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Abstract

We present the discrete version of heat kernel smoothing on graph data structure. The method is 

used to smooth data in an irregularly shaped domains in 3D images. New statistical properties of 

heat kernel smoothing are derived. As an application, we show how to filter out noisy data in the 

lung blood vessel trees obtained from computed tomography. The method can be further used in 

representing the complex vessel trees parametrically as a linear combination of basis functions and 

extracting the skeleton representation of the trees.

I. Introduction

Heat kernel smoothing was originally introduced in the context of filtering out surface data 

defined on mesh vertices obtained from 3D medical images [6], [5]. The formulation uses 

the tangent space projection in approximating the heat kernel by iteratively applying 

Gaussian kernel with smaller bandwidth. Recently proposed spectral formulation to heat 

kernel smoothing [4] constructs the heat kernel analytically using the eigenfunctions of the 

Laplace-Beltrami (LB) operator, avoiding the need for the linear approximation used in [6], 

[8].

In this paper, we present the discrete version of heat kernel smoothing on graphs. Instead of 

Laplace-Beltrami operator, graph Laplacian is used to construct the discrete version of heat 

kernel smoothing. New statistical properties are derived for heat kernel smoothing that 

utilizes the fact heat kernel is a probability distribution. Heat kernel smoothing is used to 

filter out data defined on irregularly shaped domains in 3D images.

As a demonstration, the method is applied in irregularly shaped lung blood vessel trees 

obtained from computed tomography (CT). 3D image volumes are represented as a large 3D 

graph by connecting neighboring voxels in the vessel trees. Since heat kernel smoothing is 

analytically represented as a linear combination of Laplace eigenfunctions, it is possible to 

resample lung vessel trees in a higher resolution and obtain the skeleton representation of the 

trees for further shape analysis [11], [2].
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II. Preliminary

Let G = {V, E} be a graph with vertex set V = {1, 2,⋯, p} and edge set E. If two nodes i and 

j form an edge, we denote it as i ∼ j. Let W = (wij) be the edge weight. The adjacency matrix 

of G is often used as the edge weight. The graph Laplacian L can then be written as L = D − 

W, where D = (dij) is the diagonal matrix with dii = ∑ j = 1
n wi j. For this study, we will 

simply use the adjacency matrix so that the edge weights wij are either 0 or 1. We have up to 

p number of eigenvectors ψ1, ψ2,⋯, ψp satisfying

Lψ j = λ jψ j (1)

with 0 = λ1< λ2·≤⋯≤ λp. The eigenvectors are orthonormal, i.e., ψ i
Tψ j = δi j, the Kroneker’s 

delta. The first eigenvector is trivially given as ψ1 = 1/ p with 1 = (1,1,⋯,1)T.

All other higher order eigenvalues and eigenvectors are unknown analytically and have to be 

computed numerically (Figure 1). Using the eigenvalues and eigenvectors, the graph 

Laplacian can be decomposed spectrally. From (1),

LΨ = ΨΛ, (2)

where Ψ = [ψ1,⋯, ψp] and Λ is the diagonal matrix with entries λ1,⋯, λp. Since Ψ is an 

orthogonal matrix,

ΨΨT = ΨTΨ = ∑
j = 1

p
ψ jψ j

T = I p,

the identify matrix of size p.

For measurement vector f = (f1,⋯,fp)T observed at the p nodes, the discrete Fourier 

series·expansion is given by

f = ∑
j = 1

n
f
∼

jψ j,

where f
∼

j = f Tψ j = ψ j
T f  are Fourier coefficients.

III. Heat Kernel on Graphs

The discrete heat kernel Kσ is a positive definite symmetric matrix of size p × p given by
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Kσ = ∑
j = 1

p
e

−λ jσψ jψ j
T, (3)

where σ is called the bandwidth of the kernel. Figure 2 shows heat kernel with different 

bandwidths at a L-shaped domain. Alternately, we can write (3) as

Kσ = Ψe−σΛΨT,

where e−σΛ is the matrix logarithm of Λ. When σ = 0, K0 = Ip, identity matrix. When σ = 

∞, by interchanging the sum and the limit, we obtain

K∞ = ψ1ψ1
T = 11T/ p .

K∞ is a degenerate case and the kernel is no longer positive definite. Other than these 

specific cases, the heat kernel is not analytically known in arbitrary graphs. Heat kernel is 

doubly-stochastic [3] so that

Kσ1 = 1, 1TKσ = 1T .

Thus, Kσ is a probability distribution along columns or rows.

Just like the continuous counterpart, the discrete heat kernel is also multiscale and has the 

scale-space property. Note

Kσ
2 = ∑

i, j = 1

p
e
−(λ1 + λ j)σψiψi

Tψ jψ j
T

= ∑
j = 1

p
e
−2λ jσψ jψ j

T = K2σ .

We used the orthonormality of eigenvectors. Subsequently, we have

Kσ
n = Knσ .

IV. Heat Kernel Smoothing on Graphs

Discrete heat kernel smoothing of measurement vector f is then defined as convolution

Kσ ∗ f = Kσ f = ∑
j = 0

p
e

−λ jσ f
∼

jψ j, (4)
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This is the discrete analogue of heat kernel smoothing first defined in [6]. In discrete setting, 

the convolution * is simply a matrix multiplication. Thus,

K0 ∗ f = f

and

K∞ ∗ f = f 1,

where f = ∑ j = 1
p f j/ p is the mean of signal f over every nodes. When the bandwidth is 

zero, we are not smoothing data. As the bandwidth increases, the smoothed signal converges 

to the sample mean over all nodes.

Define the l-norm of a vector f = (f1,⋯, fp)T as

f l = ∑
j = 1

p
f j

l
1/l

.

The matrix ∞-norm is defined as

f ∞ = max
1 ≤ j ≤ p

f j .

Theorem 1

Heat kernel smoothing is a contraction mapping with respect to the l-th norm, i.e.,

Kσ ∗ f
l
l ≤ f l

l .

Proof—Let kernel matrix Kσ = (kij). Then we have inequality

Kσ ∗ f
l
l ∑
i = 1

p
∑

j = 1

p
ki j f j

l ≤ ∑
j = 1

p
f j

l .

We used Jensen’s inequality and doubly-stochastic property of heat kernel. Similarly, we can 

show that heat kernel smoothing is a contraction mapping with respect to the ∞-norm as 

well.

Theorem 1 shows that heat kernel smoothing contracts the overall size of data. This fact can 

be used to skeltonize the blood vessel trees.
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V. Statistical Properties

Often observed noisy data f on graphs is smoothed with heat kernel Kσ to increase the 

signal-to-noise ratio (SNR) and increases the statistical sensitivity [4]. We are interested in 

knowing how heat kernel smoothing will affect on the statistical properties of smoothed 

data.

Consider the following addictive noise model:

f = μ + e, (5)

where μ is unknown signal and ε is zero mean noise. Let e = (e1⋯, ep)T. Denote 𝔼 as 

expectation and V as covariance. It is natural to assume that the noise variabilities at 

different nodes are identical, i.e.,

𝔼e1
2 = 𝔼e2

2 = ⋯ = 𝔼ep
2 . (6)

Further, we assume that data at two nodes i and j to have less correlation when the distance 

between the nodes is large. So covariance matrix

Re = 𝕍e = 𝔼(eeT) = (ri j)

can be given by

ri j = ρ(di j) (7)

for some decreasing function ρ and geodesic distance dij between nodes i and j. Note rjj = 

ρ(0) with the understanding that djj = 0 for all j. The off-diagonal entries of Re are smaller 

than the diagonals.

Noise e can be further modeled as Gaussian white noise, i.e., Brownian motion or the 

generalized derivatives of Wiener process, whose covariance matrix elements are Dirac-

delta. For the discrete counterpart, rij = δij, where δij is Kroneker-delta with δij = 1 if i = j 
and 0 otherwise. Thus,

Re = 𝔼(eeT) = I p,

the identity matrix of size p × p. Since δjj ≥ δij, Gaussian white noise is a special case of (7).

Once heat kernel smoothing is applied to (5), we have
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Kσ ∗ f = Kσ ∗ μ + Kσ ∗ e . (8)

We are interested in knowing how the statistical properties of model change from (5) to (8). 

For Re = Ip, the covariance matrix of smoothed noise is simply given as

RKσ ∗ e = Kσ𝔼(eeT)Kσ = Kσ
2 = K2σ .

We used the scale-space property of heat kernel. In general, the covariance matrix of 

smoothed data Kσ ∗ e is given by

RKσ ∗ e = Kσ𝔼(eeT)Kσ = KσReKσ .

The variance of data will be often reduced after heat kernel smoothing in the following sense 

[6], [5]:

Theorem 2

Heat kernel smoothing reduces variability, i.e.,

𝕍(Kσ ∗ f )
j

≤ 𝕍 f j

for all j. The subscript j indicates the j-th element of the vector.

Proof—Note

𝕍(Kσ ∗ f )
i

= 𝕍 Kσ ∗ e)
j

= 𝔼 ∑
i = 1

p
ki jei

2
.

Since (kij) is doubly-stochastic, after applying Jensen’s inequality, we obtain

𝔼 ∑
i = 1

p
ki jei

2
≤ 𝔼 ∑

i = 1

p
ki jei

2 = 𝔼ei
2 .

For the last equality, we used the equality of noise variability (6). Since 𝔼 f j = 𝔼ei
2, we 

proved the statement.

Theorem 2 shows that the variability of data decreases after heat kernel smoothing.
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VI. Application

We applied heat kernel smoothing to the computed tomography (CT) of human lung 

obtained from DIR-lab dataset (https://www.dir-lab.com) with 1 × 1 ×1 mm3 resolution [1], 

[13]. The small part (50 ×50 × 40 voxels) of the CT image was used to illustrate the method 

and display the results better. The binary vessel segmentation was done using the multiscale 

Hessian filters at each voxel, as shown in Figure 3 [7], [9], [12].

The binary segmentation was converted into a 3D graph by taking each voxel as a node and 

connecting neighboring voxels. Using the 18-connected neighbor scheme, we connect two 

voxels only if they touch each other on their faces or edges. If voxels are only touching at 

their corner vertices, they are not considered as connected. Although we used the 18-

connected neighbor scheme in this study, for visualization purpose only, Figure 4 displays 

the 6-connected neighbor scheme. This results in an adjacency matrix and the 3D graph 

Laplacian. Figure 4 example results in a 3D graph with p = 6615 nodes. The center of voxel 

is taken as the node coordinates. The large-scale eigenvector problem was subsequently 

solved using an Implicitly Restarted Arnoldi Iteration method [10]. We used 6000 

eigenvectors. Note we cannot have more eigenvectors than the number of nodes.

As an illustration, we performed heat kernel smoothing on a simulated data. Gaussian noise 

is added to one of the coordinates. Heat kernel smoothing is performed on the noise added 

coordinate. Numbers in Figure 4 are kernel bandwidths. At σ = 0, heat kernel smoothing is 

equivalent to Fourier series expansion. Thus, we get the almost identical result. As the 

bandwidth increases, smoothing converges to the mean value. Each disconnected regions 

should converge to their own different mean values. Thus, when σ = 10000, the regions that 

are different colors are regions that are disconnected.

The proposed technique can be used to extract the skeleton representation of vessel trees. 

Here we show the proof of concept. We perform heat kernel smoothing on node coordinates 

with σ = 1. Then rounded off the smoothed coordinates to the nearest integers. The rounded 

off coordinates were used to reconstruct the binary segmentation. This gives the thick trees 

in Figure 5 (top left). To obtain thinner trees, the smoothed coordinates were scaled by the 

factor of 2, 4 and 6 times before rounding off. This had the effect of increasing the image 

size relative to the kernel bandwidth thus obtaining the skeleton representation of the 

complex blood vessel (Figure 5 clockwise from top right) [11], [2].

VII. Conclusion

We presented the discrete version of heat kernel smoothing and used in showing to to filter 

noisy data along the irregularly shaped blood vessel tree. By making the blood vessel tree in 

CT as a 3D graph, heat kernel smoothing was constructed as a linear combination of graph 

Laplacian eigenfunctions. The method is further used to effectively make the skeleton 

representation of the vessel trees. It may be possible to make a simpler but topologically 

equivalent 3D graph representation using the skeletonized blood vessel. The method can be 

further used in estimating the number of disconnected structures in complex data by 

performing heat kernel smoothing with extremely large bandwidth.
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Fig. 1. 
First few eigenvectors of the Laplacian in a L-shaped domain.
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Fig. 2. 
Heat kernel with bandwidths σ = 0.01, 0.1. We have used degree 70 expansions but the 

shape is almost identical if we use higher degree expansions. The heat kernel is a probability 

distribution that follows the shape of the L-shaped domain.
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Fig. 3. 
The 3D reconstruction of lung vessel tree. The small part (50×50×40 voxeles) of the image 

is used for illustrating heat kernel smoothing.
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Fig. 4. 
From top left to right: 3D lung vessel tree. Gaussian noise is added to one of the coordinates. 

3D graph constructed using 6-connected neighbors. The numbers are the kernel bandwidth 

σ.
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Fig. 5. 
The skeleton representation of vessel trees. Using the heat kernel series expansion with 

bandwidth σ = 1 and 6000 basis, we upsampled the binary segmentation at 2, 4, 6 times 

(clockwise from top right) larger than the original size (top left).
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