposed MCMO model, we 
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achieved a predictive area under the receiver operating characteristic curve (AUC) over 0.85 for 

VHL, PBRM1 and BAP1 genes with balanced sensitivity and specificity. Furthermore, MCMO 

outperformed all the individual classifiers, and yielded more reliable results than other 

optimization algorithms and commonly used fusion strategies.

1. Introduction

Kidney cancer, most predominantly, renal cell carcinoma (RCC) remains one of the most 

common renal malignancies with 63,990 new cases expected to be diagnosed and with 

14,400 deaths in the United States in 2017 (Siegel et al, 2017). Clear cell RCC (ccRCC) is 

the most abundant (~75%) subtype of RCC and the most likely to metastasize outside the 

kidney (Motzer et al, 2002). Most cases of ccRCC present with somatic (or germline) 

inactivating mutations in the von Hippel–Lindau tumor suppressor (VHL) gene, which are 

generally absent in other cancers (Gnarra et al, 1994; Varela et al, 2011; Guo et al, 2012; 

Cancer Genome Atlas Research Network, 2013). Several other mutations in genes involved 

in regulating chromatin states, including those in the BRCA1-associated protein 1 (BAP1), 

polybromo 1 (PBRM1), SET domain containing 2 (SETD2), and lysine (K)-specific 

demethylase 5C (KDM5C), were recently identified (Dalgliesh et al, 2010; Varela et al, 
2011; Duns et al, 2010; Peña-Llopis et al, 2012). Mutations in BAP1 and SETD2 were found 

to be associated with advanced stage and poor outcome (Cancer Genome Atlas Research 

Network, 2013; Hakimi et al, 2013; Kapur et al, 2013). The genes mutated within a tumor 

can be used as biomarkers and may help with prognosis, treatment selection, and treatment 

response prediction. However, inter- and intra-tumoral heterogeneity in gene mutations has 

previously been described in ccRCC (Gerlinger et al, 2012, 2014; McGranahan and 

Swanton, 2015). As ccRCC metastasizes, additional gene mutations accumulate. Because 

the complete gene mutational landscape is hard to be characterized for each patient through 

biopsy and sequencing assays, a non-invasive tool would be useful to identify the mutations 

within the tumor.

Radiogenomics (Rutman and Kuo, 2009; Jaffe, 2012; Kuo and Jamshidi, 2014; Karlo et al, 
2014; Shinagare et al, 2015; Sala et al, 2017), an integrated approach that combines 

radiology and genomics, is based on extracting and analyzing amounts of data from medical 

images and clinical information by high-throughput computing. Therefore, radiogenomics is 

a promising solution for predicting gene mutation in ccRCC. Contrast-enhanced computed 

tomography (CT) is commonly used to diagnose and characterize renal masses, monitor 

growth in pathologically-proven RCC undergoing active surveillance, assess RCC location 

and extent, and determine stage and treatment response (Stewartmerrill et al, 2015; Motzer 

et al, 2017). Furthermore, the diagnostic standard of reference has expanded to the genomic 

level and has led to the attempt to use imaging as a noninvasive determinant of mutational 

status (Reznek, 2004; Powles and Albers, 2012; Carles et al, 2012; Kuo and Yamamoto, 

2011). Therefore, a CT based radiogeneomics predictive model would be helpful.

In recent years, researchers have investigated predictable and systematic associations 

between imaging features and underlying molecular and genomic alterations in different 

cancers. Yamamoto et al (2012) carried out a radiogenomic analysis of breast cancer with 
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MRI, a novel approach that may help reveal the underlying molecular biology of breast 

cancers. Gevaert et al (2017) used CT image features to predict the mutation status of EGFR 

in non small cell lung cancer (NSCLC). Aerts et al (2014) revealed that a prognostic 

radiomic feature set, capturing intra-tumor heterogeneity, is associated with underlying 

gene-expression patterns. One study reported associations between CT features of 58 

ccRCCs and the underlying karyotype (Sauk et al, 2011). Others studied the association 

between CT imaging features and mutational status of ccRCC (Karlo et al, 2014; Shinagare 

et al, 2015). For example, the BAP1 mutation was associated with ill-defined tumor margins 

and calcification (Shinagare et al, 2015).

By quantitatively analyzing large amounts of information from medical images, 

radiogenomics holds great potential to predict gene mutation. However, several challenges 

need to be addressed to build an optimal predictive model. First, a single classifier is 

typically used to build a radiogenomics predictive model. Aerts et al (2014) used the Cox 

proportional hazards regression model to predict survival in patients with lung and head-

and-neck cancer. Other researchers tested different types of classifiers and chose one or two 

“preferred” ones for specific applications. Valdes et al (2016) evaluated three different 

classifiers, including decision trees, random forests, and RUSBoost, to predict radiation 

pneumonitis in patients with stage I NSCLC treated with stereotactic body radiation therapy 

(SBRT). Higher accuracy was achieved when the RUSBoost algorithm was used with 

regularization. These findings indicate how difficult it is to select a “preferred” classifier for 

a specific application. Instead of trying to find the most suitable classifier for a particular 

application, a model that combines multiple classifiers can fully use information from 

different classifiers to improve accuracy in radiogenomics. Second, most current 

radiogenomics models adopt a single objective function (e.g. accuracy, AUC), which may 

not be a good measure for building the predictive model, especially when positive and 

negative cases are imbalanced. To overcome the disadvantages of using a single classifier 

and a single objective function, we sought to develop a multi-classifier multi-objective 

(MCMO) radiogenomics model predict most mutations in most commonly mutated genes in 

ccRCC. In MCMO, multiple classifiers are used for building the model and a multi-objective 

optimization algorithm is used for training the model.

2. Materials and Methods

2.1 Data

2.1.1 Patients.—We conducted an institutional review board-approved, Health Insurance 

Portability and Accountability Act-compliant (HIPAA), retrospective study including 57 

ccRCC patients from two independent cohorts. The first cohort consisted of 33 patients 

(median age 62 years, range 28–83) from the University of Texas Southwestern Medical 

Center (UTSW). The other cohort consisted of 24 patients (median age 59 years, range 26–

74) from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) 

data collection. The TCGA-KIRC data collection is part of The Cancer Genome Atlas 

(TCGA), an ongoing project funded by the National Cancer Institute (NCI) and the National 

Human Genome Research Institute (NHGRI), which created an atlas of genetic changes 

related to more than 20 tumor types, including ccRCC. Clinical, genetic, and pathological 
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data reside in the TCGA data portal, and radiological data is stored in The Cancer Imaging 

Archive (TCIA). Both TCGA and TCIA are accessible for public download (Smith et al, 
2016; Clark et al, 2013).

All 57 patients fulfilled the following criteria: (a) histopathologic diagnosis of ccRCC and 

exome sequencing, including information on VHL, PBRM1, and BAP1 gene mutations, 

considered as frequent mutations in ccRCC; (b) availability of images from a pretreatment 

contrast-enhanced CT including a corticomedullary phase. For each gene, the numbers of 

patients with mutation and without mutation are listed (table 1).

2.1.2 CT Image features.—CT images from UTSW were acquired by GE LightSpeed 

VCT (GE Healthcare, Waukesha, WI) or TOSHIBA Aquilion ONE (Canon Medical 

Systems USA, Tustin, CA). CT image size was 512 × 512 with a pixel size of 0.7~0.9 mm, 

and slice thickness was 3 or 5mm. CT images from TCIA were acquired by the SIEMENS 

Sensation 64 / Definition AS+ (Siemens Medical Solution, Malvern, PA), Philips Brilliance 

64 (Philips Healthcare, Andover, MA), or GE LightSpeed VCT. CT image size was 512 × 

512 with a pixel size of 0.7~1 mm and slice thickness was 1.25 or 5 mm.

The primary tumor contour was delineated by a radiation oncologist with 4 years of 

experience and reviewed by a radiation oncologist with 9 years of experience. Contrast 

enhanced CT images acquired during the corticomedullary phase were used in all 57 cases 

for image analysis. A region of interest (ROI) was drawn along the outer contour of the mass 

using the Velocity 3.2.0 software excluding adjacent tissues (e.g. renal parenchyma, peri-

renal fat) (figure 1).

We resampled all images of the same slice thickness at 5mm. We only considered primary 

tumors and defined 43 quantitative image features describing tumor characteristics, 

including 13 geometry features, 9 intensity features, and 21 texture features (table 2). 

Geometry features describing tumor shape and size were calculated according to the actual 

pixel size. Features Size_X, Size_Y and Size_Z (table 2) describe the tumor size along the 

X, Y, and Z axes of the digital imaging and communications in medicine (DICOM) 

coordinate system (figure 2(a)). The shape and location of the tumors differed from patient 

to patient. To intuitively describe the size of the tumor, a principal component analysis 

(PCA) was applied to the tumor contour points to transform the data into a new coordinate 

system. Size_P1 is the maximum 3 dimensional diameter of the tumor, measured as the 

largest pairwise Euclidean distance between the voxels on the surface of the tumor volume; 

size_P2 and size_P3 are the tumor size along the directions orthogonal to the direction of 

maximum size (figure 2(b)).

Intensity features are first-order statistics that describe the distribution of the voxel 

intensities within the tumor on the CT image through commonly used basic metrics (Aerts et 
al, 2014). Intensity features provide information related to the gray-level distribution of the 

image; however, they do not provide any information on the relative position of the various 

gray levels over the image. Therefore, we included textural features that either describe the 

patterns or the spatial distribution of voxel intensities, which were calculated from the gray 

level co-occurrence matrix (GLCM) (Haralick et al, 1973). Texture matrix representation 
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requires the voxel intensity values within the volume of interest to be discretized. In this 

work, voxel intensities were resampled into 64 equally spaced bins using a bin-width of 25 

Hounsfield Units (HU). The detailed methodology of extracting intensity and texture 

features was previously described by Aerts et al (2014) (supplementary document). The 

calculated features of the 57 patients were normalized using the Z-scores method (Cheadle 

et al, 2003).

2.2. MCMO predictive model

2.2.1 Evidential reasoning based classifier fusion—The evidential reasoning (ER) 

approach was used for fusing the individual classifier probability output (Yang and Xu, 

2002, 2013). Our study is a binary classification problem (mutation or non-mutation). 

Assuming there are classifiers, for a test sample, the output probability of each classifier is 

denoted by Pi = Pi
1, Pi

1 , i = 1, ⋅ ⋅ ⋅ , M, which satisfies:

Pi
1 + Pi

2 = 1. (1)

Where Pi
1 is output probability of gene mutation and Pi

2 is output probability of non 

mutation. Assume the relative weight of each classifier as w = w1, w1, ⋅ ⋅ ⋅ , wm , which 

satisfies the following constraint:

i = 1
M wi = 1, 0 ≤ wi ≤ 1. (2)

The final output probabilities P f in
j , j = 1, 2 are obtained by classifier fusion through the ER 

approach (Yang and Xu, 2002, 2013):

P f in
j = ER(Pi

J, wi), i = 1, ⋅ ⋅ ⋅ M, j = 1, 2, (3)

where ER represents the ER analytic algorithm (Wang et al, 2006), which is calculated as:

P f in
j =

μ ×
i = 1
M

wiPi
j + 1 − ωi − i = 1

M (1 − wi)

1 − μ × i = 1
M (1 − wi)

, j = 1, 2, (4)

where µ is calculated as:

μ =
j = 1
2

i = 1
M wiPi

j + 1 − wi −
i = 1
M (1 − wi)

−1
. (5)
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For a binary classification problem, if P f in
1 > P f in

2 , the test sample belongs to class 1;if 

P f in
1 < P f in

2 , the test sample belongs to class 2; if the test sample belongs to either class.In 

this study, We sought to predict either the presence or absence of gene mutation. Therefore, 

if P f in
1 > P f in

2 , we considered the test sample had mutation; if P f in
1 ≤ P f in

2 , we considered the 

test sample had non-mutation.

2.2.2 Reliable outcome prediction based on output probability similarity—To 

obtain more reliable predictive results, reliable outcome prediction (RCP) is proposed and 

defined as maximize the similarity between predicted output probability and true label 

vector. For example, we assume two models that predict the VHL gene mutation with the 

label vector [1, 0]. Model A has prediction probabilities (0.8, 0.2) (the probability of 

mutation is 0.8, the probability of non-mutation is 0.2, and the threshold is 0.5), and model 

B has prediction probabilities (0.55, 0.45). As 0.8 is closer to 1 than 0.55, the result of model 

A is more reliable than that of model B. In other words, the similarity between the 

probability output of model A and the label vector is higher than those observed for model 

B, which means model A is more reliable than model B in this prediction.

In RCP, the aim is to maximize the similarity between predicted output probability and true 

label vector T while training the single classifier model and weights. For a training sample, 

its label vector is denoted by T = [ T1, T2]. T is a binary vector, T = [1,0] (mutation) or T = 

[0,1] (non-mutation). Assuming that the predictive model has q parameters denoted by R = 

{R1, R2,⋯, Rq}, the objective function is expressed as:

f = max
w, R k = 1

K
sim(Pk, Tk), (6)

where K represents the number of training samples and is the similarity measure. Since the 

above problem can be considered as the similarity of probability distribution and the dice 

coefficient (Sung-Hyuk, 2007) is effective for measuring similarity, it is used here:

sim(Pk, Tk) =
2 j = 1

2 P j
kT j

k

j = 1

2
P j

k 2 +
j = 1
2

T j
k 2

. (7)

Since a single objective may not be a good measure when the training dataset is imbalanced, 

we consider sensitivity and specificity simultaneously as a better solution as follows:

f sen = TP
TP + FN , f spe = TN

TN + FP , (8)
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where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives. In our previous study, 

fsen and fspe were both considered as objective functions (Zhou et al, 2017).

However, fsen and fspe are label based measures, while we sought to maximize the similarity 

of probability output and the true label vector. Therefore, we defined the new similarity-

based sensitivity and specificity denoted by fsim_sen_ and fsim_spe, respectively. Assume that 

Ptp
1 , Ptp

1 , ⋅ ⋅ ⋅ , Ptp
TP  represents the probability output of true positives and the corresponding 

true label vector is T tp
1 , T tp

1 , ⋅ ⋅ ⋅ , T tp
TP .The similarity of true positives TPsimis defined as:

TPsim =

k = 1

TP

sim(Ptp
k , T tp

k ) =

k = 1

TP

2 j = 1
2 Ptp, j

k T tp, j
k

j = 1

2
Ptp, j

k 2 +
j = 1
2

T tp, j
k 2

, (9)

In gene mutation prediction, j=1 represents mutation, j=2 represents non-mutation, and is the 

mutation probability. Also, Ptp, 1
k = Pk, Ptp, 2

k = 1 − Pk, T tp, 1
k k = 1, and T tp, 2

k k = 0 . Therefore, 

equation (9) can be simplified as:

TPsim =
k = 1

TP
Pk

(Pk)2 − Pk + 1
, (10)

Similarly, we define the similarity of true negatives 𝑇𝑁𝑠𝑖𝑚, false positives 𝐹𝑃𝑠𝑖𝑚, and false 

negatives 𝐹𝑁𝑠𝑖𝑚:

TNsim =
k = 1

TN
1 − Pk

Pk 2 − Pk + 1
, (11)

FPsim =
k = 1

FP
1 − pk

(Pk)2 − Pk + 1
, (12)

FNsim =
k = 1

FN
pk

(pk)2 − pk + 1
. (13)

Then, 𝑓𝑠𝑖𝑚_𝑠𝑒𝑛, 𝑓𝑠𝑖𝑚_𝑠𝑝𝑒 are calculated as:
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f sim−sen =
TPsim

TPsim + FNsim
, f sim−spe =

TPsim
TPsim + FPsim, (14)

Our aim was to maximize the two similarity-based objective functions simultaneously as:

f sim = max
w, R

f sim−sen, f sim−spe . (15)

Once training is finished, the Pareto-optimal solution set is generated, and the best model 

parameters and weights are selected based on the clinical needs. In the following subsection, 

we describe a new algorithm that was developed to solve the similarity-based multi-objective 

optimization problem.

2.3. Similarity-based multi-objective optimization (SMO) algorithm

Multi-objective evolutionary algorithms (MOEA) have demonstrated the superior 

performance for multi-objective optimization (Deb, 2001). Based on MOEA, we have 

proposed an iterative multi-objective immune algorithm (IMIA), which adopts the traditional 

sensitivity and specificity as the optimized objective functions (Zhou et al, 2017). Based on 

IMIA, we propose a new SMO algorithm. The major difference between IMIA and SMO is 

that the reliability is measured through similarity between output probability and label 

vector during the training process. Additionally, weighting coefficients needs to be 

optimized in SMO. For conciseness, we just gave a brief description of SMO and focused on 

the difference between SMO and IMIA. For a full and detailed algorithm, please refer to our 

previous paper (Zhou et al, 2017).

As IMIA, SMO consists of the 7 steps: initialization, cloning, mutation, deletion, solution 

updating, termination and best solution selection. In initialization, model parameters R and 

weights w were both initialized. We generated the initial solution set 𝐷(𝑡)={𝑑1,⋯,𝑑𝐻}( 𝑡=0) 

randomly, 𝑑𝑖(𝑖=1,⋯,𝐻) is a particular solution, His the number of solutions, and 𝑡 is the 

number of generation. In cloning step, there is a big difference. In SMO, new similarity-

based proportional cloning operation was proposed, where the solution with higher 

similarity was reproduced multiple times. Specifically, the clonal time CLTi for each 

solution is calculated as:

CLT i = nc ×
sim(di)

i = 1
H sim(di)

, (15)

where 𝑛𝑐 is the expected value of the clonal solution set and ⌈⌉ is the ceiling operator. The 

similarity measure for solution 𝑑𝑖 denoted by sim(𝑑𝑖) is calculated as:
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sim(di) =

k = 1

K

2 j = 1
2 P j

kT j
k

j = 1

2
P j

k 2 +
j = 1
2

T j
k 2

, (16)

where 𝐾 is the number of training samples and T j
k is the label vector.

The mutation and deletion in SMO are the same as those in IMIA. In this paragraph, 

“mutation” refers to the operation performed on the cloned solution set, not the gene 

mutation. The mutation probability threshold 𝑀𝑃 is determined empirically and an 

operation probability 𝑅𝑃𝑖 is generated randomly. If 𝑅𝑃𝑖 > 𝑀𝑃, a mutation operation is 

performed in which a new solution di
m was generated randomly and replace the original 

solution 𝑑𝑖. Then, a newly generated mutated solution set 𝑀(𝑡) and solution set 𝐷(𝑡) 
constitute the new solution set denoted by 𝐹(𝑡). Same solutions in (𝑡) were removed and 

anew solution set (𝑡) is generated.

In solution updating step of SMO, the aim is to select 𝐻 solutions from (𝑡) to maintain the 

population size. For each solution, we can obtain the similarities based on the probability 

outputs of all the training samples, according to equation (16). 𝑓𝑠𝑖𝑚_𝑠𝑒𝑛 and 𝑓𝑠𝑖𝑚_𝑠𝑝𝑒 can also 

be calculated according to equation (14). Using the MOEA (Deb, 2001; Deb et al, 2002), we 

selected Hsolutions. Unlike most traditional MOEAs, the solution in (𝑡) is sorted according 

to the similarity of each solution. Then, the new solution set (𝑡) is generated.

When t reaches the maximal number of generations 𝐺𝑚𝑎𝑥, the algorithm terminates. The 

best solution is selected from the Pareto-optimal solution set (𝐺𝑚𝑎𝑥) according to clinical 

needs. We selected the best solution according to the similarity-based sensitivity, specificity, 

and AUC. First, the thresholds Tsim_sen and Tsim_spe are determined for similarity-based 

sensitivity and specificity according to clinical needs. Second, for each solution 𝑑𝑖 in (𝐺𝑚𝑎𝑥), 

we calculate its similarity-based sensitivity f sim−sen
i  and specificity f sim−spe

i . If 

f sim−sen
i > Tsim−sen, 𝑑𝑖 is selected as a candidate solution. Third, we select the solution with 

the highest AUC from the candidate solutions as our final solution.

2.4 Training and testing procedure of the MCMO model

The training process mainly consists of three stages: feature calculation, feature selection, 

and predictive model construction. To achieve optimal performance for each classifier, we 

adopted our multi-objective feature selection method (Zhou et al, 2017). After selecting the 

features for each classifier, model parameters Ri and weights wi (i = 1,2, …M ) were trained. 

The workflow is illustrated in figure 3.

The testing process consists of three stages (figure 4). For a test sample, first, the features for 

each classifier are selected; second, each classifier are selected; second, each classifier 
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outputs a probability Pi
j( j = 1, 2; i = 1, 2, …M);; third, the final mutation probability P f in

j  is 

obtained by combining all Pi
j and 𝑤𝑖 using the ER approach. Then the label can be 

determined.

We used six different classifiers in the MCMO model, including support vector machine 

(SVM) (Keerthi and Lin, 2003), logistic regression (LR) (Freedman, 2009), discriminant 

analysis (DA) (Hastie and Tibshirani, 1996), decision tree (DT) (Breiman, 2001), K-nearest-

neighbor (KNN) (Keller et al, 2012), and naive Bayesian (NB) (Goldszmidt and Moises, 

1997). Since SVM has two model parameters and other classifiers use default parameters, 

we train eight parameters RSVM−1,RSVM−2,w1, …w6  for the predictive model.

3. Results

3.1 Experimental setup

In MCMO, the population number H and the maximal generation number Gmax were both 

set to 100. In the clone operation, nc was set to 200. In the mutation operation, the mutation 

probability MP was set to 0.9. The proposed MCMO predictive model was compared to 

three types of predictive model: (1) models with single classifiers; (2) models with different 

multi-objective optimization; (3) models with different fusion strategies. Because multi-

objective optimization is better than the single-objective model (Zhou et al, 2017), we did 

not compare our proposed model to models with single-objective optimization. Area under 

the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, 

similarity-based sensitivity (Sim-sensitivity), and similarity-based specificity (Sim-

specificity) were used for evaluating the model performance.

In our study, eight parameters in the predictive model need to be trained and our dataset has 

57 cases. We adopted two-fold cross-validation in this work. Cross-validation is a widely 

used model validation technique which can test the model’s ability to predict new data that 

were not used in training, in order to flag problems like overfitting (Kohavi, 1995). One 

round of cross-validation involves partitioning a sample of data into complementary subsets. 

In our work, two-fold cross-validation was used, where for each round, half cases (training 

set) were selected randomly for training and the other half cases (validation set) were used 

for validation, then reverse. To reduce variability caused by subset partition, ten rounds of 

two-fold cross-validation were performed for each model, and the validation results were 

averaged over the 10 rounds to give an estimate of the model’s predictive performance (table 

3). Prediction results of AUC, accuracy, sensitivity and specificity of training set were also 

listed in table 3. The prediction accuracy of training set is higher than that obtained from the 

validation set, which is considered as normal for a machine learning algorithm. On the other 

hand, the accuracies of the training set are not close to 1 and the predictive results on the 

validation set are acceptable. In the remaining of the paper, all the prediction results were 

from the validation set.
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3.2 Selected features for the three genes

We obtained the classifier-specific feature subset and summarized the features selected by all 

(six) classifiers (table 4). Statistics using the unpaired T test were also listed. The feature 

selected by all classifiers indicates that the feature is important to predict mutation. P-value 

smaller than 0.05 indicated significant differences between presence and absence of 

mutations. However, four selected features (Minimum, Contrast, Variance and Sum 

variance) for the PBRM1 gene and three selected features (Variance, Sum average and Sum 

variance) for the BAP1 gene had P-values greater than 0.05. Because we selected the 

optimal features according to multi-objective model, using the AUC as the figure of metric, 

these selected features did not necessarily have P-values smaller than 0.05. Example 

boxplots were plotted to show the potential of a single feature for differentiating between the 

presence and absence of mutations (figure 5).

Two intensity features including Mean and Kurtosis are the most frequently selected features 

in VHL gene prediction. A histogram with a more elongated tail indicates smaller Kurtosis. 

A tumor with smaller Kurtosis is more likely to carry a VHL mutation (figure 5(a) and 

figure 6). For the PBRM1 gene prediction, nine features from intensity and texture features, 

were most frequently selected. A boxplot of the Mean is illustrated in figure 5(b). Five 

features were selected as the most prominent contributors in BAP1. Four texture features 

were selected as follows: Homogeneity, Variance, Sum average, and Sum variance. A lower 

similarity in intensity between a voxel and its neighbors led to higher Variance and Sum 

variance. A less uniform or more focal intensity distribution led to reduced Homogeneity. 

Therefore, larger Variance, and smaller Homogeneity were associated with the likelihood 

that a tumor carried a BAP1 mutation. Boxplot of Homogeneity is illustrated in figure 5(c).

It is noted that one single feature may not achieve accurate predictive results. For each 

classifier, feature set is necessary. For KNN classifier, a feature set consisting of 12 features 

(Volume, Size_P3, Minimum, Maximum, Mean, Sum, Variance, Standard deviation, 

Kurtosis, Cluster shade, Energy, Inverse difference) was selected to predict VHL mutation; 

while for LR classifier, a feature set consisting of 19 features (Volume, Size_Z, Size_P2, 

Roundness, Surface area, Mean, Standard deviation, Skewness, Kurtosis, Contrast, 

Dissimilarity, Energy, Entropy, Homogeneity, Sum entropy, Information measure of 

correlation_1, Information measure of correlation_2, Inverse difference, Inverse difference 

normalized) was selected to predict VHL mutation.

3.3 Performance evaluation of MCMO vs. single classifiers

MCMO yielded better AUC, accuracy, sensitivity, and specificity results than other single 

classifiers (table 5). The prediction accuracy of MCMO is 0.81, 0.78, and 0.90 for VHL, 

PBRM1, and BAP1 genes, respectively, with AUC >= 0.86 sensitivity > =0.75 and 

specificity > =0.80. MCMO yielded better results than other single classifiers. KNN is the 

best single classifier for the VHL and PBRM1 genes, with specificities of 0.66 and 0.62, 

respectively. MCMO can achieve specificities of 0.86 and 0.80 for VHL and PBRM1 genes, 

respectively. SVM and DA achieved similar results for the BAP1 gene, which are better than 

other single classifiers, but sensitivities were only 0.57 and 0.63, respectively; the sensitivity 

obtained by MCMO was 0.87. Some single classifiers achieved higher sensitivities for the 

Chen et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2019 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



VHL gene, but the corresponding specificities were poor. MCMO achieved the highest AUC 

and accuracy with balanced sensitivities and specificities (difference < 0.1). Also, MCMO is 

a stable predictive model because its standard deviations are much smaller than those of the 

single classifiers.

3.4 Comparative study of objective functions

One group of the Pareto-optimal solution set and the selected final solution in SMO is shown 

in figure 7. As described in section 2.3, the best solution was selected according to the 

similarity-based sensitivity, specificity (equation (14)), and AUC. First, thresholds Tsim_sen 

and Tsim_spe were determined for similarity-based sensitivity and specificity based on 

clinical needs. In this study, the thresholds Tsim_sen and T sim_spe are both 0.9. The selected 

candidate solutions were included within the red rectangle and the selected final solution 

(highest AUC) was marked in red.

We evaluated the performance of our MCMO by comparing it to the iterative multi-objective 

immune algorithm (IMIA), which adopts the traditional sensitivity and specificity as the 

optimized objective functions (Zhou et al, 2017) (figure 8). The two methods were compared 

with the unpaired T test at a significance level 0.05 (table 6). Results were similar based on 

AUC, accuracy, sensitivity and specificity (P-value> 0.05). For VHL and PBRM1 genes, 

SMO achieved a little higher AUCs. For all three genes, SMO achieved significantly higher 

similarity scores (P-value <= 0.01), indicating that these results are more reliable. For the 

prediction result with higher AUC, the difference of 𝑓𝑠𝑖𝑚_𝑠𝑒𝑛 or 𝑓𝑠𝑖𝑚_𝑠𝑝𝑒 between SMO and 

IMIA is small. For example, for the BAP1gene, the difference of 𝑓𝑠𝑖𝑚_𝑠𝑒𝑛 and that of 

𝑓𝑠𝑖𝑚_𝑠𝑝𝑒 are 0.03 and 0.02. However, for the prediction result with lower AUC, such as for 

the PBRM1 gene, the difference of 𝑓𝑠𝑖𝑚_𝑠𝑒𝑛 is 0.13 and that of 𝑓𝑠𝑖𝑚_𝑠𝑝𝑒 is 0.07.

3.5 Comparative study of fusing method

We used the ER approach (equation (4)) for fusing the output of different classifiers. The 

classic weighted fusion (WF) method is used for comparison, as:

P = i = 1
M Piwi (17)

where 𝑃𝑖 is the individual classifier output probability and 𝑤𝑖 is the relative weight. SMO is 

used in both fusion strategies, and the comparative results are shown in figure 9. The two 

methods were compared with the unpaired t test at a significance level 0.05 (table 7). For 

VHL and PBRM1 genes, the ER approach achieved higher AUCs (P-value < 0.05). Also, 

sim-sensitivity and sim-specificity in ER are higher than WF (P-value <= 0.02), which 

indicates that more reliable results can be obtained when using ER fusion.

4. Discussion

The study of the association between diagnostic imaging features and mutations is a first 

critical step in the radiogenomics of ccRCC (Kuo and Yamamoto, 2011). While the genomic 

landscape of ccRCC is first characterized by the loss of VHL function, recent advances in 
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cancer genome sequencing have identified additional, prognostically significant mutations. 

Two hypothesis-generating studies indicated the potential association between individual CT 

features and mutations of the VHL gene, and also mutations in the PBRM1, BAP1, SETD2 

and, KDM5C genes (Karlo et al, 2014; Shinagare et al, 2015). The CT features identified by 

the radiologists were primarily morphological (e.g. necrosis, ill or well defined margins, 

renal vein invasion). In contrast, all of our features were quantitative descriptors extracted 

from the contoured tumor image. The feature extraction was automated, eliminating 

subjectivity and improving reproducibility.

The most frequently selected features varied depending on the gene. The most frequently 

selected features of the VHL gene were intensity features (Mean and Kurtosis), which 

described the mean values and intensity distribution in tumor volume. Intensity and texture 

features were found to be important in the PBRM1 predictive model. The most selected 

features of PBRM1 consisted of five intensity features that measured the intensity 

distribution in tumor volume, and four texture features that measured the local differences 

within an image. Karlo et al (2014) reported that nodular, heterogeneous enhancement and 

visibility of intratumoral blood vessels in tumors were more common among ccRCCs with 

underlying VHL mutations. Also, investigators found an association between a well-defined 

tumor margin and the VHL mutation, and an association between solid ccRCC and 

mutations in VHL and PBRM1. However, Shinagare et al (2015) did not observe any 

imaging characteristics associated with PBRM1 and VHL mutations. Because both 

evaluations were subjective and their features were morphological, we were unable to 

directly compare our quantitative results with those morphological features.

The most frequently selected features of BAP1 consisted of one geometry feature, one 

intensity feature, and four texture features. Texture features were the most prominent 

contributors in the BAP1 predictive model. In a study by Shinagare et al (2015), the BAP1 
mutation was found to be associated with ill-defined tumor margins and calcification. We 

did not study tumor margins because they are not a quantitative feature. However, the 

presence of calcification may be associated with selected features such as Homogeneity and 

Variance.

We proposed a MCMO radiogenomics model that predicts gene mutations in ccRCC. Multi-

classifier models can fully use information extracted by different classifiers and potentially 

improve prediction accuracy. We used all six different classifiers without considering the 

performance of individual classifiers. In future work, we will test the performance of single 

classifiers, and remove those with lower performance for the multi-classifier model. SVM 

and NB results for the VHL gene were found to be poor (table 5), therefore eliminating them 

and using LR, KNN, DT and DA for fusion may improve prediction results.

Both similarity-based sensitivity and specificity were considered simultaneously as the 

objects that guided construction of the predictive model. For the first time, we propose 

reliable outcome prediction, which refers to maximizing the similarity of output probability 

and true label (probability is 1). Higher similarity means higher reliability. We designed 

similarity-based sensitivity and specificity as optimized objective functions, which differ 

from traditional ones. Moreover, an SMO algorithm was developed to train the model to 
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increase accuracy and confidence of predictive results. Compared with our previous IMIA 

method, similarity was adopted as a non-dominated sorting criterion upon updating the 

solution set. Also, the solution with higher similarity was kept. These findings indicate that 

the prediction results are more reliable (higher fsim_sen and fsim_spe ) when using our model. 

As for the fusion strategy, the ER approach is better than the classic WF in terms of 

similarity-based optimization. SMO algorithm and ER approach both contribute to reliability 

increase.

Our study presents a number of limitations. First, the number of patients used in our study is 

relatively small. In our model, eight parameters (2 parameters of SVM and 6 weights) need 

to be estimated and two-fold cross-validation were used. While two-fold cross-validation 

results showed that our model achieved satisfactory results, a larger dataset and multi-

classifier fusion could help to reduce the potential risk of overfitting (Dietterich, 2000). In a 

future work, we can apply this MCMO model in different classification where dataset of 

larger size is available. Second, recent advances in genetics have led to the identification of 

several mutations associated with ccRCC, including those involving the VHL, BAP1, 

PBRM1, SETD2, MUC4 and KDM5C genes. The genomic information of all six genes 

were available for the 24 patients in TCGA/TCIA data collection. However, genomic 

information of the three genes (SETD2, MUC4 and KDM5C) was not available for most of 

the 33 UTSW cases used in the present study. Thus, we only considered VHL, PBRM1 and 

BAP1 genes in this work. Third, the feature stability was not addressed in the current study. 

Our patient data was acquired by different CT scanners at different institutions with different 

protocols, which resulted in differences in pixel size and slice thickness, while the 

differences of scanner and protocol have influence on feature calculations (Mackin et al, 
2015). Additionally, tumor delineation was conducted by one physician and reviewed by 

another physician in this study. This could also introduce inter-observer variability in tumor 

delineation. Standardization of image acquisition protocols, automatic segmentation or 

consensus contours from more physicians may further improve the performance of the 

model developed in this work.

5. Conclusion

We proposed a multi-classifier multi-objective (MCMO) radiogenomics model that predicts 

VHL, PBRM1, and BAP1 gene mutations in ccRCC using quantitative CT feature set. Using 

our feature selection strategy and model, we achieved a predictive AUC greater than 0.85 for 

all three genes. Compared to single classifiers, multi-classifiers fused through ER and 

trained by developed SMO algorithm can greatly improve prediction accuracy and 

reliability. In MCMO, the concept of reliable outcome prediction was first proposed and 

applied to the optimization procedure, generating more reliable results. The MCMO model 

should not only be applied to radiogenomics, but also to solving other outcome prediction 

problems in medicine.
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Figure 1. 
Tumor contour of ccRCC investigated in this study. (a) one case from UTSW. (b) one case 

from TCIA.
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Figure 2. 
Coordinate systems. (a) The digital imaging and communications in medicine (DICOM) 

coordinate system. (b) Illustration of the transformation of the DICOM coordinate system 

into the PCA coordinate system.
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Figure 3. 
Training process of MCMO predictive model.
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Figure 4. 
Testing process using MCMO predictive model.
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Figure 5. 
Boxplots for (a) Kurtosis (VHL), (b) Mean (PBRM1), and (c) Homogeneity (BAP1).
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Figure 6. 
Kurtosis in tumor CT images. (a) A tumor without VHL mutation, (b) Histogram, with 

kurtosis= 26.57 (Z-score= 1.92), (c) A tumor with VHL mutation, (d) Histogram with 

kurtosis= 7.17 (Z-score= −1.33).
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Figure 7. 
Pareto-optimal solution set (green rhombus), the green rhombus within the red rectangle are 

candidate solutions which satisfy 𝑓𝑠𝑖𝑚_𝑠𝑒𝑛 > 𝑇𝑠𝑖𝑚_𝑠𝑒𝑛 and 𝑓𝑠𝑖𝑚_𝑠𝑝𝑒 > 𝑇𝑠𝑖𝑚_ . 𝑇𝑠𝑖𝑚_𝑠𝑒𝑛 = 

𝑇𝑠𝑖𝑚_𝑠𝑝𝑒 = 0.9. The best solution selected for SMO is indicated by the red rhombus. (a) 

VHL; (b) PBRM1; (c) BAP1.
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Figure 8 . 
Results of using different objective functions. (a) VHL; (b) PBRM1; (c) BAP1.
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Figure 9. 
Results of using different fusion strategies (ER vs. WF). (a) VHL; (b) PBRM1; (c) BAP1.
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Table 1.

Number of patients

VHL PBRM1 BAP1

Mutation Non-mutation Mutation Non-mutation Mutation Non-mutation

UTSW 26 7 19 14 5 28

TCGA 10 14 3 21 2 22

Total 36 21 22 35 7 50
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Table 2.

Quantitative CT Image Features

Geometry features Intensity features Texture features

Volume Minimum Auto correlation

Size_X Maximum Contrast

Size_Y Mean Correlation

Size_Z Median Cluster prominence

Size_P1 Sum Cluster shade

Size_P2 Variance Dissimilarity

Size_P3 Standard deviation Energy

Roundness Skewness Entropy

Surface area Kurtosis Homogeneity

Compactness_1 Maximum probability

Compactness_2 Variance

Spherical disproportion Sum average

Surface to volume ratio Sum variance

Sum entropy

Difference variance

Difference entropy

Information measure of correlation_1

Information measure of correlation_2

Inverse difference

Inverse difference normalized

Inverse difference moment normalized
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Table 3.

Results of MCMO prediction models (training set vs. validation set)

Gene Data set AUC Accuracy Sensitivity Specificity

VHL
Training set 0.96±0.02 0.91±0.01 0.93±0.02 0.88±0.02

Validation set 0.88±0.01 0.81±0.02 0.79±0.04 0.86±0.02

PBRM1
Training set 0.95±0.01 0.90±0.03 0.87±0.03 0.92±0.02

Validation set 0.86±0.02 0.78±0.02 0.75±0.02 0.80±0.02

BAP1
Training set 0.97±0.01 0.92±0.01 0.9±0.03 0.92±0.01

Validation set 0.93±0.02 0.90±0.02 0.87±0.02 0.90±0.03
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Table 4.

Selected features by all (six) classifiers for VHL, PBRM1 and BAP1 genes.

Geometry (P-value) Intensity (P-value) Texture (P-value)

VHL Mean (0.020) Kurtosis (0.002)

PBRM1 Minimum (0.088) Contrast (0.085)

Mean (0.020) Maximum probability (0.030)

Median (0.041) Variance (0.162)

Skewness (0.042) Sum variance (0.168)

Kurtosis (0.005)

BAP1 Size_X (0.006) Sum (0.048) Homogeneity (0.023)

Variance (0.171)

Sum average (0.159)

Sum variance (0.168)
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Table 5.

Results of different prediction models (MOMC vs. single classifier)

Gene Classifier AUC Accuracy Sensitivity Specificity

SVM 0.71±0.06 0.69±0.05 0.88±0.07 0.37±0.11

NB 0.33±0.14 0.67±0.05 0.84±0.10 0.36±0.16

LR 0.73±0.04 0.71±0.05 0.73±0.05 0.67±0.09

VHL KNN 0.80±0.04 0.78±0.03 0.84±0.04 0.66±0.08

DT 0.67±0.06 0.68±0.07 0.71±0.08 0.61±0.11

DA 0.71±0.05 0.66±0.05 0.68±0.11 0.64±0.10

MCMO 0.88±0.01 0.81±0.02 0.79±0.04 0.86±0.02

SVM 0.68±0.06 0.63±0.06 0.52±0.14 0.70±0.06

NB 0.41±0.09 0.58±0.05 0.52±0.11 0.62±0.08

LR 0.62±0.10 0.63±0.09 0.52±0.14 0.69±0.09

PBRM1 KNN 0.67±0.10 0.64±0.10 0.65±0.16 0.62±0.11

DT 0.52±0.08 0.54±0.07 0.44±0.10 0.60±0.10

DA 0.59±0.07 0.59±0.06 0.54±0.10 0.62±0.09

MCMO 0.86±0.02 0.78±0.02 0.75±0.02 0.80±0.02

SVM 0.80±0.07 0.81±0.03 0.57±0.11 0.85±0.04

NB 0.74±0.11 0.02±0.02 0.24±0.0 0.88±0.02

LR 0.69±0.08 0.81±0.03 0.54±0.21 0.84±0.04

BAP1 KNN 0.72±0.06 0.80±0.05 0.57±0.10 0.83±0.06

DT 0.54±0.09 0.81±0.06 0.24±0.18 0.89±0.08

DA 0.82±0.08 0.80±0.05 0.63±0.20 0.82±0.04

MCMO 0.93±0.02 0.90±0.02 0.87±0.02 0.90±0.03
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Table 6.

Results of P-values compared between SMO and IMIA

Gene AUC Accuracy Sensitivity Specificity Sim-sensitivity Sim-specificity

VHL 0.116 0.449 0.226 0.206 0.003 0.0002

PBRM1 0.412 0.690 0.355 0.355 <0.0001 <0.0001

BAP1 0.574 0.536 0.330 0.472 0.01 0.007
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Table 7.

Results of P-values compared between ER and WF

Gene AUC Accuracy Sensitivity Specificity Sim-sensitivity Sim-specificity

VHL 0.021 0.083 0.760 0.018 0.007 <0.0001

PBRM1 0.0001 0.244 0.306 0.492 0.04 0.02

BAP1 0.882 0.045 0.330 0.074 0.02 0.0009
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