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Abstract

Using Kinect sensors to monitor and provide feedback to patients performing intervention or 

rehabilitation exercises is an upcoming trend in healthcare. However, the users’ motion sequences 

differ significantly even when doing the same exercise and are not temporally aligned, making the 

evaluation of the correctness of their movement challenging. We have developed a method to 

divide the long motion sequence for each exercise into multiple subsequences, each corresponding 

to the transition of one key pose to another. We also developed a subsequence-based dynamic time 

warping algorithm that can automatically detect the endpoint of each subsequence with minimum 

delay, while simultaneously aligning the detected subsequence to the reference subsequence for 

the exercise. These methods have been integrated into a prototype system for guiding patients at 

risks for breast-cancer related lymphedema to perform a set of lymphatic exercises in order to 

promote lymphatic health and reduce the risk of lymphedema. The system can provide relevant 

feedback to the patient performing an exercise in real time.

I. INTRODUCTION

Having patients performing prescribed exercises is an important clinical intervention for 

many health conditions such as chronic pain, post-surgery rehab, and physical therapy after a 

sports injury. Using sensor-based systems to automatically track patients’ movements during 

their exercises and to provide instant feedback to the patients regarding the “correctness” of 

their movements holds great promise in reducing the cost for such interventions and 

increasing their effectiveness.

To evaluate the performance of the user’s motion against a reference motion derived from a 

training dataset of motion sequences captured from an lymphatic exercise expert, Alexiadis 

et al. [1] proposed to use the maximum cross correlation (MCC) to calculate a global shift 

between user’s motion sequence and a ground truth sequence. Then, by applying this shift to 

the user’s motion data, the two sequences are aligned and their similarity can be calculated. 

However this method applies one shift to the whole sequence and can not deal with the 

situation where users may have inconsistent speed when performing different parts of an 

exercise. Yurtman et al. [2] applies the dynamic time warping to detect and identify correct 

and incorrect implementations of a physical therapy exercise. However, this system requires 
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the user to attach wearable motion sensors, which is very expensive and inconvenient for the 

user. Wei et al. [3] consider a cloud based system, where a user can download the exercise 

video from the cloud database to a local device. Then, the user employs a Kinect sensor to 

capture his/her motion data and upload the data back to the cloud for a remote server to 

evaluate the correctness of the exercise and provide feedback. They proposed a gesture-

based dynamic time warping algorithm to align the patient motion with a reference motion. 

In their work, the exercise is relatively easy and only focuses on one joint, so the remote 

motion analysis algorithm only needs to consider one joint. Our system is developed to 

handle complicated exercises where multiple joints need to be analyzed, both for temporal 

alignment and for assessment of motion correctness.

The proposed intervention system has two major parts, as shown in Fig. 1. The first part is 

the training stage, during which we capture the joint positions using both a motion capture 

(MOCAP) system and a Kinect sensor. This enables us to develop a Gaussian process 

regression model to denoise the Kinect data to be similar to the MOCAP data, after both 

types of data are mapped to a standard domain to eliminate the bias due to different body 

sizes of the users [4]. Also we use the MOCAP data recorded from an expert to generate the 

reference sequence for each exercise. The second part is for the live session when a patient 

(to be referred to as a user) is performing the intervention exercises and the Kinect sensor 

captures both an RGB video of the user and the joint motion. The system has a display 

screen (see Fig. 1 and Fig. 2) that shows an avatar performing a target exercise and the live 

captured video of the user with an overlay of the skeleton connecting the joint positions. 

First, the Kinect data will be denoised using the trained Gaussian process regression model 

[4]. Then the system will compare the denoised motion sequence with the reference 

sequence established during the training stage, and provide instantaneous feedback to the 

user regarding the improvement needed after processing each subsequence. The system will 

also provide constructive feedback at the end of an exercise. We have developed a prototype 

system, which can operate in real time while a user is performing an exercise.

To enable the comparison of a user’s motion sequence against the reference sequence, we 

recognize that each exercise can be divided into multiple subsequences. We develop a 

dynamic time warping approach that can automatically recognize the endpoints of different 

subsequences, and furthermore temporally align the detected subsequences with the 

corresponding reference subsequences.

The rest of this paper is organized as follows. In Sec. II, we briefly discuss the structure of 

the lymphatic exercises and explain how to generate the reference subsequence. In Sec. III, 

we discuss our gradient-weighted dynamic time warping algorithm for temporal alignment 

of the motion sequence with a reference sequence. We conclude this paper in Sec. IV.

II. EXERCISE SEQUENCE DECOMPOSITION AND REFERENCE SEQUENCE 

GENERATION

The lymphatic exercise is developed by Dr. Mei R. Fu and her research team and is called 

The-Optimal-Lymph-Flow™ (TOLF) exercise. It contains a set of exercises that have been 

shown to improve lymph flow, lessen symptom severity, and reduce the risk for chronic 
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breast-cancer-related lymphedema [5][6][7]. Currently, we only focused on a subset of the 

TOLF exercises that require the tracking of seven upper body joints, specifically left/right 

shoulder, left/right elbow, left/right wrist and spine shoulder. The Institutional Review Board 

approved the project procedures involving human subjects as part of a larger research study.

A. Decomposition of a motion sequence

An exercise contains a series of movements. Here, we define one exercise as a time 

sequence, and each time sample is one static pose, defined by the 3D positions of multiple 

joints. Many poses exist in one exercise, but usually we will focus on a few key poses. Each 

original exercise can be decomposed into several key poses and the transition between two 

key poses. We define the transition from one key pose to the next key pose as a subsequence. 

Futhermore, an exercise usually contains several repetitions of the same set of ordered 

subsequences. For example, the exercise “horizontal pumping”, contains four subsequences. 

During the exercise, users do the first subsequence at the beginning (from ”hands-down” 

to ”T-pose”). Then, they do the subsequence 2 (from “T-pose” to “hands close to the chest”) 

and subsequence 3 (from “hands close to the chest” to “T-pose”) repeatedly four times. This 

will be followed by subsequence 4 (from “T-pose” to “hands down”), which finishes the 

whole exercise. The subsequence decomposition for four exercises are summarized in Table 

I.

B. Reference sequence generation for each exercise

For each exercise, we generate a reference sequence, which consists of multiple 

subsequences and repetitions, and each repetition further consists of multiple subsequences. 

We ask an expert for the lymphatic exercises to perform each exercise several times and 

record the Kinect and MOCAP motion traces for each exercise. We use the MOCAP data to 

create the reference sequence. We divide original MOCAP sequence into several 

subsequences by considering the weighted sum of the temporal gradient magnitudes of the 

joint positions. The raw MOCAP data in one subsequence are shown as Fig. 3(a). Note that, 

although all the subsequences are captured from the same expert, each subsequence has 

different length. This is because it is hard to use the same speed every time when one does 

the exercise. To deal with this problem, we need to normalize the raw MOCAP data to the 

same length before we average these data to create a single reference. Although we can just 

interpolate all the raw data to the same length, as shown in Fig. 3(b), they are not aligned in 

where the transition occurs. To circumvent this problem, we evaluate the second order 

derivative of the raw data and find two turning points.

According to these two turning points, we divide the subsequence into three parts. We map 

each part to an assigned length and then combine three parts together to get our aligned 

subsequences as shown in Fig. 3(c). Finally we use the mean of the aligned subsequences 

from multiple expert traces performing the same subsequence to generate the reference 

sequence for this subsequence.

C. Evaluation of a user’s movement against the reference sequence

For each exercise, we predefine a series of subsequences. When a user performs an exercise, 

her joint motion sequence will be captured by the Kinect sensor. Our system compares the 
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user sequence with the reference subsequences sequentially, to determine the endpoint of 

each subsequence. The system will further analyze the difference between each identified 

user subsequence with the corresponding reference subsequence, to determine what 

feedback to provide to the user.

III. Temporal alignment using Low-delay dynamic time warping

A. Human Reaction Delay and Motion Variability

In our system, a user is supposed to follow the movement of the avatar shown on the display 

during each exercise. Usually, at the beginning of an exercise, the user may take a few 

seconds to understand what should she do before starting to follow the avatar’s movement. 

Fig. 4 shows the reference sequence and a user’s motion sequence during the exercise. We 

can see that the user takes some reaction time to figure out what kind of motion she needs to 

follow in the beginning. After the user has learned what to do in each repeat, the user tends 

to spend less reaction time to do the following subsequences. Also, once a user learns what 

to do, she may do each repeat faster or slower than the avartar. Also, different users will 

perform the same exercise or each subsequence with different speeds. We will discuss how 

to deal with these problems in the following subsections.

B. Dynamic time warping for motion sequences

In the time sequence analysis, dynamic time warping (DTW) is a useful algorithm for 

measuring the similarity between two temporal sequences, which may vary in their temporal 

dynamics. DTW are widely used in temporal sequence matching for audio data processing 

[8]. DTW measures the similarity between two given sequences by finding the optimal 

correspondence between sampling points in the two sequences with certain restrictions. The 

original DTW method was developed for aligning two sequences of scalar variables (e.g. 

audio signal intensity). Here, we extend it to align two sequences of vector variables A = [a1, 

a2, …, aM], and B = [b1, b2, …, bN], where ai and bi each represents the 3D positions of 7 

joints at time sample i. We define a M × N distance matrix with the (m, n)-th entry being the 

Euclidean distance between am and bn is, i.e., d(m, n) = ‖am − bn‖2. To find the best way to 

map sequence A to sequence B, a continuous warping path is found by minimizing the 

summation of the distance on the path. The final DTW path is defined as P = [p1, p2, …, pq], 

where max(M, N) ≤ q ≤ M + N − 1 and pk = (mk, nk) indicates that amk is mapped to bnk in 

the path. The optimal DTW distance is

S(M, N) = ∑
(i, j) ∈ path

d(i, j) (1)

Directly using the DTW on two sequences to evaluate their similarity can be affected by the 

absolute difference in the data amplitude of the two sequences. Following [3], given two 

sequences A = [a1, a2, …, aM] and B = [b1, b2, …, bN], we first find the difference c between 

the two initial elements in sequence A and B, where c = a1 − b1. We then generate the 

normalized sequence B′ with B′ = B + c. We will apply DTW to A and B’ to find the 

optimal correspondence path, and use the resulting path to align A and B.
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C. DTW for Sub-sequence Detection and Alignment

As introduced in Sec. II-A, each exercise can be divided into multiple subsequences. It is 

better to give some feedback after a user has just finished each subsequence, rather than after 

the user has finished the entire exercise. Therefore, we need to develop an algorithm that can 

automatically detect the end of each subsequence soon after it is done, and furthermore align 

this subsequence with its corresponding reference subsequence. We accomplish this goal by 

modifying the original DTW to a subsequence-based DTW. Assume that the reference 

motion sequence for this exercise contains K subsequences and is denoted as A = [A1, A2, 

…, AK], with Ak = [ak,1, ak,2, …, ak,Mk] and the user’s motion sequence for this exercise is 

B = [b1, b2, …, bN]. To determine the endpoint, q, of the first subsequence of the user, we 

compute the DTW distance between each candidate subsequence [b1, b2, …, bq](q = 2, 3…, 

N) with the first subsequence A1 = [a1,1, …, a1,M1] of the reference sequence and find q that 

minimizes the distance S(M1, q). Directly solving this equation means that the endpoint of 

the first subsequence can not be decided until we go through the entire user sequence, which 

is very time consuming and prevents us from giving instantaneous feedback to the user. To 

overcome this problem, we propose a sequential decision approach. Let the initial time when 

the recording of an exercise starts to be 0. We continuously calculate the DTW distance 

between A1 and the user’s current sequence up to time t. We keep capturing the user 

sequence until a certain time t* + 1 when we find the DTW distance S(M1, t*) between A1 

and sequence B = [b0, b1, …, bt*] reaches a local minimum value at t*. That is S(M1, t*) < 

S(M1, t* + 1) and S(M1, t*) < S(M1, t* − 1). To ensure the current point t* is not a poor local 

minimum due to noise, we will continue to compare the DTW distance in the following T 
frames (in this paper we set T as 15). If there is no DTW distance less than the DTW 

distance at time t*, then we set time t* as the endpoint of subsequence 1. Otherwise, we will 

keep looking for the local minimum in the following time points beyond the T frames. Then 

we reset the current time to 0, and start to compare the second subsequence A2 of the 

reference sequence with the new samples of the user’s sequence, to identify the endpoint of 

the second subsequence.

D. Speed up of DTW

The DTW algorithm’s complexity for subsequence k is O(MkNk), which is proportional to 

the length of the user’s subsequence Nk. Therefore, the slower the user’s motion, the more 

computation time the system will spend. To deal with this problem and to accelerate the 

algorithm, we first apply the DTW algorithm every L frames. That is we downsample both 

the reference subsequence and the user sequence by a factor of L. In our work, we set L as 

10. After the system finds the initial endpoint at time t* following the approach described in 

Sec. III-C, we will further check the time points between t* − L to t* in the the original 

sequences to find the best endpoint. Instead of using the DTW distance to decide on the 

optimal endpoint, we look for a mid point in this duration that has the least amount of joint 

motion. We measure the joint motion by the weighted sum of the temporal gradient 

magnitudes of the joint positions. That is, we find the end time point using

t† = arg  min
t ∈ (t∗ − L, t∗)

∑
i ∈ joints

wexercisen
(i) ∗ ‖bt, i − bt − 1, i‖2 (2)
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We assign different weights for different joints based on the characteristics of each exercise.

E. Detection of Repetitions and Robustness to Repetition Variability

Usually in an exercise, the user is told to do several repetitions. For example, do “T-pose” to 

“ hand close to chest” and “ hand close to chest” to “T-pose” four times as shown in Fig. 2. 

In reality, users may forget how many repetitions they have already done, so they may do 

more or less repetitions than the reference sequence, which also can cause alignment error. 

We add a feature in the current system, which let the system choose what are the possible 

candidate subsequence after the current subsequence according to the user’s motion input. 

For example, in Fig. 2, when the user is in key pose 2 (end of subsequence 3), the user can 

either do subsequence 2 again to go to key pose 3 or do subsequence 4 to go to key pose 4. 

When the user finishes subsequence 3, the system will compare the user’s subsequent 

motion data with both reference subsequence 2 and reference subsequence 4, and find out 

the subsequence with the minimal matching error. Furthermore, the system detects the 

completion of one repetition upon the identification of subsequence 3 followed by 

subsequence 2. After the detection of each repetition, the system will display a message 

regarding how many more repetitions the user should do. At the end of this exercise, the 

system will give a friendly message to the user if the user did fewer or more repetitions.

IV. Conclusion

We have developed an exercise guidance system, which can automatically detect whether a 

user is performing a set of exercises properly, based on the joint positions captured by a 

Kinect sensor. The main contribution is a low-delay dynamic time warping algorithm that 

can automatically detect the end of each exercise subsequence while simultaneously aligning 

the detected subsequence with a reference subsequence. Our prototype can accurately align a 

user’s motion sequence with the reference sequence, and evaluate the “correctness” of user’s 

movements in real time, enabling instantaneous feedbacks to the user while the user is 

performing an exercise.
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Fig. 1. 
Proposed system flowchart
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Fig. 2. 
The subsequences and repetitions in “horizontal pumping” exercise
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Fig. 3. 
Traces of the left wrist x-coordinate while users performing a subsequence in 

the ”Horizontal Pumping” exercise. (a) Standardized MOCAP traces; (b) Aligned traces by 

stretching all traces to the same length; (c) Aligned traces by aligning at two key transition 

points.
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Fig. 4. 
The reference sequence and a user’s motion sequence of the x coordinate of the left wrist 

during Exercise 4. Each “sec” indicate a subsequence.
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TABLE I

Decomposition for Four Lymphatic Exercises

Name of the data set Number of
key poses

Number of
subsequences

muscle-tightening deep breathing (Exercise 1) 3 2

over the head pumping (Exercise 2) 3 2

push down pumpingg (Exercise 3) 4 4

horizontal pumping (Exercise 4) 4 4
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