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Abstract

Stuttering is a communication disorder that affects approximately 1 % of the population. Although 

5–8 % of preschool children begin to stutter, the majority will recover with or without 

intervention. There is a significant gap, however, in our understanding of why many children 

recover from stuttering while others persist and stutter throughout their lives. Detecting 

neurophysiological biomarkers of stuttering persistence is a critical objective of this study. In this 

study, we developed a novel supervised sparse feature learning approach to discover discriminative 

biomarkers from functional near infrared spectroscopy (fNIRS) brain imaging data recorded 

during a speech production experiment from 46 children in three groups: children who stutter (n = 

16), children who do not stutter (n=16), and children who recovered from stuttering (n =14). We 

made an extensive feature analysis of the cerebral hemodynamics from fNIRS signals and selected 

a small number of important discriminative features using the proposed sparse feature learning 

framework. The selected features are capable of differentiating neural activation patterns between 

children who do and do not stutter with an accuracy of 87.5 % based on a five-fold cross-

validation procedure. The discovered set cerebral hemodynamics features are presented as a set of 

promising biomarkers to elucidate the underlying neurophysiology in children who have recovered 

or persisted in stuttering and to facilitate future data-driven diagnostics in these children.

Keywords

stuttering; functional near-infrared spectroscopy (fNIRS); speech production; children; data 
mining; feature extraction and selection; biomarkers; mutual information; sparse modeling

I. INTRODUCTION

Stuttering is a communication disorder characterized by involuntary disruptions in the 

forward flow of speech. These disruptions, referred to as stuttering-like disfluencies, are 

recognized as repetitions of speech sounds or syllables, blocks where no sound or breath 

emerge, or prolongation of speech sounds. In recent years, there has been considerable 

progress toward understanding the origins of a historically enigmatic disorder. Past theories 

of stuttering attempted to isolate specific factors such as anxiety, linguistic planning 

deficiencies, or muscle hyperactivity as the root cause of stuttering (for review, see [1]). 

More recently, however, stuttering is hypothesized to be a multifactorial disorder. Atypical 

development of the neural circuitry underlying speech production may adversely impact the 

different cognitive, motor, linguistic, and emotional processes required for fluent speech 

production [2], [3].
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The average age of stuttering onset is 33 months [4]. Although, 5–8 %, of preschool children 

begin to stutter, the majority (70–80 %) will recover with or without intervention [5], [4]. 

Given the high probability of recovery, parents often elect to postpone therapy to see if their 

child's stuttering resolves. However, delaying therapy in children at greater risk for 

persistence allows maladaptive neural motor networks to form that are challenging to treat in 

the future [6], [4]. The lifelong implications of stuttering are significant, impacting 

psychosocial development, education, and employment achievement [7], [8], [9], [10].

There is a significant gap in our understanding of why so many children recover while others 

persist in stuttering. Established behavioral risk factors for stuttering persistence include one 

or more of the following: positive family history, later age of onset (i.e. stuttering began after 

36 months), time since onset, sex–boys are more likely to persist, and type and frequency of 

disfluencies [4]. Combining behavioral risk factors with objective, physiological biomarkers 

of stuttering may constitute a more powerful approach to help identify children at greater 

risk for chronic stuttering. Detecting such physiological biomarkers of stuttering persistence 

is a critical objective of our research [11], [12].

In our earlier study, Walsh et al. (2017) [13] recorded cortical activity during overt speech 

production from children who stutter and their fluent peers. During the experiment, the 

children completed a picture description task while we recorded hemodynamic responses 

over neural regions involved in speech production and implicated in the pathophysiology of 

stuttering including: inferior frontal gyrus (IFG), premotor cortex (PMC), and superior 

temporal gyrus (STG) with functional near-infrared spectroscopy (fNIRS), which is a safe, 

non-invasive optical neuroimaging technology that relies upon neurovascular coupling to 

indirectly measure brain activity. This is accomplished using near-infrared light to measure 

the relative changes in both oxygenated (Oxy-Hb) and deoxygenated hemoglobin (Deoxy-

Hb), two absorbing chromophores in cerebral capillary blood [14]. fNIRS offers significant 

advantages including its relatively low cost and greater tolerance for movement, making it a 

more childfriendly neuroimaging approach. fNIRS has been used to assess the regional 

activation, timing, and lateralization of cortical activation for a diverse number of perceptual, 

language, motor, and cognitive investigations (for review, [15]).

Using fNIRS to assess cortical activation during overt speech production, we found 

markedly different speechevoked hemodynamic responses between the two groups of 

children during fluent speech production [13]. Whereas controls showed clear activation 

over left dorsal IFG and left PMC, characterized by increases in Oxy-Hb and decreases in 

Deoxy-Hb, the children who stutter demonstrated deactivation, or the reverse response over 

these left hemisphere regions. The distinctions in hemodynamic patterns between the groups 

may indicate dysfunctional organization of speech planning and production processes 

associated with stuttering and could represent potential biomarkers of stuttering.

Although different brain signal patterns can be observed for stuttering and control group in 

our previous studies, there is still a lack of reliable quantitative tools to evaluate stuttering 

treatment and recovery process based on brain activity patterns. In our previous studies, we 

have extensive research efforts on specialized machine learning (ML) and pattern 

recognition techniques for multivariate spatiotemporal brain activity pattern identification 
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under different brain states [16], [17], [18], [19]. In this study, we aimed to detect 

neurophysiological biomarkers of stuttering using advanced ML techniques. In particular, 

we performed ML models for two experiments. In experiment (1), we made an extensive 

feature extraction from fNIRS brain imaging data of 16 children who stutter and 16 children 

in a control group collected in our previous study [13]. Next, we developed a novel 

supervised sparse feature learning approach to discover a set of discriminative biomarkers 

from a large set of fNIRS features, and construct a classification model to differentiate 

hemodynamic patterns from children who do and do not stutter. In experiment (2), we 

applied the constructed classification model on a novel test set of fNIRS data collected from 

a group of children who had recovered from stuttering and underwent the same picture 

description experiment. Using the novel test set with children's data that was not used to 

develop the initial algorithms allowed us to assess the model generalization with the 

discovered biomarkers from experiments (1) to (2). We elected to include children who had 

recovered from stuttering in the test group for theoretical and clinical bearings. Young 

children who begin to stutter are far more likely to recover than persist. It is important to 

assess the underlying neurophysiology of different stuttering phenotypes to learn, for 

example, whether recovered children's hemodynamic patterns would classify them with the 

group of controls or with the group of stuttering children. These proof-of-concept 

experiments represent a critical step toward identifying greater risk for persistence in 

younger children near the onset of stuttering.

The remainder of the paper is organized as follows: In Section 2, we present the 

methodology, including participant and data collection details, fNIRS data feature extraction 

and structured sparse feature selection models. In Section 3, we present the results of the 

pattern discovery of biomarkers as well as performance consistency on the novel test-set of 

data from recovered children. In section 4, we discuss the selected features and their 

interpretations in terms of brain regions of interest. Finally, we conclude the study in section 

5.

II. METHOD

A. Participants, fNIRS Data Collection & Pre-processing

In experiment (1), fNIRS data from the 32 children who participated in the Walsh et al. 

(2017) study [13] was analyzed; 16 children who stutter (13 males) and 16 age- and 

socioeconomic status-matched controls (11 males). The participants were between the ages 

of 7–11 years (M = 9 years). Stuttering diagnosis and exclusionary criteria are provided in 

[13].

In experiment (2), a group of 14 children (10 males) between the ages of 8–16 years (M = 12 

years) who recovered from stuttering was analyzed as an additional test group. All of the 

children completed a picture description experiment in which they described aloud different 

picture scenes (“talk” trials) that randomly alternated with “null” trials in which they 

watched a fixation point on the monitor. In order to compare hemodynamic responses among 

the groups of children, only fluent speech trials were considered in the analyses.
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For each experiment, we recorded hemodynamic responses with a continuous wave system 

(CW6; TechEn, Inc.) that uses near-infrared lasers at 690 and 830 nm as light sources, and 

avalanche photodiodes (APDs) as detectors for measuring intensity changes in the diffused 

light at a 25-Hz sampling rate. Each source/detector pair is referred to as a channel. The 

fNIRS system acquired signals from 18 channels (9 over the left hemisphere and 9 over 

homologous right hemisphere regions) that were placed over ROIs relying on 10–20 system 

coordinates Figure (1).

Data analysis is detailed in Walsh et al. [13]. Briefly, the fNIRS data was preprocessed using 

Homer2 software [20]. Usable channels of raw data were low-pass filtered at 0.5 Hz and 

high-pass filtered at 0.03 Hz. Concentration changes in Oxy-Hb and Deoxy-Hb were then 

calculated and a correlation-based signal improvement approach applied to the concentration 

data to reduce motion artifacts [21]. Finally, we derived each child's Oxy-Hb and Deoxy-Hb 

event-related hemodynamic responses from all channels from stimulus onset to the end of 

the trial. We then subtracted the average hemodynamic response associated with the null 

trials from the average hemodynamic response from the talk trials to derive a differential 

hemodynamic response for each channel [22]. The average Oxy-Hb and Deoxy-Hb 

hemodynamic response averaged over all 18 channels is plotted as a function of time for 

each child in Figure (2) and (3).

B. Feature Extraction

As shown in Figure (4), each experimental trial was partitioned into three phases: perception 

or the see-phase (0–2s, the children saw a picture on the monitor), the talk-phase (3–8s, the 

children described aloud the picture), and the recovery-phase (9–23s, the hemodynamic 

response returned to baseline) for measurements of Oxy-Hb and Deoxy-Hb. We extracted 21 

features from each channel; 21 = 4 + 3 + 3 + 1 + (5 × 2(for 1 and 2 sec of delay)). These 

delays were implemented to account for correlation of the signal to its lagged values. The 

names of the feature group and subgroups are shown in Figure (4). Therefore, for each 

subject with 18 channels of fNIRS data, there were 378 extracted features from Oxy-Hb and 

Deoxy-hb measurements in each phase.

The extracted groups of features are summarized in the following.

• Statistical features capture descriptive information of the signals.

• Morphological features comprised the number of peaks and zero crossings and 

measures of curve length.

• Hjorth parameters capture signal variation over time expressed as activity, 

mobility, and complexity.. The three features are defined as: activity = Var(y(t)), 

mobility = var(y(t)dy/dt
var(y(t)) , complexity = mobility(y(t)dy/dt)

mobility(y(t)) .

• Normalized Area Under the Signal (NAUS) calculates the sum of values which 

have been subtracted from a defined baseline divided by the sum of the absolute 

values for the fNIRS signal.
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• Autocorrelation captured the linear relationship of the signal with its historical 

values considering 1 and 2 s delays Kendall, partial, Spearman and Pearson are 

four ways to compute autocorrelation.

• Bicorrelation computes the bicorrelation on the time series Xv for given delays in 

τv. Bicorrelation is an extension of the autocorrelation to the third order 

moments, where the two delays are selected so that the second delay is twice the 

original , (i.e. x(t)x(t−τ)x(t−2τ)). Given a delay of τ and the standardized time 

series Xv with length n, denoted as Yv, the bicorr(τ) can be calculated as:

∑ j = 1
n − 2τ

Yv( j)Yv(τ + j)Yv(2τ + j)
n − (2 × τ) (1)

1) Personalized Feature Normalization: As illustrated in Figures (2) and (3) fNIRS signals 

vary dynamically across subjects, imposing a challenge to biomedical research. Because of 

inter-individual variability in signal features, it is difficult to build a robust diagnostic model 

to accurately discriminate between groups of participants. Outliers can further distort the 

trained model, thus impeding generalization. To tackle these issues, we applied a 

personalized feature normalization approach to standardize the extracted feature values of 

each subject onto the same scale to enhance feature interpretability across subjects.

To accomplish this, we calculated the upper and lower limits for each extracted feature using 

the formula Vl= max(minimum feature value, lower quartile + 1.5 × interquartile range) for 

the lower limit, and Vu= min(maximum feature value, upper quartile + 1.5 × interquartile 

range) for the upper limit. Feature values outside of this defined interval were considered to 

be outliers and mapped to 0 or 1. More details can be found in study [23]. Assuming the raw 

feature value was Fraw, the scaled feature value Fscaled was obtained by:

Fscaled =
Fraw − V l
Vu − V l

. (2)

C. Integrated Structured Sparse Feature Selection using Mutual Information

Feature selection techniques are widely used to improve model performance and promote 

generalization in order to gain a deeper insight into the underlying processes or problem. 

This is accomplished by identifying the most important decision variables, while avoiding 

overfitting a model. Most feature selection techniques classify into three categories: 

embedded methods, wrapper methods, and filter methods [24]. Both embedded and wrapper 

methods seek to optimize the performance of a classifier or model. Thus, the feature 

selection performance is highly limited to the embedded classification models. Filter feature 

selection techniques assess the relevance of features by measuring their intrinsic properties. 

Widely used models include correlation-based feature selection [25], fast correlation-based 

feature selection [26], minimum redundancy features (biomarkers) maximum relevance 

(mRMR) [27] and information-theoreticbased feature selection methods [28].
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Sparse modeling-based feature selection methods have gained attention owed to their well-

grounded mathematical theories and optimization analysis. These feature selection 

algorithms employ sparsity-inducing regularization techniques, such as L1-norm constraint 

or sparse-inducing penalty terms, for variable selection. To construct more interpretable 

models, structured sparse modeling algorithms that consider feature structures have recently 

been proposed and show promising results in many practical applications including brain 

informatics, gene expression, medical imaging analysis, etc. [29], [30], [31], [32]. However, 

most of the current structured sparse modeling algorithms only consider linear relationships 

between response variables and predictor variables (features) in the analysis and may miss 

complex nonlinear relationships between features and response variables that may be 

present. On the other hand, although some filter or wrapper methods have the capability to 

capture nonlinear relationships between features and response variables, feature structures 

may not be optimally identified in the feature selection procedure. Constructing interpretable 

learning models with efficient feature selection remains an open and active research area in 

the machine learning community. Zhongxin et al. [33] proposed a feature selection 

algorithm based on mutual information (MI) and least absolute shrinkage and selection 

operator (LASSO) using L1 regularization with application to microarray data produced by 

gene expression. In our previous study, we also proposed a MI-based sparse feature selection 

model for EEG feature selection and applied it to epilepsy diagnosis [34]. However, feature 

structures were not considered during feature selection in both [33] and [34].

To consider both linear and nonlinear relationships between features and response variables, 

while acknowledging feature structures in feature selection, we propose a novel feature 

selection framework that integrates information theorybased feature filtering and structured 

sparse learning models to effectively capture feature dependencies and identify the most 

informative feature subset. There are two differences with respect to earlier studies [33] and 

[34]: (1) we did not use regularization techniques like LASSO as the second rank filtering; 

rather, we used sparse-inducing regularization to reveal the second-level feature-response 

relationships; (2) we applied structured feature learning by penalizing the feature groups. We 

implemented the proposed informationtheory-based structured sparse learning framework to 

identify the optimal feature subset as discriminant neurophysiological biomarkers of 

stuttering.

1) Mutual Information for Feature Selection: MI is an index of mutual dependency 

between two random variables that quantifies the amount of information 

obtained about one random variable from the other random variable [35]. MI 

effectively captures nonlinear dependency among random variables and can be 

applied to rank features in feature selection problems [27]. The fundamental 

objective of MI-based filtering methods is to retain the most informative features 

(i.e., with higher MI) while removing the redundant or lessrelevant features (i.e., 

with low MI). The mutual information of two random variables X and Y, 

denoted by I(X,Y ), is determined by the probabilistic density functions p(x), 

p(y), and p(X,Y ):
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I(X; Y) = ∑
y ∈ Y

∑
x ∈ X

p(x, y) log p(x, y)
p(x)p(y) , (3)

1) Structured Sparse Feature Selection: A sparse model generates a sparse (or 

parsimonious) solution using the smallest number of variables with non-zero 

weights among all the variables in the model. One basic sparse model is LASSO 

regression, which employs L1 penalty-based regularization techniques for 

feature selection [36]. The LASSO objective function is formulated as follows:

min Ax − Y + λ1 x 1 , (4)

where A is the feature matrix, Y is the response variable, λ1 is a regularization 

parameter and x is the weight vector to be estimated. The L1 regularization term 

produces sparse solutions such that only a few values in the vector x are 

nonzero. The corresponding variables with non-zero weights are the selected 

features to predict the response variable Y.

Structured Features (Sparse Group LASSO (SGL)) The basic LASSO model, and many 

L1 regularized models, assume that features are independent and overlook the feature 

structures. However, in most practical applications, features contain intrinsic structural 

information, (e.g., disjoint groups, overlapping groups, tree-structured groups, and graph 

networks) [32]. The feature structures can be incorporated into models to help identify the 

most critical features and enhance model performance.

As outlined in section 2.2, the features we extracted from the raw fNIRS data are disparate; 

thus they can be categorized into disjoint groups. The sparse group LASSO regularization 

algorithm promotes sparsity at both the within- and betweengroup levels and is formulated 

as:

min ‖Ax − Y‖ + λ1‖x‖1 + λ2 ∑
i = 1

g
ωi

g‖xGi
‖

2

A ∈ Rm × n, y ∈ Rm × 1, x ∈ Rn × 1,

(5)

where the weight vector x is divided by g nonoverlapping groups: xG1
, xG2

, …, xGg
, and ωi

g

is the weight i for group g. The parameter λ1 is the penalty for sparse feature selection, and 

the parameter λ2 is the penalty for sparse group selection (i.e. the weights of some feature 

groups will be all zeroes). In cases where feature groups overlap, the sparse overlapping 

group LASSO regularization can be used [37].

3) Integrated MI-Sparse Feature Selection Framework: The objective of our 

approach is to consider structured feature dependency while keeping the search 
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process computationally efficient. To accomplish this, we employed the MI-

guided feature selection framework outlined in Algorithm (1). Given a number 

of features k, the subset of top k features ranked by MI is denoted by S, and the 

subset of the remaining features is denoted by W. From S, the optimal feature 

subset is selected by exploring the k1 high-MI features which includes the 

iterative process of removal of highly-correlated features with 0.96 threshold. 

From W , the k2 sparse-model selected low-MI features. The final selected 

features subset is the set of (k1 + k2) features which are evaluated based on the 

crossvalidation classification performance. Enumeration of k1 starts from 1 and 

ascends until reaching the stopping criteria (i.e., when the cross-validation 

accuracy converges and cannot be further improved). MISS Algorithm (1) can 

be applied in two ways: (1) without group structure, which is a combination of 

mutual information and LASSO namely (MILASSO), (2) with group structure, 

which is a combination of mutual information and SGL namely (MISGL).

Algorithm 1

Mutual Information Sparse Feature Selection (MISS)

1: Rank all features based on mutual information

2: repeat

3:     k1 = k1 + 1

4:     repeat

5:         Divide sorted features to high-MI and low-MI

6:         S ← high-MI

7:         Remove redundant features from S

8:     until k1 features remain after reduction

9:     W ← low-MI

10:     Apply sparsity learning to W

11:     k2 ← number of selected features by SGL or LASSO

12:     Build classifier model with k1 + k2 selected features

13: until classifier performance converges

D. Machine Learning Algorithm Selection & Evaluation

We applied established ML algorithms [38] (i.e., support vector machine (SVM), k-nearest 

neighbor (kNN), decision tree, ensemble, and linear discriminant) to assess whether cerebral 

hemodynamic features could accurately differentiate the group of children who stutter from 

controls. An overview of the steps involved in feature extraction and model evaluation is 

provided in Figure (6).

1) Support vector machines: SVM is considered to be a popular and promising 

approach among classification studies tuning [39]. It has been used in a variety 

of biomedical applications; for example, to detect patterns in gene sequences or 

to classify patients according to their genetic profiles, with EEG signals in brain-

computer interface systems, and to discriminate hemodynamic responses during 

visuomotor tasks [40], [17], [41], [42]. In this study we applied Gaussian radial 
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basis function (RBF) as the kernel which maps input data x to higher 

dimensional space.

2) Bayesian Parameter Optimization: Parameters in each classifier significantly 

affect its performance. We applied Bayesian optimization, part of the Statistics 

and Machine Learning Toolbox in Matlab, to optimize hyper-parameters of 

classification algorithm [43]. By applying Bayesian optimization algorithm, we 

want to minimize a scalar objective function (f(x) = cross-validation 

classification loss) for the classifier parameters in a bounded domain.

3) N-fold Cross-Validation: We applied N-fold cross-validation (N=5) for training 

and testing. First, we selected the features and optimized the parameters of the 

classification algorithm on the training set then applied the tuned model on the 

testing set, see Figure (6). Accuracy is defined as the ratio of correctly classified 

test subjects to the total number of subjects. Sensitivity is the ratio of children in 

the stuttering group correctly identified as stuttering to all of the children in the 

stuttering group. Specificity is the ratio of children correctly identified as 

controls to the total number of children in the control group. In this study, we 

used the average sensitivity and specificity values to measure binary 

classification accuracy for each ML model.

III. RESULTS

Classifier performance is reported for experiment (1) based on the outcome of the N-fold 

cross-validation procedure on the test-set, see Table (I). For experiment (2) classification 

performance was established on a novel test-set of 14 children who had recovered from 

stuttering, see Table (IV).

A. Experiment (1): Choosing the best ML Algorithm

The most accurate ML algorithm on the raw fNIRS data was the tree classifier with 77.5 % 

accuracy. The highest accuracy obtained after feature extraction and application of feature 

selection (MILASSO) was SVM (with RBF kernel) that achieved 87.5 % accuracy, Table (I). 

The phase of the fNIRS trial that distinguished the groups of children was the talk interval 

and the source was Oxy-Hb. However in some cases performance using features derived 

from DeoxyHb measurements reached comparable accuracy as those from Oxy-Hb.

B. Experiment (1): Comparing Feature Selection Algorithms

In Table (II), we compared the performance of the proposed feature selection algorithm 

(MISS) with the popular existing MI-based method like mRMR and linear regularized 

methods like LASSO and SGL. MISS approach outperformed mRMR in feature selection by 

yielding higher SVM classification performance with the same number of selected features, 

(14 and 11 for measurement source of deoxy-Hb and oxy-Hb), approximately 7.5 and 

27.5 % respectively. MISS approach outperformed LASSO and SGL in feature selection 

yielding higher classification accuracy approximately 2.5 to 12.5 %.
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C. Experiment (1): Selected Features

From an extended set of features, a subset that provided the highest classification accuracy 

was identified by MISGL and MILASSO in the SVM(RBF) model. This subset of features, 

shown in Figure (7), comprises statistical, NAUS, Hjorth parameters, autocorrelation and 

bicorrelation features. Channels that provided the highest discriminative power to 

differentiate between children who stutter and controls were localized to the left hemisphere; 

specifically, channels 1, 4, and 5 over left IFG.

The top 14 features from the entire feature set are listed inTable (III). These features, (2 

based on MI and 12 based on LASSO), were extracted from the talk-phase with source 

OxyHb. We performed 2-tailed t-tests on these features. p-values ≤ 0.05, confirm a 

significant statistical difference between children who stutter and controls for a given 

feature.

1) Feature Selection Optimization: The number of features selected by MILASSO 

or MISGL affects the performance of the classifier; a more sparse selection 

enhances model performance, promotes generalization, and facilitates the 

interpretation of results. During the enumeration process for MI selection, we 

learned that with less than 10 MI features (total features ≤ 15 − 22), the average 

classifier performance was approximately 80 %; with 15 to 30 MI features (25 

− 35 ≤ total features ≤ 40) , performance was approximately 75 %; with more 

than 30 MI features, (total features ≥ 42 ), the accuracy decreased to 70 %. The 

highest accuracy with the least number of features came from 11 total features 

with the MILASSO approach, 2 MI and 9 LASSO and 12 total features with the 

MISGL approach, 8 MI and 4 SGL.

2) Biomarkers: The features in Table (III) that showed significant differences 

between children who stutter and controls are recognized as biomarkers. Box-

plots of these features for the children who stutter and controls are plotted on a 

common scale in Figure (8). The discriminative features we detected in Figure 

(8) comprised significantly lower values of NAUS and slightly higher values of 

Hjorth mobility and bicorrelation with 2 sec of delay for children who stutter 

compared to controls.

D. Experiment (2): Stuttering Recovery Assessment with Selected Features

In this section we report the performance of the classifier on the additional test-set (data 

from 14 children who recovered from stuttering), shown in Table (IV). We applied the best-

performing algorithm based on the results from experiment (1): SVM with tuned parameters 

sigma = 1 and penalty = 0.001 on the entire dataset. We documented that 71.43 %, or 

approximately 10 out of 14 children who had recovered from stuttering, classified into the 

control group based on features derived from fNIRS signals derived from the talk-phase of 

the experiment. The same degree of stuttering recovery assessment (SRA) was achieved with 

both Oxy-Hb and Deoxy-Hb sources Table (IV).
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IV. DISCUSSION

In experiment (1), we applied structured sparse feature learning models to previously 

collected speech-evoked fNIRS data from Walsh et al. [13] to explore whether 

neurophysiological biomarkers could accurately classify hemodynamic patterns from 

children who do and do not stutter. Following feature extraction and feature selection with 

MISS, the SVM achieved the highest classification accuracy of 87.5 %. With this model, 

classification performance was improved by 10 % using feature extraction and sparse MI-

based features selection. This degree of accuracy was reached using features extracted 

during the talk interval of the trial from the source, Oxy-Hb (although features extracted 

from Deoxy-Hb reached comparable accuracy). A feature set comprising statistics, NAUS, 

Hjorth parameters, autocorrelation and bicorrelation features provided the highest 

discriminative power. Notably, nearly all of these features were extracted from channels 

localized to the left hemisphere (i.e. channels 1–9). The selected features may not be 

significant individually as shown in Table (III), thus they can be ignored or missed in basic 

statistical analyses used by many feature selection algorithms. The MISS approach is 

valuable to reveal clear discriminative patterns among features in a higher dimensional 

space, and to discover relevant multivariate biomarkers.

Features from channels 1, 4 and 5, which span left IFG, were identified as 

neurophysiological biomarkers that distinguished hemodynamic characteristics of children 

who stutter from controls. These included significantly reduced NAUS in left IFG channels 

4 and 5 and increased Hjorth mobility parameters, denoting increased variability, in left IFG 

channels 1 and 4 in children who stutter.

In our earlier study [13], we found significantly reduced Oxy-Hb and increased Deoxy-Hb 

concentrations during the talk interval in channels over left IFG in the group of children who 

stutter. The left IFG comprising Broca's area is integral to speech production and may 

develop atypically in children who stutter. Neuroanatomical studies reveal aberrant 

developmental trajectories of white and gray matter of left IFG in children who stutter 

compared to controls [44], [45]. Moreover, there is evidence of reduced activation of IFG/

Broca's area during speech production from fMRI studies with adults who stutter [46], [47]. 

In our earlier study [13], we hypothesized that this finding may represent a shift in blood 

flow to regions outside of our recording area to compensate for functional deficits in left 

IFG. An alternative possibility is a disruption in corticalsubcortical loops resulting in a net 

inhibition of this region. This is the first study to elucidate group-level differences by 

classifying individual children as either stuttering or not stuttering using features derived 

from their speech-evoked brain hemodynamics. Based on the sensitivity index from the final 

model, three children who stutter classified as controls (i.e., false negatives). Interestingly, 

two of these three children were considered to be mild stutterers when they participated and 

have since recovered from stuttering (determined via a followup visit or through parental 

report). It is tempting to speculate that the recovery process had already begun for these 

children when we recorded their hemodynamic responses during the initial study. However, 

longitudinal studies in younger children (i.e., near the onset of stuttering) are necessary to 

track the developmental trajectories of their hemodynamic responses as they either recover 

from or persist in stuttering to empirically assess this assumption.
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Finally, we compared the consistency of the best-performing SVM classifier using N-fold 

cross-validation from experiment (1) with results achieved using the SVM classifier on a 

novel test-set of data from 14 children who had recovered from episodes of early childhood 

stuttering in experiment (2). We found that the majority of the recovered children, or 

71.43 %, classified as controls, rather than children who stutter. This suggests that left-

hemisphere stuttering biomarkers that dissociated stuttering children's speech-evoked 

hemodynamic patterns from controls, may indicate chronic stuttering, while recovery from 

stuttering in many of these children was associated with hemodynamic responses similar to 

those from children who never stuttered. Stuttering recovery may thus be supported, in part, 

by functional reorganization of regions such as left IFG that corrects anomalous brain 

activity patterns. Although this speculation warrants further study and replication, an fMRI 

study with adults who recovered from stuttering identified the left IFG as a pivotal region 

associated with optimal stuttering recovery [48].

A final point to consider is that although most of the recovered children had hemodynamic 

patterns similar to controls, four of these children classified into the stuttering group. Given 

that stuttering is highly heterogeneous, with multiple factors implicated in the onset and 

chronicity of the disorder [2], it is not surprising to find evidence suggesting that recovery 

processes may be different for some children. More research is clearly needed to substantiate 

the neural reorganization that accompanies both spontaneous and therapy-assisted recovery 

from stuttering.

V. CONCLUSION

In this final section, we present several suggestions regarding data preprocessing, feature 

selection and ML training and evaluation to guide future investigations in this line of 

research.

First, the personalized feature scaling approach facilitated the discovery of discriminative 

patterns by removing data outliers and reducing the variability in each feature. This was a 

critical step in our approach to address inherent interindividual differences in the 

physiological signals.

Second, the MISS approach yielded a final feature space that was both parsimonious and 

interpretable. In particular, MISGL, that considers feature group structures in sparse feature 

learning, and achieved the best classification performance with the least number of selected 

features. We compared our result from the MISS approach with commonly used feature 

selection techniques in Table (II), and the results proved that MISS outperformed the 

methods which solely applied either MI or regularized linear regression significantly. More 

importantly, MISS pinpointed specific left hemisphere channels that classified children as 

stuttering/nonstuttering with higher accuracy and corroborated findings from our earlier 

experiment [13].

In summary, the proposed MI-based structured sparse feature learning method demonstrates 

its effectiveness to discover the most discriminative features in a high dimensional feature 

space with a limited number of training samples, a common challenge for health care and 
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medical data mining approaches. Compared to other methods, the proposed MISS approach 

offers a promising, interpretable solution to facilitate data-driven advances in clinical and 

experimental research applications.
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Fig. 1: 
Approximate positions of emitters (orange circles) and detectors (purple circles) are shown 

on a standard brain atlas (ICBM 152). The probes were placed symmetrically over the left 

and right hemisphere, with channels 1–5 spanning inferior frontal gyrus, channels 6–7 over 

superior temporal gyrus, and channels 8–9 over precentral gyrus/premotor cortex.
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Fig. 2: 
Oxy-Hb hemodynamic responses averaged over all 18 channels for each subject. Controls 

are plotted on the left (cyan curves) and stutterers on the right (magenta curves). The grand 

average hemodynamic response across all channels and subjects is represented by the black 

dashed curve.
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Fig. 3: 
Deoxy-Hb hemodynamic responses averaged over all 18 channels for each subject. Controls 

are plotted on the left (cyan curves) and children who stutter on the right (magenta curves). 

The grand average hemodynamic response across all channels and subjects is represented by 

the black dashed curve.
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Fig. 4: 
The process of feature engineering: pre-process input data, features extraction, post-process 

the features
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Fig. 5: 
Feature selection and tuning the regularization parameters via N-fold cross-validation in 

order to introduce the promising features (biomarkers).
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Fig. 6: 
The process of choosing the most accurate ML classification algorithm with N-fold cross-

validation and parameter tuning
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Fig. 7: 
Statistical summary of the selected feature groups and channels with MILASSO and MISGL 

in N-fold cross validation. In each fold, there was 11 to 14 selected features, from different 

channels and feature-groups. The pie charts illustrate the group that selected features most 

frequently came from. The histograms summarize the channel selection with MISGL and 

MILASSO. For example, from approximately 60 total features selected from 5 folds, 6 

features were selected from channel 1, and 9 features from channel 4 (either based on MI 

ranking (yellow bar) or LASSO coefficients (blue bar) which are stacked for each channel).
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Fig. 8: 
Box-plot of top 5 significant features from talk-phase and source Oxy-Hb, ch: channel, (S: 

stutterer , C: control).
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Table II:

Comparison among performance of various feature selection algorithms via SVM classification accuracy on 

the selected features with each approach

Feature selection Method Deoxy-Hb Oxy-Hb

Tot num feat Avg(sen, spe) Tot num feat Avg(sen, spe)

mRMR 14 75 11 60

LASSO ~ 6.4 * 80 ~ 4.8 * 75

SGL ~ 6.4 * 77.5 ~ 7 * 78

MISS(MILASSO, MISGL) 14 82.5 11 87.5

Tot num feat: total number of selected features

*
indicates the average number of selected features among N-fold for LASSO and SGL methods Avg(sen, spe)= average of sensitivity and 

specificity (%)
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Table III:

Top 14 features selected with MISS along with p-value (0.05 threshold for statistically significant t-test). With 

top 11 features, 87.5 % accuracy was achieved in N-fold cross-validation

Feature rank Feature name p-value Feature rank Feature name p-value

1 NAUS, ch 4 0.0001 8 Hjorth mobility, ch 1 0.0014

2 Hjorth mobility, ch 4 0.0022 9 NAUS, ch 8 0.1095

3 Hjorth activity, ch 1 0.2800 10 AC partial 2s, ch 14 0.1745

4 Bicorrelation 2s, ch 6 0.0225 11 AC Spearman 1s, ch 6 0.9238

5 NAUS, ch 5 0.0003 12 Hjorth activity, ch 4 0.1792

6 Variance, ch 9 0.5319 13 Variance, ch 4 0.0605

7 Bicorrelation 1s, ch 14 0.6252 14 AC Spearman 1s, ch 7 0.6277

AC: autocorrelation, ZC: zero crossing, CL: curve length

NAUS: normalized area under signal, ch: channel 1 or 2s: 1 or 2 second of delay
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Table IV:

The best SVM performance on the additional testset (recovered samples)

phase source Fsel M Tot num SRA

talk Deoxy-Hb MILASSO 14 71.43

talk Oxy-Hb MISGL 11 71.43

Fsel M: feature selection method, SRA: stuttering recovery assessment Tot num: total number of selected features with MISS
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