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Abstract

Medium-ring natural products exhibit diverse biological activities but such scaffolds are 

underrepresented in probe and drug discovery efforts due to the limitations of classical 

macrocyclization reactions. We report herein a tandem oxidative dearomatization-ring-expanding 

rearomatization (ODRE) reaction that generates benzannulated medium-ring lactams directly from 

simple bicyclic substrates. The reaction accommodates diverse aryl substrates (haloarenes, aryl 

ethers, aryl amides, heterocycles) and strategic incorporation of a bridgehead alcohol generates a 

versatile ketone moiety in the products amenable to downstream modifications. Cheminformatic 

analysis indicates that these medium rings access regions of chemical space that overlap with 

related natural products and are distinct from synthetic drugs, setting the stage for their use in 

discovery screening against novel biological targets.

East River Reactivity:

Reversal of electron flow during a tandem oxidative dearomatization-ring-expanding 

rearomatization reaction (left) was inspired by the East River in New York City, a tidal estuary that 
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reverses direction with each tide (right). The tandem reaction provides rapid and efficient access to 

a wide range of medium-ring products that probe natural product-like regions of chemical space.
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Introduction

Medium-ring structures (8–11-membered rings)[1] are found in diverse biologically-active 

natural products[2] and are attractive scaffolds for use in discovery libraries.[3–16] Such 

scaffolds have also been leveraged in structure-based drug design.[17–19] The cyclic 

constraint imparts conformational restriction that is associated with favorable 

pharmacological properties, including increased binding affinity,[20] cell permeability,[21,22] 

and oral bioavailability.[23] However, medium rings remain severely underrepresented in 

screening collections and approved drugs,[24] likely due to the well-known synthetic 

challenges in accessing these structures.[25] Conventional cyclization-based approaches to 

medium rings are highly substrate-dependent[26–29] and suffer from the lowest cyclization 

rates among all ring sizes due to unfavorable transannular interactions.[25] To address this 

synthetic challenge, we have been developing alternative synthetic approaches based on ring 

expansion to access medium-ring and macrocyclic structures.[15,16] Herein, we report a new 

tandem oxidative dearomatization-ring expansion (ODRE) reaction that provides efficient 

access to a wide range of medium-ring lactams in a single step from readily available 

bicyclic substrates (Fig. 1a). We demonstrate the scope of this tandem ODRE across 31 

substrates, and downstream reactions of the resulting scaffolds to introduce additional 

functionalities. Cheminformatic analysis confirms that the resulting medium-ring 

compounds access regions of chemical space that overlap with related natural products and 

are distinct from synthetic drugs and conventional drug-like libraries.

In recent years, there has been growing interest in developing creative synthetic strategies to 

access medium-ring compounds.[30–33] Tandem cyclization/ring expansion approaches[34–40] 

are particularly useful as they offer greater efficiency and flexibility compared to 

conventional direct cyclization methods. However, despite these advances, several 

limitations are commonly observed, such as tedious multistep substrate preparation and 

narrow tolerance of functional groups and ring sizes found in natural products and bioactive 

pharmacophores.[41–43]

We recently reported a biomimetic, stepwise ODRE sequence to access diverse, natural 

product-based benzannulated medium rings (Fig. 1b).[16] This synthetic approach was 

inspired by Barton’s seminal proposal for the biosynthesis of the alkaloid protostephanine,
[44] which was later reduced to practice in several biomimetic syntheses.[45–49] Initial 

oxidative dearomative of a bicyclic phenol substrate forms an electrophilic cyclohexadienyl 

cation intermediate, which is then attacked by a side chain nucleophile to generate a tricyclic 

cyclohexadienone. This intermediate is then activated with a Brønsted acid, Lewis acid, or 

triflic anhydride to induce ring expansion with rearomatization of the phenol ring. While this 
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stepwise ODRE sequence provided a variety of ring linkages found in medium-ring natural 

products, including aryl ethers, diaryl ethers, lactones, and biaryls, it was restricted to 

phenolic substrates and often led to mixtures of olefin isomers and solvent adducts, arising 

from various termination reactions of a penultimate tertiary carbocation intermediate.

To overcome these limitations, we envisioned a new umpolung approach in which the initial 

oxidative dearomatization step would instead proceed via attack of an electron-rich aromatic 

ring on an electrophilic side chain (Fig. 1c).[50–56] This would allow a wider range of non-

phenolic substrates to be used and might also allow direct ring expansion from the nascent 

reactive intermediate in a tandem reaction (Fig. 1a). This umpolung ODRE strategy would 

also allow installation of a tertiary alcohol in the substrate to terminate the cationic cascade 

via formation of a ketone product, avoiding various other termination pathways as well as 

providing a versatile handle for further functionalization. Notably, Kikugawa has leveraged 

hypervalent iodine activation of N-methoxyamides as nitrenium electrophiles in such 

umpolung reactivity,[54] which was used by Wardrop in ipso-cyclization reactions to 

synthesize spirolactams.[57–59] Thus, we set out to investigate the utility of such N-

methoxyamide side chains in an ODRE approach to medium-ring synthesis.

Results and Discussion

Development of tandem ODRE with haloaromatic substrates

In initial studies, we investigated the reactivity of bromotetralin 1a to access medium-ring 

lactam 3a (Fig. 2a). The phenol in the original substrate system (Fig. 1b) was replaced with 

an aryl bromide[60,61] to avoid competing oxidative activation of the phenol. Indeed, 

Ciufolini has reported extensive studies of such oxidative dearomatization reactions of 

phenols in the presence of nitrogen nucleophiles under the ‘normal’ polarity reaction 

manifold.[62–65] We postulated that umpolung oxidative dearomatization would provide a 

cyclohexadienyl bromonium intermediate 2a in situ,[60] which could then undergo 

spontaneous ring-expanding rearomatization to form a C1 tertiary carbocation, providing the 

olefin 3a after E1 elimination.[16] We recognized that a potential undesired pathway could 

involve solvolysis of the bromonium intermediate 2a to form a stable cyclohexadienone 

intermediate that would not be expected to undergo spontaneous ring expansion.[16,60] 

Moreover, the penultimate C1 tertiary carbocation could also form other endo- and exocyclic 

olefin regioisomers or solvent adducts.[16]

Treatment of bromotetralin 1a with (diacetoxyiodo)benzene in trifluoroethanol led to a 

mixture of olefin regioisomers (70 : 28 : 2 β,γ / γ,δ / γ,δ) for the desired medium-ring 

lactam product 3a. Use of PhI(TFA)2 in trifluoroethanol improved the ratio of olefin isomers 

(75 : 18 : 7). Moreover, changing the solvent to nitromethane provided 3a in 65% yield as a 

91:9 mixture of β,γ and γ,δ’ olefin regioisomers, without formation of the γ,δ isomer. 

Similarly, PhI(TFA)2-mediated tandem ODRE of chlorotetralin 1b, iodotetralin 1c, and 

fluorotetralin 1d afforded the corresponding medium-ring lactams 3b, 3c, and 3d in modest 

to good yields, with varying regioselectivity favoring endocyclic β,γ olefins.
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Strategic installation of tertiary alcohol to generate ketone products

Next, to avoid formation of mixtures of olefin regioisomers, we replaced the C1-methyl 

group in the tetralin substrate with a hydroxyl group, which would lead to a single ketone 

product (Fig. 2b). We reasoned that the lone-pair electrons of the hydroxyl group would also 

potentiate the ring-expanding rearomatization step, by analogy to previous biomimetic 

syntheses of protostephanine and related alkaloids, in which an endocyclic amine nitrogen 

likely plays a similar role in driving ring-expanding rearomatization.[45–49] Moreover, the 

resulting ketone motif would serve as a versatile handle for further chemical diversification 

of the medium-ring scaffolds. Notably, this approach was not feasible in the original 

stepwise ODRE sequence with phenolic substrates[16] due to competing Adler–Becker 

oxidation.[66,67] Thus, reversing the electron flow in the oxidative dearomatization step of 

this umpolung tandem ODRE reaction was critical to this approach.

Accordingly, bromotetralol 7a was prepared from commercially available 6-amino-1-

tetralone (4a) in 3 steps and 76% overall yield. Treatment of 7a with PhI(TFA)2 in 

nitromethane then afforded the desired β-ketolactam 9a in 73% yield. The corresponding 

chloro-, iodo-, and fluorotetralol substrates 7b-d were also obtained using the same scalable, 

efficient synthetic sequence and converted via tandem ODRE to medium rings 9b-d in good 

yields (Fig. 3). The aryl fluoride product 9d was obtained in the highest yield in this series 

(81%), consistent with improved “back-donation” of the fluorine lone pairs to stabilize the 

cyclohexadienyl halonium intermediate.[60,68]

Scope of the tandem ODRE reaction

We next investigated the effects of varying ring size in the substrates (Fig. 3). In tandem 

ODRE reactions of haloindanol substrates 10a-d , the corresponding 8-membered ring 

lactam products 11a-d were recovered in moderate 37–51% yields. This decreased 

efficiency may be attributed to competing formation of indene side products via dehydration 

of the indanol substrates, or poor orbital overlap of the scissile bond with the nascent 

aromatic p-system in the rearomatization reaction.[16] In contrast, the corresponding 

halobenzosuberanols 12a-c and halobenzocyclooctanols 14a,b afforded 10- and 11-

membered benzannulated lactams 13a-c and 15a,b, respectively, in 70–90% yields.

Next, we explored the use of aryl ether substrates in the tandem ODRE. Anisoles have been 

used previously in such umpolung oxidative dearomatization spirocyclization reactions of N-

methoxyamides.[57–59] However, reaction of the anisole 16 led to only a 15% yield of the 

desired medium-ring lactam 17. From this complex mixture, we also recovered a 

cyclohexadienone side product (≈20%), presumably resulting from hydrolysis or 

demethylation of the corresponding O-methyl oxocarbenium intermediate (Supplementary 

Fig. 1a). We posited that this unproductive pathway could be avoided by stabilizing the O-

methyloxocarbenium intermediate with a temporary nucleophile. Thus, when the reactions 

were conducted in methanol instead of nitromethane, the 9- and 10-membered medium-ring 

products 17 and 19 were obtained in 86% and 87% yields, respectively.

Notably, subjecting 16 to the same conditions in CD3OD did not result in deuterium 

incorporation in the methyl ether moiety of the product 17, suggesting that methanol may 
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undergo a 1,4-addition to the O-methyloxocarbenium intermediate, followed by elimination 

during, or en route to, anisole rearomatization (Supplementary Fig. 1b).

In contrast, chromanone-derived substrates 20a,b and flavanone derivative 22, both having 

an endocyclic ether moiety, did not suffer from the dealkylation pathway in nitromethane, 

and proceeded to the medium-ring products 21a,b and 23, respectively, in excellent yields 

(82–89%). Similarly, acetanilide substrate 24 and quinolone derivative 26 provided the 

corresponding acetamidoaryl lactam and sulfonamidoaryl lactam products 25 and 27 
respectively, under the standard reaction conditions. Sulfanilides have been used previously 

in hypervalent iodine-induced oxidative dearomatization spirocyclization reactions under the 

‘normal’ polarity reaction manifold.[69]

We next sought to extend the tandem ODRE reaction to heteroaromatic ring systems found 

in natural products and drug pharmacophores. Commercially available furano-, thiopheno-, 

and pyrrolocyclohexanones were transformed into the corresponding b-hydroxy-N-

methoxyamide substrates 28, 29, and 32, respectively, then converted via tandem ODRE to 

9-membered ring lactam products 30, 31, and 33 in serviceable yields. Hypervalent iodine-

induced oxidative dearomatization reactions have been reported under the ‘normal’ polarity 

reaction manifold for furans.[70,71] and under the umpolung reaction manifold for thiophenes 

and pyrroles.[72,73] Further, indoles 34 and 36 proved to be reactive as nucleophiles at both 

the C3-and C2-positions, respectively, providing the corresponding regioisomeric indole 

products 35 and 37. Hypervalent iodine-induced oxidative dearomatization reactions of 

indoles with nitrogen nucleophiles or electrophiles have been reported under the ‘normal’
[74,75] and umpolung[76–78] reaction manifolds, respectively, the larger indole-fused 7- and 

8-membered ring substrates 38 and 40, readily accessed from the corresponding cyclic 

ketones via Fischer indole synthesis followed by a DDQ oxidation sequence, were also 

converted to the corresponding 10- and 11 -membered lactam products 39 and 41 in good 

yields. Taken together, these results demonstrate the excellent scope of the tandem ODRE 

reaction in providing access to a wide variety of benzannulated medium-ring lactam 

products.

Mechanistic proposal

A proposed mechanism for the tandem ODRE reaction involves initial PhI(TFA)2 activation 

of the N-methoxyamide side chain in 42, in the presence of the charge-stabilizing solvent 

nitromethane, to form a nitrenium ion intermediate[57,79–81] 44 (Fig. 4). Ensuing 

intramolecular electrophilic substitution through ipso-attack of the tethered arene generates a 

cationic tricyclic intermediate 45 poised for ring expansion. Rearomatization of the arene 

then drives spontaneous C-C bond cleavage, facilitated by the lone-pair electrons on the C1-

hydroxyl group, to afford the benzannulated medium ring-lactam product 46.

Functionalization of medium-ring scaffolds

With access to a variety of medium-ring scaffolds established, we next investigated 

downstream synthetic modifications to introduce additional structural diversity. Thus, 

bromoaryllactam 13c and methoxyaryllactam 53 were scaled up to explore these 

transformations (Fig. 5a). The acidity of the 1,3-dicarbonyl methylene protons in 13c 
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enabled conversion to α,α-dimethylketone 47 in a one-pot geminal dimethylation.[82] 

Sonogashira coupling of the aryl bromide moiety in 47 with phenyl acetylene then afforded 

aryl alkyne 48 in 65% yield.[83] From the parent aryl bromide 13c, several boronic acids 

were also coupled under standard Suzuki-Miyaura conditions[84] to provide cross-coupling 

products 49–51 in good yields. Reductive cleavage of the N-O bond in 13c with zinc metal 

afforded corresponding secondary lactam 52 without affecting the bromide.[85]

In a second series, β-ketolactam 19 (Fig. 5b) was first converted to α-methyl-β-ketolactam 

53 using potassium tert- butoxide and methyl iodide. The ketone moiety of 53 was then 

reduced to afford anti-α-methyl-β-hydroxylactam 54 in 94% yield and >99:1 dr.[86] The 

stereochemical configuration of 54 was assigned based on X-ray crystallographic analysis 

(see Electronic Supplementary Information). Analogously, reductive amination of the ketone 

in scaffold 53 with benzyl amine provided β-aminolactam 55 in 76% yield and 94:6 dr, 

favoring the anti diastereomer, assigned based on extensive 2D NMR studies.[87] Finally, a 

one-pot aldol-Tishchenko reaction generated anti-1,3-diol 56 in good yield as a single 

diastereomer with four contiguous stereocenters.[88] Relative stereochemistry was assigned 

via conversion to the corresponding acetonide and 1D and 2D NMR studies (see Electronic 

Supplementary Information).

Cheminformatic analysis of medium-ring scaffolds

To assess the structural features of the tandem ODRE products, we carried out a 

cheminformatic analysis of these 41 compounds in comparison to 47 accessed by the 

original stepwise ODRE sequence, 20 benzannulated medium-ring natural products, and our 

previously established reference sets of 60 diverse natural products, 40 top-selling brand-

name drugs, and 20 commercial drug-like library compounds.[15,16,89,90] We analyzed each 

compound based on our established set of 20 structural and physicochemical parameters, 

then used principal component analysis (PCA) to identify correlations between parameters, 

reducing the dimensionality of the complete 20-dimensional dataset to enable convenient 

visualization (Supplementary Fig. 2).[89] The first three principal components (PC1-PC3) 

accounted for 75% of the variance represented in the complete 20-dimensional dataset.

In this analysis, visualization of the first two principal components (PC1, PC2) was 

insufficient to differentiate the medium-ring ODRE libraries and natural products clearly 

from the synthetic drugs and drug-like libraries. In contrast, the reference set of 60 diverse 

natural products occupied a larger, distinct region of the plot. Examination of component 

loadings (Supplementary Fig. 3) indicated that positioning along PC1 was dominated by 

parameters that correlate with molecular size (e.g., molecular weight, van der Waals surface 

area). Along PC2, parameters that correlate with hydrophobicity (logP, logD) shifted 

molecules down (negative) while those that correlate with polarity (logS, relative polar 

surface area) shift molecules up (positive). Thus, the overlap of the medium-ring and drug/

drug-like sets is likely due to their relatively small and hydrophobic nature. Further, the 

broader range of this plot covered by the diverse natural product reference set is primarily 

due to the larger size of these molecules and, in some cases, high polarity.

Guney et al. Page 6

Chemistry. Author manuscript; available in PMC 2019 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In contrast, when PC3 was plotted, the medium-ring libraries and natural products diverged 

from the synthetic drugs and drug-like libraries. Along PC3, parameters that correlate with 

three-dimensional structure (stereochemical density, sp3 content) shifted molecules 

positively while aromatic ring content shifted molecules negatively. Thus, the relatively 

three-dimensional structures of the medium-ring compounds effectively differentiated them 

from the relatively flat, highly aromatic structures of the drugs and drug-like molecules. 

Notably, the former parameters have been associated with increased target specificity[91] and 

progression through preclinical and clincial development[92,93] while the latter has been 

associated with preclinical toxicity.[94,95] Moreover, both of the ODRE libraries overlapped 

well with bonafide medium-ring natural products across all three principal components.

Conclusions

Despite their prevalance in natural products and attractive pharmacological properties, 

medium-ring structures are underrepresented in current discovery libraries due to the 

challenges associated with classical cyclization-based synthetic approaches. To address this 

limitation, we have developed a novel tandem ODRE reaction that provides flexible, 

efficient access to diverse medium-ring scaffolds in 3 steps from readily available cyclic 

ketone precursors. In contrast to our previously reported stepwise ODRE sequence,[16] this 

tandem reaction provides medium-ring scaffolds directly from simple bicyclic precursors 

through an umpolung strategy. Conceptual reversal of electron flow in the initial oxidative 

dearomatization step leads to a cationic tricyclic intermediate that undergoes spontaneous 

ring-expanding rearomatization. Moreover, this umpolung strategy enables strategic 

installation of an adjacent hydroxyl group to prevent formation of olefin regioisomers and 

other cation termination products, while also providing a versatile ketone motif for further 

transformations. This was not feasible in the original stepwise ODRE sequence due to 

competing Adler–Becker reaction of phenolic substrates. Finally, the umpolung strategy 

enables use of a much wider array of arene substrates to provide haloaryl, aryl ether, 

acetanilide, aryl sulfonamide and heteroaromatic medium-ring products found in numerous 

natural and synthetic pharmacophores. The resulting natural product-based medium ring 

scaffolds are amenable to scale-up and a variety of downstream modifications. 

Cheminformatic analysis indicates that the tandem ODRE library overlaps with medium-

ring natural products and is distinct from conventional synthetic drugs and drug-like 

libraries, accessing regions of chemical space that are underrepresented in probe and drug 

discovery. Notably, related benzannulated medium-ring lactam scaffolds have also been used 

in structure-based designed of angiotensin-converting enzyme inhibitors.[17–19] While the 

immediate applications of these molecules lie in efforts to discover novel biological probes, 

both β-ketolactam and N-alkoxyamide motifs are found in approved and investigational 

drugs, suggesting that these motifs are also compatible with eventual translational 

applications[96–100] Biological evaluation of this tandem ODRE library is ongoing and will 

provide insights into its utility in identifying novel probes and therapeutic leads.

Experimental Section

See Supporting Information for complete experimental protocols and analytical data, as well 

as PCA and X-ray crystallographic datafiles.
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General procedure for tandem ODRE reaction

The β-hydroxy-N-methoxyamide substrate (0.32 mmol, 1.0 equiv) was dissolved in nitrom 

ethane (3.2 mL) and cooled to 0 °C. [Bis(trifluoroacetoxy)iodo]benzene (0.48 mmol, 1.5 

equiv) was added as a solid at 0 °C and the reaction was slowly warmed to 24 °C and stirred 

for 0.5–2 h and monitored by TLC until complete cosumption of the starting material was 

observed. The reaction was then quenched with satdaq NaHCO3. The mixture was extracted 

with CH2Cl2 (4’ 10 mL). The combined organic extracts were washed with brine, dried 

(Na2SO4), filtered, and concentrated by rotary evaporation to afford the crude product. 

Purification by silica flash chromatography (0% → 5% MeOH in CH2Cl2) provided the 

corresponding medium-ring lactam. In the case of anisole substrates (16, 18), the general 

procedure was modified by using methanol instead of nitromethane as the solvent and 

keeping the reaction at 0 °C.

Principal component analysis

PCA of the 41 resulting benzannulated medium-ring lactams, 47 medium-ring products 

synthesized previously by the stepwise ODRE sequence,[16] and our previously established 

reference sets of 40 drugs, 20 commercial drug-like library members, and 60 natural 

products (Supplementary Figs. S4–S10 and Supplementary Table S1) was conducted using 

R, an open-source statistical computing package.[89] A set of 20 physicochemical descriptors 

(Supplementary Tables 2 and 3) for all compounds was obtained from PubChem and/or 

calculated using cheminformatics tools (Instant JChem and VCCLab [101]) or ChemDraw 

and uploaded to R for the study. The first three principal components (PC1-PC3) were 

obtained using R, which accounted for 74.6% of the cumulative variance in the complete 

data set (Supplementary Table 4). They were then plotted on newly generated, unitless, 

orthogonal axes (principal components) based on linear combinations of the original 20 

parameters (Supplementary Fig. 3 and Supplementary Data Set 1). The PCA graphs shown 

in Supplementary Fig. 2 were generated using the data visualization softw are Prism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Oxidative dearomatization-ring-expanding re aromatization (ODRE) approaches to 
medium ring synthesis.
(a) Tandem ODRE provides medium-ring scaffolds from bicyclic substrates having an 

electron-rich aromatic ring. (b) Stepwise ODRE sequence is limited to phenol substrates and 

provides mixtures of products. (c) Umpolung reversal of electron flow enables new tandem 

ODRE reaction.
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Figure 2. Tandem ODRE reactions of haloaromatic substrates to form medium-ring lactam 
products.
(a) Synthesis of 10-membered ring haloaromatics 3a–d (major isomer shown). Reagents and 

conditions: PhI(TFA)2 (2.0 equiv), MeNO2, 0 °C to 24 °C, 14 h. (b) Synthesis of 9- 

membered ketolactam 9a. Reagents and conditions: a) NaNO2 (1.1 equiv),CuBr (2.2 equiv), 

HBr (aq), 85%. b) LiHMDS (3.0 equiv), EtOAc (3.0 equiv), THF, –78 °C, 3 h, 93%. c) 

AlMe3 (3.0 equiv), NH2(OMe)・HCl (3.0 equiv), THF, 0 °C to 24 °C, 16 h, 96%. d) 

PhI(TFA)2 (1.5 equiv), MeNO2, 0 °C to 24 °C, 1 h, 73%. HMDS = hexamethyldisilazide; 

TFA = trifluoroacetate; THF = tetrahydrofuran.
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Figure 3. Scope of tandem ODRE reaction.
a Reagents and conditions: PhI(TFA)2 (1.0—1.5 equiv), M eNO2 , 0 °C to 24 °C, 0.5 −2 h. 
bRemainder indene byproducts resulting from dehydration of 10a -d and unidentified side 

products, based on 1H-NMR analysis of crude product. cIsolated as a mixture of amide 

rotamers (3:2 E/Z). dIsolated as a mixture of amide rotamers (2:1 E/Z). eReaction performed 

in MeOH at 0 °C.
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Figure 4. Proposed mechanism of tandem ODRE reaction.
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Figure 5. Downstream modification reactions of medium-ring scaffolds 13c and 53.
Reagents and conditions: a) Mel (4.0 equiv), K2CO3 (4.0 equiv), DMF, 24 °C, 48 h, 68%. b) 

phenylacetylene (10.0 equiv), Pd(PPh3)4 (20 mol%), Cul (25 mol%), Et3 N, DMF, 60 °C, 16 

h, 65%. c) ArB(OH)2 (1.1 equiv), Pd(OAc)2 (20 mol%), K2CO3 (2.5 equiv), TBAB (1.1 

equiv), H2O, 70 °C, 2 h, 65–77%. d) Zn (40.0 equiv), AcOH/H2O (1:1), 24 °C, 24 h, 85%. e) 

Mel (3.0 equiv), KOt-Bu (1.05 equiv), THF, 0 °C, 4 h, 72%. f) L-Selectride (2.0 equiv), 

THF, 0 °C to 24 °C, 3 h. 94%, >99:1 dr anti/syn. g) BnNH2 (1.1 equiv), AcOH (1.0 equiv), 

4A MS, toluene, 90 °C, 2 h, then NaBH(OAc)3 (4.0 equiv), DCE, 24 °C, 16 h, 76%, 94:6 dr 

ant//syn. h) LiHMDS (3.0 equiv), THF, −78 °C, 1 h; then p-NO2 PhCHO (2.5 equiv), −78 °C 
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to 24 °C, 16 h, 59%, 99:1 dr. DCE = 1,2-dichloroethane; DMF = N,N-dim ethylform amide; 

L-Selectride = lithium tri-s-butylborohydride; TBAB = tetrabutylamm onium bromide.
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