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Abstract

A new diffusion model of decision making in continuous space is presented and tested. The model 

is a sequential sampling model in which both spatially continuously distributed evidence and noise 

are accumulated up to a decision criterion (a 1D line or a 2D plane). There are two major advances 

represented in this research. The first is to use spatially continuously distributed Gaussian noise in 

the decision process (Gaussian process or Gaussian random field noise) which allows the model to 

represent truly spatially continuous processes. The second is a series of experiments that collect 

data from a variety of tasks and response modes to provide the basis for testing the model. The 

model accounts for the distributions of responses over position and response time distributions for 

the choices. The model applies to tasks in which the stimulus and the response coincide (moving 

eyes or fingers to brightened areas in a field of pixels) and ones in which they do not (color, 

motion, and direction identification). The model also applies to tasks in which the response is 

made with eye movements, finger movements, or mouse movements. This modeling offers a wide 

potential scope of applications including application to any device or scale in which responses are 

made on a 1D continuous scale or in a 2D spatial field.
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Stimuli in laboratory research and in the real world are often continuous in space and, in the 

real world, responses to them are often made on continuous scales, sometimes one 

dimensional (1D) and sometimes two dimensional (2D). I present a new spatially continuous 

diffusion model (SCDM), a quantitative sequential-processing model, and show that it can 

explain how decisions are made about such stimuli, how decisions are expressed on 

continuous scales, and how decisions evolve over the time between onset of a stimulus and 

execution of a response.

Continuous response scales may be better suited than discrete ones in some situations for 

clinical patients, children, or older adults in that they remove the requirement of dividing the 

knowledge on which their decisions are based into discrete categories. There is also a broad 

range of potential applications in cognitive psychology including visual search and 

coordinate systems (e.g., Golomb et al., 2014), psychometric item response theory (e.g., 
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Noel & Dauvier, 2007; Muller, 1987; Ferrando, 1999), working memory (e.g., Hardman et 

al., 2017; van den Berg et al., 2014), number line tasks in numerical cognition (e.g., 

Thompson & Siegler, 2010), relationships between binary responses, confidence judgments, 

and responses on continuous scales in perception and memory (e.g., Province & Rouder, 

2012), fuzzy set theory (e.g., Smithson & Verkuilen, 2006), visual attention (e.g., Itti & 

Koch, 2001), and dynamical systems models of movements (e.g., Klaes et al., 2012; 

Wilimzig et al., 2006). Many of this list of studies used representations of stimuli and 

responses on continuous scales but did not examine or model the time course of processing, 

something that is essential to understanding decision making. This modeling approach also 

fits naturally with models of neural population codes (e.g., Beck et al., 2008; Deneve et al., 

1999; Georgopoulos et al., 1986; Jazayeri & Movshon, 2006; Liu & Wang, 2008; Nichols & 

Newsome, 2002; see the review and challenge for diffusion modeling in Pouget et al., 2013). 

The SCDM can also be seen as an extension of dynamical systems and population code 

models that allows them to account for both response choices and the distributions of 

response times (RTs).

The SCDM is also an extension of one of the most successful models of simple decision 

making, the sequential sampling, diffusion decision model for two-choice decisions 

(Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, & McKoon, 2016). That 

model explains the choices individuals make and the time taken to make them by assuming 

that noisy evidence is accumulated over time to one of two decision criteria. This and related 

models have been influential in many domains, including clinical research (Ratcliff & Smith, 

2015; White, Ratcliff, Vasey, & McKoon, 2010), neuroscience research, and 

neuroeconomics research (Gold & Shadlen, 2001, 2007; Krajbich, Armel, & Rangel, 2010; 

Smith & Ratcliff, 2004). There is also a growing body of evidence that diffusion models 

provide a reasonable account of the mappings between behavioral measures and 

neurophysiological measures (e.g., EEG, fMRI, and single-cell recordings in animals; see 

the review by Forstmann, Ratcliff, & Wagenmakers, 2016). The model is also being used as 

a psychometric tool in studies of differences among individuals (e.g., Ratcliff, Thapar & 

McKoon, 2010, 2011; Ratcliff, Thompson, & McKoon, 2015: Schmiedek et al., 2007; Pe, 

Vandekerckhove, & Kuppens, 2013).

Historically, the earliest models for two-choice decisions were random walk models or 

counter models (LaBerge, 1962; Laming, 1968; Link & Heath, 1975; Stone, 1960; Smith & 

Vickers, 1988; Vickers, Caudrey, & Willson, 1971) in which evidence entered the decision 

process at discrete times (see Ratcliff & Smith, 2004, for an evaluation of model 

architectures). The advance from discrete random walk processes to continuous diffusion 

processes resulted in an explosion of theoretical and applied research (much of it in the last 

15 to 20 years). I believe that the advance from modeling the time course of discrete 

decisions to the time course of decisions in continuous space could have the same theoretical 

and applied impact.

Diffusion models have also been used for multi-choice decisions. For example, Roe, 

Busemeyer, & Townsend (2001; Busemeyer & Townsend, 1993) developed decision field 

theory and applied it to tasks with multi-alternative decisions and multi-attribute stimuli. 

According to the theory, at each moment in time, options are compared in terms of 
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advantages and disadvantages with respect to an attribute and these evaluations are 

accumulated across time until a threshold is reached. The first option to cross the threshold 

determines the choice that is made. The theory accounts for a number of findings that seem 

paradoxical from the perspective of rational choice theory. Another domain that has been 

studied intensively involves confidence judgments. When individuals are asked to indicate 

how confident they are in the correctness of a decision, they typically do so by choosing one 

of several categorical responses (e.g., very confident, somewhat confident, etc.). Like the 

two-choice model, multi-choice diffusion models have provided a detailed explanation of 

choices and RTs (Leite & Ratcliff, 2010; Niwa & Ditterich, 2008; Pleskac & Busemeyer, 

2011; Ratcliff & Starns, 2009, 2013; Voskuilen & Ratcliff, 2016). However, despite the 

tradition in which confidence judgments are measured in discrete categories, confidence 

should be seen as a continuous dimension in some situations, not a discrete categorical one, 

and the modeling presented here might apply to such confidence judgments made on a 

continuous scale.

The Spatially Continuous Diffusion Model

The core of the SCDM is conceptually simple: It is a sequential sampling model in which 

information from a stimulus is represented on a continuous line or plane and evidence from 

it is accumulated up to a decision criterion, which is also a continuous line or plane. Key to 

the model’s success is that the noise added to the accumulation process is spatially 

continuously distributed. To demonstrate the potential of the model, the experiments below 

tested it across a range of tasks, stimuli, and response modalities. The tasks were brightness, 

color, and direction-of-motion discriminations with static and dynamic displays with 

responses made on the same scale as stimuli were displayed or with responses and stimuli 

decoupled. Responses were made on 1D circles, arcs, and lines and 2D planes and they were 

given by eye, finger, and mouse movements. The effects of each independent variable were 

measured in at least two experiments to address the replicability of the effects.

Figure 1 illustrates the model for a 1D task for which subjects move their eyes from a central 

fixation point to the location on a circle (actually an annulus) that is the brightest, that is, the 

greatest concentration of white pixels (Figure 1A). The heavy line in Figure 1B shows the 

representation of a stimulus for which the center of a bright patch is at an angle of 180 

degrees from an arbitrary zero point. The dashed and dotted lines show variability across 

trials, which is discussed later. A Gaussian distribution is used for the representation because 

2D Gaussian distributions were used to generate the patches, but a circular Gaussian von 

Mises distribution, traditionally used in modeling tasks with circular response fields (Smith, 

2016; Zhang & Luck, 2008), could also be used. Gaussian and von Mises distributions are 

probably indistinguishable in the applications presented here. The representation of the 

stimulus determines the rate (drift rate) at which evidence is accumulated toward a criterion, 

with the highest drift rates at and near the center of the distribution and decreasing with 

distance from the center. A response is executed when the amount of accumulated evidence 

reaches the criterion. In tasks with more than one stimulus (e.g., two or more patches of 

bright pixels, or more than one motion direction), the stimulus distribution has two or more 

Gaussian distributions, one for each stimulus.
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Noise in the accumulation of evidence for a 1D stimulus is represented by a spatially 

continuously distributed Gaussian process. For a Gaussian process, at any point on the 

spatial dimension, noise in the evidence dimension has a Gaussian distribution. There is a 

correlation between nearby points on the spatial dimension and there is a kernel parameter 

of the model that determines the range of this correlation. The SD in the evidence dimension 

(within-trial variability or diffusion coefficient) is set to 1 per 10 ms step and it acts as a 

scaling parameter in the same way as within-trial noise in the two-choice diffusion model. 

For tasks with circular displays, I have not attempted to make the Gaussian process noise 

continuous over the 360 degree to 0 degree boundary that is present in the current modeling. 

Until this becomes an issue that is critical in modeling data, it is left for future modeling.

Figure 1C shows examples of Gaussian process noise for 1D stimuli; the five lines show 

noise across angles, horizontally, and across time, vertically. The distribution of noise is 

added to the evidence from the representation of the stimulus (Figure 1D) and the evidence 

from the sum of the two proceeds through time until it reaches criterion at some location on 

the circle (the blue line in 1D). For 2D stimuli, the idea is the same except that variability is 

represented by Gaussian random field noise. Gaussian processes and Gaussian random fields 

are active areas of research in machine learning (Lord, Powell, & Shardlow, 2014; Powell, 

2014). For example, because random Gaussian processes are summed (along with the 

signal), the accumulation process can be seen as a time autoregressive spatial model 

(Storvik, Frigessi, & Hirst, 2002).

The accumulation process is assumed to be continuous in space and time but to simulate it, 

discrete time steps and discrete spatial locations are used. For any simulation of a continuous 

process on a digital computer, the continuous process must be approximated by a discrete 

one. A later section in this article presents a discussion of how to scale the process to change 

the sizes of the steps in space and time to approach continuous processes with smaller time 

steps and more points on the continuous spatial dimension.

It is assumed that evidence for one location is evidence against the others such that the total 

amount of accumulated evidence is constant across time (normalized to zero at each time 

step; e.g., Audley & Pike, 1965; Bogacz et al., 2006; Ditterich, 2006; Niwa & Ditterich, 

2008; Ratcliff & Starns, 2013; Roe, Busemeyer, & Townsend, 2001; Shadlen & Newsome, 

2001). Ratcliff and Starns (2013), in their confidence and multichoice model, showed that 

normalization of the evidence (so that the mean over all the accumulators was zero) on each 

time step allowed the model to account for shifts in RT distributions that occur for about half 

of the subjects in their experiments.

It is also assumed that the amounts of accumulated evidence for nearby angles are correlated 

(because the angles are close together). Because of the noise in the accumulation process, 

the time it takes for evidence to reach the criterion varies and sometimes the accumulated 

evidence reaches the wrong location. Total RT is the time to reach criterion plus the time to 

encode the stimulus into decision-relevant information and the time to execute a response. 

The latter two, which are outside the decision process itself, are added together in one 

component of the model that is called nondecision time.
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The assumptions that there is noise in the process of accumulating evidence and that the 

amount of accumulated evidence is constant across time are shared with the two-choice 

diffusion model. There are three other shared assumptions: One is that the three components 

of processing (drift rate, criterion, and nondecision time) are independent of each other. 

Another is that the value of the criterion is under an individual’s control; setting it higher 

means longer RTs and better accuracy and setting it lower means shorter RTs and lower 

accuracy. The independence of drift rate and criterion means that an individual can set the 

criterion to value speed over accuracy (or accuracy over speed), no matter what his or her 

drift rate, and an individual with high drift rate (or low drift rate) can respond more or less 

quickly, depending on where he or she sets the criterion. The third shared assumption is that 

there is variability across trials in drift rate, criterion setting, and nondecision time, reflecting 

individuals’ inability to hold processing exactly constant from one trial of a stimulus to 

another. Variability in drift rate is represented by random variation in the height of the drift-

rate distribution, illustrated by the three lines in Figure 1B. When there is more than one 

stimulus in the display, trial to trial variability in the height of the drift rate distributions can 

act to make the internal representation of a weaker stimulus stronger than a strong stimulus. 

This acts like an attentional mechanism with a focus on a weaker stimulus on some trials 

(though random noise is the major determinant of choices of weaker stimuli and random 

responding away from any stimuli).

The most important feature of the SCDM is that the stimulus representation (which 

determines drift rates), the noise in the accumulation of evidence, and the response criteria 

are all continuous in space. That representations of stimuli have a Gaussian distribution is 

straightforward. However, the assumption about noise is less so because theoretical 

assumptions about continuously distributed noise across space have received almost no 

attention in psychology. Earlier versions of my approach, since discarded, assumed multiple 

accumulators, but this always raised the issue of granularity (e.g., how many accumulators 

for a circle, 36, 360, 3600?) and the question of scaling the number of accumulators. Moving 

to continuous noise makes accumulation in continuous space possible. As mentioned, for 

fitting the model to data, the continuous functions are approximated with discrete functions 

but there is a simple transformation of model parameters to vary the number of discrete 

points.

In Figure 1C, for any angle, a straight vertical line drawn through samples for that angle 

(five are shown) would produce a Gaussian distribution on the vertical line. A smooth 

continuous function across angles (on the x-axis) is generated by a kernel function; a 

standard one was used here, a squared exponential, (K(x,x’)=exp(−(x-x’)2/(2r2)), where x 
and x’ are two points, K is a matrix, and r is a (kernel) length parameter that determines how 

smooth the function is. If r is varied from small to large, the correlation in noise between 

nearby points starts small and becomes larger. A small value of r would give a function with 

more peaks and troughs and larger value of r would give a function with fewer peaks and 

troughs. (The precise form of the kernel function is likely to be unimportant as long as it is 

unimodal because samples are accumulated.)

To obtain random numbers from the Gaussian process, the square root (R) of the kernel 

matrix, K (K=R’R, where R is an upper triangular matrix), is multiplied by a vector of 
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independent Gaussian distributed random numbers (with SD 1) to produce the smooth 

random function (Lord et al., 2014). If r is relatively small, the matrix R will have only a few 

values off the diagonal and only points close together in the random vector will be smoothed 

together resulting in a jagged Gaussian process function. If r is relatively large, the matrix R 

will have many off-diagonal elements that are not small and the Gaussian process function 

will be smooth with few peaks and troughs. In Figure 1C, r is 10 degrees.

Figure 1D shows the amounts of accumulated evidence at each angle for time steps from 1 

to 17, with the process terminating at the 17th time step at an angle of about 215 degrees. 

The peak emerges gradually with the spread of activity around the peak determined by the 

standard deviation (SD) of the drift-rate distribution and the kernel length parameter.

The parameters of the model that are common across tasks are nondecision time (Ter), the 

range of nondecision times (st, uniformly distributed), criterion (or boundary) setting (a), the 

range of the boundary setting (sa, uniformly distributed), the Gaussian process kernel 

parameter (r), the across-trial range in the height of the drift-rate distribution (sd, uniformly 

distributed), and the standard deviation in the drift-rate normal distribution (sw). In addition, 

there is one parameter for each of the conditions in an experiment that differ in difficulty, 

where the parameter (di) represents the mean height of the drift-rate distribution. The 

appendix shows how each of these parameters affects RT and accuracy. The parameters of 

the 2D model are described in the section on that model.

Fitting the Model to Data

I do not know of any exact solutions for DIXCthe probabilities of responses across the 

criterion line (i.e., the probabilities of responses at each angle) or for the distributions of 

RTs, so simulations are used (usually 10,000 simulated trials) to generate predictions. The 

data generated from the simulations are compared to the empirically obtained data and then 

the generating parameters are adjusted with a SIMPLEX fitting routine to obtain the best 

match between simulated and empirical data. The data for all the conditions of an 

experiment are fit to the model simultaneously and the data for each subject are fit 

individually. In this article, my aim was not to explore model fitting methods to find an 

optimal method but rather to use a fairly straightforward and robust method to show that the 

model can fit the data. Other methods might produce better fits but this is a topic for future 

investigation.

In order to generate predictions and fit the model, both time and space have to be made 

discrete. We fit the model using 10 ms time steps and 5 degree spatial divisions. The model 

parameters are presented in terms of 10 ms time steps and 1 degree spatial divisions. The 

equation for the update to a spatial position at each 10 ms time step is the standard Δxi=viΔt 

+ σηi √Δt, where σ(=1) is the SD in within-trial noise, vi is the height of the drift rate 

location at spatial position i, xi is the evidence, and ηi is a normally-distributed random 

variable with mean zero and SD 1. Note that the samples of noise are not correlated across 

time steps, but they are correlated across spatial position (as in Gaussian process noise). This 

means that the samples of noise are not independent across spatial locations.
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To fit the model, the data are grouped into three categories: the area around the central peak 

(the A area in Figure 2); the two areas just outside the central peak (B’s in Figure 2), and the 

combination of all the other areas (T’s - for tail - in Figure 2). Two areas, A and B, were 

needed for the center because when only one area was used, there was an identifiability 

problem because a high narrow central peak mimicked the lower wider peak shown in 

Figure 2. Using the two areas (A and B) solved the problem because the two areas 

constrained the fitting method to produce responses across the range around the peak. In 

experiments with more than one response location, two areas A and B were used for the 

strongest peak but only one area (C, D, etc.) was needed for each of the weaker peaks. The 

cutoffs that defined the areas A and B were selected based on the mean experimental results 

with a check that each individual had a B area that contained some of the tail of the 

distribution around the central peak.

For fitting the model and for displaying data and model predictions, RT distributions are 

represented by 5 quantiles, the .1, .3, .5, .7, and .9 quantiles. The quantiles and the 

probabilities of responses for each region for each condition of an experiment are entered 

into a minimization routine and the model is used to generate the predicted cumulative 

probability of a response occurring by each quantile RT. Subtracting the cumulative 

probabilities for each successive quantile from the next higher quantile gives the proportion 

of responses between adjacent quantiles. For a G-square computation, these are the expected 

proportions, to be compared to the observed proportions of responses between the quantiles 

(i.e., the proportions between 0, .1, .3, .5, .7, .9, and 1.0, which are .1, .2, .2, .2, .2, and .1). 

The proportions for the observed (po) and expected (pe) frequencies and summing over 

2Npolog(po/pe) for all conditions gives a single G-square (log multinomial likelihood) value 

to be minimized (where N is the number of observations for the condition). A standard 

SIMPLEX minimization routine was used to adjust the model parameters to minimize G-

square. To avoid the possibility that the fitting process ended up in a local minimum, the 

SIMPLEX routine was restarted 8 times with 40 iterations per run and then finally run with 

200 iterations (for the last 100 to 150 iterations, usually there was no change in the model 

parameters).

Besides the possibility of local minima in fitting the model to data, there were some other 

problems. In fitting the model (and in two-choice modeling), if nondecision time is too large 

and across-trial variability in nondecision time is small, it is possible for there to be no 

overlap between the predicted and data distributions at the lower quantiles. This means that a 

probability cannot be assigned to the lower quantile RTs and this produces numerical 

overflow in the programs. To deal with this, a value of nondecision time at the low end of the 

range for successful fits to data was selected along with a large value of across-trial 

variability in nondecision time. These were fixed for the first two runs of the SIMPLEX 

routine. This allowed other parameters to move to values nearer their best-fitting values. For 

the third iteration, all the parameters were free to vary which allowed nondecision time to 

move to a value near the best-fitting value for those data. The fourth iteration started with the 

across-trial range in nondecision time divided by 2.5 to counteract the large value used in the 

initial runs (without this adjustment, it took a lot of restarts of the SIMPLEX routine for this 

parameter to move to a stable lower value). Also, nondecision time was not allowed to 

become shorter than 175 ms because a value much lower than this is implausible given the 

Ratcliff Page 7

Psychol Rev. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



encoding and response output processes and translation between the stimulus representation 

and the decision variable processes that were needed (this is discussed later). Initial values of 

the parameters were near the mean of those from a first run of the model fitting program and 

were the same for each subject, i.e., they were not adjusted for each subject. The method 

described above was robust to moderate changes in the initial values (e.g., a 30–50% change 

in them).

Experiments

There is little guidance in the literature on how to design experiments to examine 

performance on tasks with responses on continuous scales while at the same time measuring 

RTs. There are paradigms with responses on continuous scales but none that I know of that 

are designed to provide RT measures, especially with the constraint that decision processing 

should be completed prior to initiating a response.

RTs were measured from the onset of a stimulus until subjects’ eyes, finger, or mouse left a 

resting location. Reducing the possibility of movement before a decision was a major 

constraint on the development of the paradigms used here. To do this, in all the tasks, 

subjects were instructed to make movements only after they had made their decision. 

Furthermore, they were instructed to move directly to the response area to make their 

response. Feedback was provided if the movement from the resting point to the response 

location was too slow. There were some false starts with experiments that did not control or 

give feedback on the duration of the movement. In these, some subjects clearly lifted their 

finger or moved their eyes very quickly after stimulus presentation and before they made 

their decision, and then moved to make the response (often with slow movement times). In 

tasks with eye movements, eye position was recorded every millisecond and this allowed 

tracks to be examined. In some cases, tracks to intermediate points with a fixation at that 

earlier point were recorded (Kowler & Pavel, 2013). Then the eyes moved to make a 

response. The experiments reported here eliminated the majority of these behaviors with 

careful instructions, monitoring, and feedback if movement times were too long.

Recently there has been concern about the lack of replicability of studies in psychology and, 

historically, there has been concern that models or empirical results apply only to the 

specific design of a single experiment. To address these concerns, nine experiments were 

performed with four kinds of tasks. Each major empirical and modeling result was replicated 

at least once. The tasks allowed generalization over response modes, types of stimuli, and 

types of decisions.

Data and model fits are presented from a series of experiments with manipulations that 

involve the task, the stimulus, the response mode, and the mapping from stimulus to 

response. The first six experiments use different response methods, namely, eye fixations 

and touch-screen finger movements. The question was whether these modalities produce 

qualitatively similar or different patterns of results. The first two experiments present a patch 

of colored pixels in a central location, with one color dominant, and the task is to move the 

eyes or finger (usually the index finger) to the position on a color annulus or color half 

annulus that matches the dominant color in the stimulus. The second two experiments 
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present an annulus or half annulus of black and white pixels with some areas brighter or 

darker than the background (more white or more dark pixels respectively) and the task is to 

move the eyes or finger to the brightest or darkest area (alternating from trial block to trial 

block). In the experiment with black and white pixels, the stimulus and response are 

physically the same whereas in the color experiment, the subject has to map between a 

degraded central color stimulus and the non-degraded response area. The next two 

experiments use quite different stimuli and the task is to respond by moving hand or eyes to 

a point on a surrounding annulus that best matches the stimulus. The fifth experiment uses 

stimuli that are a collection of arrows with some proportion pointing in the same direction. 

The task is to move the eyes to a position on the response annulus corresponding to the 

dominant direction. The sixth experiment is a moving dots experiment with three directions 

of motion and with one stronger than the others. The task is to move the finger to the 

position on a response annulus that corresponds to the dominant direction of motion. The 

next two experiments are mouse based versions of Experiment 1 and the last experiment is a 

version of Experiment 3 but with stimuli presented in a rectangular 2D array and requiring a 

touch screen response in the 2D space.

All the subjects were Ohio State University students in an introductory psychology class 

who participated for class credit. A small proportion (less than 5%) finished only a few trials 

in an experiment before deciding to leave and were eliminated. A few others had trouble 

with the eye-movement apparatus (e.g., excessive blinking, inability of the system to provide 

accurate eye fixation data) and were also eliminated. The aim was to collect data from 16 

subjects in each experiment but in a few cases, the number who signed up for an experiment 

was more than 16 and data from all of them was used.

The data and predictions of the model for them are displayed in two ways, illustrated with 

the data from Experiment 1. The stimuli (Figure 3A) were center patches surrounded by a 

circular annulus and a subject’s task was to move his or her eyes from the center patch to the 

location on the annulus that matched the most dominant color in the center patch. The data 

were aligned so that the correct response was at 180 degrees. Then, as in Figure 2, the 

annulus was divided into the region around the (180 degree) location that best matched the 

center patch (the A region, Figure 2), the regions immediately on each side of it (the B 

regions), and all the other regions (the T regions).

Figure 3B shows the data and the predictions plotted against each other. The upper left panel 

shows response probabilities, ranging from 0.0 (for T regions) to 0.8 (for A regions). There 

are 144 points on the function: the three regions for each of the three conditions (different 

levels of difficulty, defined later) in the experiment for each of the 16 subjects. The fact that 

the data and predictions fall tightly around the straight line indicates a reasonably good fit of 

the model to the data. The other three panels of Figure 3B show predictions against data for 

the 0.1, 0.5, and 0.9 quantile RTs (quantiles with less than 10 observations are not shown). 

Again, the tight fit of predications to data indicates a reasonably good fit.

The second way predictions and data are displayed is to plot response probabilities and RTs 

across angles. Figure 3C shows histograms for response probabilities for the three conditions 
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for all the data from all the subjects and the predictions match the data well. Figure 3D 

shows similar plots for mean RTs.

Apparatus

For the eye-movement experiments, stimuli and response fields were presented on a CRT 

monitor 40 cm wide (640 pixels) and 30 cm high (480 pixels). At the standard viewing 

distance used (69.5 cm), the whole screen subtends a visual angle of 32×24 degrees. For the 

touch screen experiments, the CRT monitor was 32 cm wide and 24 cm high, which, at a 

standard viewing distance of 55.8 cm, gave a visual angle of 32×24 degrees. The screen 

phosphors for the CRT monitors are not known so the precise decay characteristics of the 

displays are not known and the relative intensities of the three color guns are not known. 

However, most of the manipulations were within-subjects with moderately short presentation 

durations (250–300 ms) and differences among individual subjects were so large that any 

assumptions about stimulus duration that might be affected by slow decay of a stimulus on 

the screen over 20 or 40 ms was not important.

For the eye-movement experiments, the eye tracker was an EyeLink 1000 from SR 

Research. The system was desktop-mounted with a chin and forehead rest. The 

measurements were monocular (left eye) sampling at a rate of 1000 Hz. Every trial began 

with a fixation point (details are presented for each experiment). After some amount of time 

(e.g., 500 ms) of fixation, the trial began. A response was recorded when the eyes moved 

from the fixation position to a response location and remained fixated at the response 

location for 500 ms. Response time was defined as the time from stimulus presentation to 

the time at which the eyes moved from the fixation position.

A few times in an experiment, calibration in the eye tracker drifted, that is, the eye tracker 

recorded a location systematically away from the location to which the eyes were looking. 

The first part of each experimental trial involved the subject fixating on a box prior to 

stimulus presentation (usually for 500 ms). During this time, and only this time, the position 

of the eye was shown on the screen by a dot drawn at every screen refresh. Both 

experimenter and subject could see the dots as they were drawn and the experimenter could 

hit a game controller button during the fixation period to tell the system that the subject was 

fixated in the box if the system was recording fixations outside the box. The eye tracker was 

then recalibrated. This happened no more than 5 or 10 times per experimental session.

The touch screen (CRT) was an ELO Entuitive 1725C with dimensions 40 cm wide and 30 

cm high. Because there is considerable arm fatigue in using a touch screen horizontally on a 

desk, a mount was constructed so that the screen was at almost horizontal and was located 

between the knees of subject. This eliminated arm fatigue. A trial began when subjects hit a 

starting box on the screen (details are presented in each experiment). They were required to 

lift their finger and place it at the response location and not slide it.

There were some complicating factors with the touch-screen system used in these 

experiments. It uses a “surface wave” technology that detects an event based on detection of 

an ultrasonic wave that is generated when a finger hits or leaves the glass of the touch 
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screen. The first measurements of the duration of the movement from finger lift to response 

placement produced some delays of only 20–40 ms, too short to be legitimate measurements 

of movement time.

In light of this, calibration tests were conducted. A piezoelectric sensor was used to measure 

the time at which the finger lifted, which gave an immediate measurement of lift time. This 

was compared to the time at which the touch screen recorded the lift. In the calibration 

procedure, the screen was programmed to turn an all-black screen display to an all-white one 

when the finger lift was recorded. A photodiode was used to record the time of this all-black 

to all-white change. An oscilloscope displayed the two events and results showed a 110 ms 

delay from when the piezoelectric sensor detected the change (finger lift) until the screen 

turned white. The same setup was used to record the time from a finger press to detection of 

the finger press event from the touch screen. As before, the finger press turned the black 

screen white and the photodiode was used to record this change. A delay between the finger 

press and recording the event of about 48 ms was found. These numbers were verified by 

recording the events on a video camera at a 60Hz frame rate in a completely independent set 

of measurements. The number of frames between lift of the finger to the screen changing 

from black to white replicated the 110 ms measurement (as did the finger press 

measurement). These delays were added into the measurements in Experiments 2, 4, 6, and 

9. It is important to perform such measurements if touch-screen devices, such as tablets, 

phones, or laptop screens, are to be used in RT experiments.

In the mouse-based experiments, subjects placed the mouse pointer in a starting box on the 

screen and after some delay (so long as the pointer remained in the box), the trial began. The 

position of the mouse was displayed on the screen every 16.7 ms as a small dot to subjects.

RTs were measured from the onset of the stimulus/response display to the eye leaving the 

fixation point, a finger leaving the resting box, or the mouse leaving the starting box. 

Responses that were too slow (specific to each task) and movements off the response 

dimension (e.g., off an arc) were considered spoiled trials. To minimize visual search of the 

display, the stimulus was usually presented for only 250 ms for finger and mouse 

movements. For eye movements, the stimulus and response field remained on the screen 

until the eye left the fixation point, at which time the screen was blanked. To provide 

feedback to participants, correct responses were defined as responses within a 50-pixel 

square box of the peak of the target; responses outside that box were followed by an error 

message.

The eye tracker experiments were more finicky than the others. With touch or mouse 

responses, when a trial ended, the next trial could begin. With the eye tracker, the next trial 

began only when the camera sensed the subject’s eyes on the central fixation point. For 

some subjects this was a smooth process, but for others it took a few extra seconds for the 

fixation point to register. Over the course of the entire experiment, if this happened with 

regularity then those subjects were not able to complete the full sessions of trials. 

Additionally, some subjects calibrated easily in the initial calibration process and for others, 

there were problems that required the experimenter to perform the calibration process 

several times. Sometimes the subjects also had difficulty in fixating on the target (without 
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moving back to the central location). Also, for some subjects, there were problems in 

calibration due to glasses and contact lens. A session was planned to be the number of trials 

that could be completed in 50 minutes if everything ran without problems, but sometimes 

only a little more than half the trials could be obtained from a subject.

Experiment 1

The stimuli were central patches of colored pixels surrounded by a circular annulus also 

made up of colored pixels (Figure 3A). Subjects responded by moving their eyes from the 

central patch to the location on the annulus that best matched the dominant color in the 

patch. There were three levels of difficulty; the proportion of pixels of the dominant color in 

the central patch was 0.35, 0.20, or 0.10. Subjects were instructed to make their decisions as 

quickly and accurately as possible and to move their eyes only after they had made their 

decision.

Method

At the beginning of each trial of the experiment, subjects were asked to fixate on a 20×20 

pixel white box at the center of the CRT screen. After 500 ms of fixation, the central patch 

replaced the box and simultaneously the annulus was displayed. RTs were measured from 

the onset of the display to when the eyes moved outside a 30 pixel (1.5 degree) radius from 

the fixation point.

The central patches were 44×44 pixels. They were created by placing pixels of random 

colors (out of 253 possible colors) at random locations on the patch. One color was selected 

randomly and then a proportion of the pixels, 0.35, 0.20, or 0.10, was changed so that each 

pixel was changed to the target color or one within 10 of the target. The color selected was 

one of 21 from a uniform distribution with range minus 10 to plus 10 of the target.

The annulus contained all 253 colors. Its central radius was 60 pixels (3.0 degrees) from the 

center of the screen and it was 16 pixels (0.75 degrees) wide. The pixels changed from red 

(at angle zero, horizontal right) counter-clockwise through all 253 colors with yellow at 60 

degrees, green at 120 degrees, teal at 180 degrees, dark blue at 240 degrees, and violet at 300 

degrees (Figure 3A).

There were 16 subjects in the experiment. They were instructed to move their eyes away 

from the central patch only when they had made a decision about where the central patch’s 

dominant color was located on the surround. To discourage moving the eyes in more than a 

single step, the display of the central patch and surround was blanked when the eye moved 

outside two degrees from the fixation point. This meant that once the eyes moved, there was 

no more stimulus or response information available from the display.

There were 10 blocks of 72 trials each, preceded by two practice blocks. Each block 

contained 24 trials for each of the conditions, randomly ordered. A session was 50 min. 

long. Many subjects did not finish all 10 blocks: There was an average of 560 observations 

per subject out of a possible 720.
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Target locations were measured in terms of their x/y coordinates in the 640 by 480 screen of 

pixels. The center of a target location was at a radius midway between the inner and outer 

radii of the surrounding annulus and its size was a 2-degree-by-2-degree (40-by-40 pixel) 

invisible box centered on the target color. The box was not rotated based on stimulus angle, 

so the box had a narrower angular extent at 0, 90, 180, 270 degrees than at other angles.

To indicate whether a response was correct, if a subject’s eyes moved to a location in the 

box, a “1” was displayed in the invisible box location; if not, a “0” was displayed at the 

position to which the eyes had moved. “1”s and “0”s remained on the screen for 300 ms. If 

the movement started later than 1250 ms after the onset of the display, “TOO SLOW” was 

presented for 500 ms in the center of the display. If it started earlier than 150 ms, “TOO 

FAST” was presented. There was a 40 ms blank screen between the feedback messages and 

the fixation point for the next trial. Generally, the task became routine and subjects rarely 

received “TOO SLOW” or “TOO FAST” messages after the practice blocks.

Results

The stimuli were aligned to set the zero point at 180 degrees. The A area corresponded to 

150–210 degrees, the B area to 100–150 and 210–260 degrees, and the T area to the rest. 

Figure 3B, top left panel, shows the data and predictions from the model for response 

probabilities for the three difficulty conditions for the three response categories for the 16 

subjects (144 points). There were a few misses as large as 10%, but misses of this size are 

only a little larger than the maximum expected. (If there were 200 observations per difficulty 

level, then for a proportion of 0.2, the SD is sqrt(.2*.8/200)=0.028, which means that 2SD’s 

are almost plus or minus 0.06.)

The other panels of the figure show the 0.1, 0.5 (median) and 0.9 quantile RTs. There are 

only 111 points on these plots because only data for which there were more than 10 

observations per condition per response category are plotted. In the bottom right corner of 

each quantile plot are two plus and minus 1 SD error bars (horizontal because the data are on 

the x-axis). To construct the error bars, a bootstrap method was used. For each condition and 

response category for each subject, a bootstrap sample was obtained by sampling with 

replacement from all the responses for that condition. This was repeated for 100 samples and 

then the SDs in the RT quantiles were obtained for that subject, condition, and response 

category from the 100 bootstrap data sets. The SDs for the three conditions and the three 

response categories with the largest and smallest SDs were then averaged across subjects 

and it is these two SDs that are at the bottom right corners (this excluded T quantiles from 

the two easier conditions, 0.35 and 0.20, because most subjects had less than 10 responses in 

those categories, and sometime zero, with 10 the minimum number of observations we used 

for displaying quantiles). On the diagonal line of equality, a 2-SD error bar computed from 

the larger SD at the bottom right is shown. This 2-SD error bar provides an upper bound on 

deviations that would be expected between the predictions and data if the model fit the data 

perfectly.

The results for the quantile RTs show a good match between predictions and data; almost all 

of the data points fall within the two-SD error bars. The largest misses are four values of the 
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0.1 quantile that show longer RTs than predicted (by about 100–200 ms). These are for 

single conditions and single response categories for single subjects. If they represented a 

systematic miss, then the 0.1 quantile RTs should miss for all the A, B, and T responses (and 

perhaps all the conditions) but they do not.

Tables 1 and 2 show the values of the parameters that produced the best fits of the model to 

data for all the experiments, averaged over subjects. The SDs in the model parameters across 

subjects are shown in Tables 3 and 4. For this experiment, the height of the normal 

distribution of drift rates decreased with difficulty, as would be expected. Discussion of the 

other parameters is presented after Experiment 1–8.

For Figures 3C and 3D, predictions and data are plotted as a function of angle, with the 

target locations aligned at 180 degrees. The predictions were generated by simulation using 

the parameter values in Table 1 with 10,000 simulations for each condition. For Figure 3C, 

response probabilities, the data and predictions were grouped into bins of 10 degrees. The 

predicted and data distribution peaks and spreads qualitatively match each other. This is 

especially impressive because the predictions were generated from the model parameters 

derived from fits to the response probabilities and quantiles (Figure 2B) and not from fits to 

the distributions of data directly. One deviation between predictions and data is the wider 

distribution of responses for the data relative to the model for the 0.1 stimulus. This suggests 

that a weak stimulus has greater variability (less precision) and this could be accommodated 

by assuming the SD in the drift rate distribution is larger for weak stimuli. Another deviation 

between theory and data is in the response proportions for conditions with values near zero 

for the data. The model predicts values larger than zero and there are systematic misses for 

some of these. In the discussion the possibility that the Gaussian process noise is stimulus 

location dependent and larger near the stimulus is considered.

For Figure 3D, RTs, the data and predictions also match well (5 degree angles per bin). The 

responses nearest the target angle (180 degrees) represent the A category, responses a little 

farther away represent the B categories, and all the others represent the T category. The blue 

bars in the figure show the responses in the A and B categories. The data show higher 

variability in the tails away from 180 degrees for the data than the predictions because there 

were low numbers of observations for the data but 10,000 observations in the simulated 

values. There was little difference in RTs across angles (i.e., across the A, B, and T response 

categories). However, RTs increased with difficulty, from a mean of 507 ms for the 0.35 

condition to 576 ms for the 0.20 condition to 693 for the 0.10 condition (these means 

represent the vertical shifts from responses in one condition to another in Figure 3D). These 

are large effects and ones that the model captures well.

Experiment 2

This experiment was similar to Experiment 1 except that the display used a half annulus 

surround and the response modality was a finger movement to the target color. Apart from 

this, the geometry of the display was the same as for Experiment 1. Figure 4A shows the 

central patch and the response half annulus. Responses were made by finger movements on 

the touch screen system. A half annulus was used because the resting position of the arm 
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would have obscured part of a full annulus. Difficulty was manipulated in the same way as 

for Experiment 1. To anticipate, response modality (eye movements or finger movements) 

did not affect the patterns of results.

Method

There were 12 blocks of 72 trials each, 24 of each condition in each block ordered randomly. 

Like Experiment 1, a session was 50 min. long but, without the need for eyetracker 

calibration, there were more responses, an average of 823 out of a possible 864. There were 

16 subjects.

The central patches were constructed in the same way as for Experiment 1 except that only 

colors between 10 degrees and 170 degrees were used in order to avoid end effects. The 

central patch was displayed at the center of the half annulus (Figure 4A) and it was 16 pixels 

(.75 degrees) square. The half annulus contained 190 out of the possible 253 colors and its 

colors began at purple on the far left and ended at red on the right.

Subjects began each trial by touching their index fingers to a square that was located 9.5 

degrees below the central patch. 250 ms after the touch, a plus sign appeared at the location 

at which the central patch would be displayed and it remained on the screen for 500 ms. 240 

ms after that, the central patch and the half annulus were displayed. Subjects were instructed 

to move their fingers and touch the location on the half annulus that best matched the 

dominant color in the central patch. To discourage subjects from changing the target 

locations they had chosen during the finger movement, the central patch was turned off as 

soon as the finger was lifted but, unlike Experiment 1, the half annulus remained on the 

screen until the finger touch. This seemed to be more natural than turning it off as in the eye 

movement experiments. In the eye movement experiments, many of the eye movements 

were ballistic and turning off the response annulus did not affect the response. Following a 

response, feedback of the same kind as for Experiment 1 was presented for 300 ms, followed 

by the 40-ms blank screen. Response time was measured from onset of the patch and half-

annulus to the time at which the finger lifted from the resting square.

Results

The stimuli were aligned to set the zero point at 180 degrees. The A area corresponded to 

70–110 degrees, the B area to 45–70 and 110–145, and the T area to the rest. The results are 

quite similar to those of Experiment 1. The best-fitting parameter values are shown in Tables 

1 and 2, with the heights of the distributions of drift rates decreasing with difficulty.

Figure 4B shows response probabilities and the 0.1, 0.5, and 0.9 quantile RTs for the three 

difficulty conditions for the three response categories for each subject, and for the quantiles, 

SDs constructed by the same method as for Experiment 1. There are 144 points on the 

probability plot and only 124 for the quantiles because conditions with fewer than 10 

observations were excluded. There are no remarkable deviations between predictions and 

data for the response probabilities. For RTs, there are perhaps two large deviations in the 0.1 

quantile, one in the 0.5 quantile and four or five in the 0.9 quantile. As in Experiment 1, 

these deviations are not consistent across conditions for an individual subject.
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Figures 4C and 4D show predictions and data as a function of angle. The predictions were 

generated in the same manner as for Experiment 1 and they match the data well. As for 

Experiment 1, there was little change in RTs across angles, RTs increased with difficulty, 

and there was more variability in the tails away from 180 degrees for the predictions than the 

data. RTs increased from a mean of 536 ms for the 0.35 condition to 555 ms for the 0.20 

condition to 579 ms for the 0.10 condition and the model fit these differences well.

There is one issue to note and that is that to produce the plots in Figures 4C and 4D, the 

stimulus location was repositioned to 180 degrees (with a range from 100 to 260 degrees). In 

Experiment 1, this was accomplished by simple rotation, but in this experiment there is a 

problem because there are separate end points for the half annulus. To illustrate this 

problem, suppose the central patch had a color that was at 135 degrees (with the center of 

the half annulus at 180 degrees) and the stimulus location was rotated by 45 degrees from 

135 to 180 degrees as in Figure 4E. Then responses that were at 270 degrees move to 

270+45=315 degrees which is outside the 100–260 degree range (the blue dashed line to the 

right in the bottom panel). Stimuli at 90 degrees rotate to 135 degrees which means that are 

no responses in the range from 90 to 135 (red dashed line to the left in the bottom panel).

For the responses in Figure 4C, frequencies at 135 degrees are out of 75% of the possible 

frequencies at 180 degrees. This means that the histograms in Figure 4C (for the data) 

underestimate the frequencies in the tails away from 180 degrees. This does not change the 

results for the 0.35 and 0.20 stimulus conditions because there are few responses in the tails, 

but for the 0.1 stimulus condition, the extreme tails are lower than they would be with 

equiprobable histograms. In the model predictions, the stimulus position is set to 180 

degrees only so all the other angles from 100–260 degrees are equiprobable.

In the later experiments, two or more stimuli occur at random positions and in order to 

provide plots of the responses around the peak of both stimuli and between them, it is 

necessary to compensate for missing responses by moving responses that are outside the 

range to inside the range that would otherwise contain no responses, i.e., responses in 

regions that do not correspond to stimuli are filled in with responses that would be 

discarded.

The width of the histogram for the 0.10 stimulus condition is larger than that for the 

predictions. As for Experiment 1, one way to address this is to assume more variability (less 

precision) in weak stimuli which would require increasing the SD in the drift rate 

distribution (instead of keeping it constant as it was done in the fits).

Experiment 3

The aim for this experiment was to examine a task in which stimulus and response 

coincided, as they might for many devices such as cell phones and touch screens. Each 

stimulus was an annulus made up of black and white pixels (Figure 5A). The pixels were 

randomly distributed across the annulus except that there were two patches with more white 

than black pixels, one with a higher proportion of white pixels than the other, and two 

patches with more black than white, one with a higher proportion of black pixels than the 
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other. On some blocks of trials, subjects were instructed to move their eyes from a center 

fixation point to the location on the annulus that was the brightest (the largest proportion of 

white pixels) and on the other blocks of trials, to the darkest (largest proportion of black 

pixels). It turned out that dark responses to dark patches were symmetric with bright 

responses to bright targets and so the two were collapsed. Also, when responding to bright 

targets there was no evidence that subjects were avoiding dark patches (and vice versa) and 

so the status of the patches of the other polarity was ignored in the method and analyses 

presented below. Collapsing conditions produced two conditions at different levels of 

difficulty with two stimulus patches for each condition. The circular annulus was dynamic: a 

new randomly generated annulus was displayed on each frame of the display with the same 

brighter and darker locations.

Method

The circular annulus stimuli were constructed in the following way: first, pixels were 

randomly set so that 50% of them were white and 50% black. Then four locations on the 

annulus (at the center radius) were randomly selected with the limitation that they were at 

least 36 pixels apart (about 1.8 degrees of visual angle and 21 radial degrees around the 

annulus). Then some proportion of the pixels at two of the locations were changed to white 

and at the other two, changed to black. These locations served as the centers of 2D normal 

distributions with SD 6 pixels. The proportions that were flipped to white or to black in the 

patches were obtained from the height of the normal distributions. The proportions of white 

or black pixels at the peak of the normal distribution (center of the patch) were 0.62 and 0.58 

for the easier condition and 0.58 and 0.54 for the more difficult condition. The radius of the 

center of the annulus was 100 pixels (5 degrees of visual angle) and it was 72 pixels wide.

The displays were dynamic. Every 10 ms (determined by the refresh rate of the CRT 

monitors), a new random sample of noise was generated and new patches were generated in 

the same locations with different random samples of pixels changed from black to white or 

white to black.

There were 12 blocks of 72 trials, preceded by 45 practice trials. In each block, there were 

two conditions for the bright or dark targets, one with the easier proportions and one with 

the more difficult ones, in random order. For half of the blocks, subjects were instructed at 

the beginning of the block to move their eyes to the brightest location and for the other half, 

to the darkest location. These blocks alternated through the experiment. Subjects found this 

task more difficult than that for Experiment 1 in terms of staying on task and so very few 

subjects completed the experiment. This produced an average of 457 observations per 

subject out of 819 total trials.

At the beginning of a trial, subjects fixated on a white square (20 pixels square - about 1 

degree) at the center of where the annulus was to appear (Figure 5A); then the annulus 

appeared with random assignment of 50% black and 50% white pixels for 500 ms with a 

new random assignment of black and white pixels presented every 10 ms (the frame rate of 

the display); then as a signal that the stimulus appeared, the fixation rectangle changed to all 

black pixels and the pixels at the four locations on the annulus changed to the appropriate 
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proportions of black and white pixels. RTs were recorded from the onset of the bright and 

dark patches to when eyes moved 30 pixels from the center of the fixation box. When the 

eyes had moved 70 pixels from the center of the fixation box, the screen blanked. Feedback 

was provided with “2” presented for a response at the strongest peak, “1” at the weaker 

peak, and “0” for the other locations. The regions around the peak used to determine the 

feedback were boxes that had side lengths of 40 pixels. During the period that feedback was 

presented, the next set of images for the stimuli was loaded into the computer memory and 

this took about 1.4 seconds.

Results

“Bright” responses to bright stimuli were collapsed with “dark” responses to dark stimuli 

because there was less than a 1% difference in accuracy between them and only a 21 ms 

difference in mean RTs between them. Furthermore, subjects did not avoid responding to the 

opposite parity (e.g., they were not less likely to respond to a dark region when the task was 

to respond to a bright region). Therefore the data were collapsed across dark and bright 

conditions and so modeling and data are in terms of two conditions, stronger (higher 

proportion of black or white pixels) and weaker (lower proportions).

Because the locations of the bright and dark patches were randomly generated, it was 

necessary to align their positions in order to group data appropriately for model fitting. The 

peaks of the locations were aligned such that the stronger peak was rotated to 90 degrees and 

the weaker rotated to 270 degrees. The two peaks were usually closer than 180 degrees 

which means that after aligning the peaks, the numbers of observations between the two 

would be under-represented. For example, if the locations were at 135 and 225 degrees and 

responses were moved along with the locations, then responses 135–180 would move to 90–

135 and responses 180–225 would move to 225–270. Thus there would be a gap between 

135 and 225 degrees. To compensate, these positions were filled with responses from 45–

0-315 degree range on the opposite side (the red dashed line moving up as in Figure 5E). An 

analysis showed that there were no differences in response proportions from those in the 

shorter distance between two peaks versus those in the larger distance between two peaks 

which shows that this alignment method did not distort results.

Responses were divided into four areas (cf., Figure 4): the A area was 83–97 degrees with 

the center of the strongest location at 90 degrees, the B area was from 69–82 and from 98–

111 degrees, the C area was from 249–291 degrees (with the center of the weaker location at 

270 degrees), and the T area was all the rest.

Figure 5B shows response probabilities and the 0.1, 0.5, and 0.9 quantile RTs for the two 

levels of difficulty and the four categories of responses (A, B, C, and T) for each subject. For 

the quantiles, only conditions and areas with more than 10 observations per subject are 

plotted. The number of points for response probabilities was 128 and the number for 

quantiles was 123.

There is a good match between predictions and data. The SD bars in the lower right of the 

panels and the SD bar around the diagonal line were computed as for the other experiments. 
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For the response probabilities, there were few large non-systematic outliers. For the 

quantiles, there were fewer observations than for the earlier experiments, so variability was 

larger and there were deviations in the 0.1 quantile RTs between theory and data as large as 

100 ms. But the large variability in the data made these large deviations less than 2 SD’s 

outside the predictions. There seems to be less deviation between theory and data in the 

median RTs (0.5 quantiles), but the x-axis and y-axis scales are twice that for the 0.1 

quantiles and the deviations are as large numerically. As before, the deviations in the 0.9 

quantiles (tails of the distributions) are large also.

Figure 5C shows the proportions of responses combined over subjects plotted as a function 

of angle. To construct these plots from the data, the data are aligned as described above with 

the strongest stimulus at 90 degrees and the weaker one at 270 degrees then all responses are 

combined over subjects and plotted. Predictions are generated from the mean parameter 

values from Table 1 and then plotted in the same way as for the data. The comparisons 

between data and the model predictions are good especially keeping in mind that the details 

of the shape of the function are not fitted, rather only the A, B, C, and T groups of trials as in 

Figure 2.

Figure 5D shows mean RTs as a function of angle. There was little difference in mean RTs 

across the angles, but there was a large effect of difficulty with the mean RT 549 ms for the 

easier condition and 665 ms for the more difficult one.

Experiment 4

The display was a half annulus of black and white pixels (Figure 6A) and subjects were to 

move their index finger to the brightest or darkest area. Like Experiment 3, there were two 

locations with more white than black pixels, one with a higher proportion of white than the 

other, and two locations with more black than white pixels, one with a higher proportion of 

black than the other. As for Experiment 3, bright responses to bright stimuli were symmetric 

with dark responses to dark stimuli and when responding to bright stimuli, the dark patches 

were not avoided and vices versa (and so patches of the opposite polarity could be ignored). 

This led to two conditions with two levels of difficulty (brightness levels) with two patches 

in each of them. Unlike Experiment 3, the displays were static.

Method

The half annulus stimuli were constructed in the same way as for the annulus stimuli in 

Experiment 3. To construct the stimuli, a half annulus of 50% randomly placed black and 

white pixels was constructed with a center radius of 100 pixels (5 degrees of visual angle) 

and width of 72 pixels. The patches were 2D Gaussians with SD of 12 pixels. The patches 

were constrained to be at least 36 pixels apart (about 1.8 degrees of visual angle). There 

were two levels of difficulty with 0.75 and 0.65 proportions of white (or black) pixels at the 

strongest peak of the Gaussian and with 0.65 and 0.60 proportions at the weaker peak (the 

shorthand strong and weak stimuli within the easy and difficult conditions is used below). In 

the task, subjects placed a finger in a start box 190 pixels (9.5 degrees of visual angle) below 
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the center of the half annulus (Figure 6A), the stimulus appeared and then the task was to 

move the finger to the brightest patch (or the darkest patch in different blocks of trials).

The proportions of pixels changed were much larger and the SDs in the Gaussians were 

twice as large as those for Experiment 3. This is because Experiment 3 used dynamic stimuli 

which tended to average out variability leading to more visible differences at lower values of 

the proportions (e.g., Ratcliff & Smith, 2010).

The apparatus was the same as in Experiment 2 and there were 16 undergraduate subjects. 

Subjects touched their finger in a square corresponding to the fixation square in Experiment 

3 (as in Experiment 2) which was located at the center of the screen. After the touch there 

was a 250 ms period where the square remained on, then it was erased and a + sign came on 

for 500 ms in the center of the half annulus, then it went off and 250 ms later the stimulus in 

the response annulus was presented. The annulus remained on until a finger lift was 

detected. After the response, feedback was presented for 250 ms with “2” presented for the 

stronger peak, “1” for the weaker peak, and “0” otherwise. The regions around the peak used 

to determine the feedback were boxes that had side lengths of 50 pixels. Response time was 

measured from stimulus presentation to the time at which the finger lifted from the resting 

square to move to the target.

For modeling and data analysis, the strong and weak stimuli were aligned on 45 degrees and 

135 degrees respectively on the half annulus (which subtended 180 degrees). The stimuli 

were randomly placed in the display which leads to the problems discussed in Experiments 2 

and 3: how to align responses and deal with those that were outside the patches. Also, 

because the stimuli were presented on the half annulus, there was the same problem as for 

Experiment 2 with alignment outside the 180 degree range. In the design of the experiment, 

first, no patch could be more than 90 degrees away from the others, second, patches were 3 

SDs away from the ends of the half annulus (i.e., between 21 and 159 radial degrees), and 

third, patches could be no closer than 3 SDs, i.e., 21 radial degrees.

To align the stimuli, the stimuli were moved in a way analogous to Figure 5E and areas 

analogous to the blue area in Figure 4E and the red area in Figure 5E were moved to fill in 

the empty ranges. As for Experiment 3, there was no systematic difference between the 

proportions of responses in the areas that were moved from those that were rotated (Figure 

4E).

As for Experiments 1 and 2, the touch screen task was easier to perform than Experiment 3 

with eye movements. There were 12 blocks of 72 trials as for Experiment 3 preceded by 45 

practice trials. Trials proceeded more quickly than in Experiment 1 and many subjects 

completed all trials. There was a mean of 812 observations per subject out of 819 total.

Results

As in Experiment 3, bright responses to bright stimuli were reasonably symmetric with dark 

responses to dark stimuli (for strong stimuli, the difference is 3% in accuracy and 9 ms in 

mean RT and for weak stimuli the difference is 4% in accuracy and 5 ms in mean RT) and so 

they were grouped into strong versus weak. The angles used to specify the areas used to 
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group data to produce quantile RTs as in Figure 2 are: A 36–54 degrees, B 18–35 and 55–72 

degrees, C (the area for the second peak) 126–172 degrees, and T the rest. Also, as in 

Experiment 3, when the task was to respond to bright areas, responses at dark areas were no 

lower than the background (and vice versa).

Figure 6B shows plots of the model fit to the response proportions and 0.1, 0.5, and 0.9 

quantile RTs for each individual subject for each condition of the experiment (there are 168 

points in the response proportion plot and 154 in the quantile plots, i.e., those with greater 

than 10 observations in the condition.

Figures 6C and 6D show plots of the data and model for response proportions and mean 

RTs. As for the other experiments, these show good matches between theory and data. There 

are responses to the brightest and next brightest peak in the stimulus and the model matches 

the data as for Experiment 3. The RT results show little effect of difficulty on performance 

with only a 10 ms effect of difficulty (0.75/0.65 versus 0.65/0.60 stimuli). Also, the weak 

peak has mean RT only 5 ms shorter than the strong peak. This lack of any difference as a 

function of difficulty is quite different from the results from Experiments 1 and 2 which 

show quite large differences in RTs for easy and difficult stimuli. However, the model 

captures all these accuracy and RT effects.

Experiment 5

In Experiments 1 and 2, there was a direct 1–1 correspondence between the dominant color 

in the central patch and the target location in the surrounding annulus. In other words, if red 

was the dominant color in the patch, then red was the target location. In Experiments 3 and 

4, there was also a 1–1 correspondence: the brightest (or darkest) location on the circular or 

half-circular annulus was the location to which eyes or fingers moved. Experiment 5 broke 

these direct perceptual correspondences. The central patches were made up of arrows 

(Figure 7A) with a proportion of them pointing in the same general direction and the others 

in random directions. The surrounding response annulus was also made up of arrows, with 

their directions moving around the circle from pointing upward at the top of the circle to 

downward at the bottom. Subjects were to move their eyes from the central patch to the 

location on the circle that matched the dominant direction of the arrows in the patch. This 

requires determining the dominant direction in the patch and only after that has been 

accomplished can the target location on the surround be determined. There were three 

different conditions with different proportions of arrows pointing in the target direction.

Method

At the beginning of each trial, subjects were asked to fixate on a white 20×20 pixel square at 

the center of the screen. After 500 ms of fixation, the central patch and the circular annulus 

surrounding it were displayed; these remained on the screen until a subject’s eyes moved 40 

pixels (2 degrees) away from the fixation point, at which point the screen cleared.

Feedback was presented for 300 ms (“1” for a response in the target location which was a 

box 40 pixels around the target location and “0” otherwise). Feedback for fast or slow 

responses or slow movement time was the same as for Experiment 1.
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The central patch was a disk with radius 50 pixels (2.5 degrees of visual angle) and 

contained 32 non-overlapping arrows. The circular response annulus was 4 degrees of visual 

angle (80 pixels) from the fixation point with a width of 0.65 degrees. In both the central 

patch and the surrounding annulus, the arrows were 13 pixels (0.65 degrees) long and 7 

pixels (0.35 degrees) wide. The arrows had heads and tails to minimize the possibility of 

using the density of the head relative to the tail if only heads were used. There were 36 

arrows in the response annulus, one for each 10 degrees of rotation, as in Figure 7A.

In the stimulus patch, some proportion of the arrows pointed within plus or minus 10 

degrees of the target direction. Difficulty was manipulated by the proportion that pointed in 

the same direction: the proportions were 0.6, 0.4, and 0.2.

There were 16 subjects. The experiment was composed of 12 blocks of 72 trials each, with 

24 trials in each block for each of the three conditions, ordered randomly. The first 90 trials 

were used as practice. As for the other eye tracking experiments, few subjects finished the 

50 min. session; the average number of observations per subject was 520 out of 774.

Results

The target direction on the response annulus was rotated to 180 degrees. The A area was 

161–200 degrees, B was 141–160 and 201–220 degrees, and T was the rest.

There were 144 data points for response probabilities and 127 for the RT quantiles (data 

points for which there were more than 10 observations). There were no systematic 

deviations of predictions from data and only two serious deviations for the 0.5 quantile and 

three for the 0.9 quantile (Figure 7B). The fit of the model was also good for the histograms 

of response probabilities and mean RTs in Figures 7C and 7D. For response probabilities, 

the only miss is a slightly lower peak for the data than the predictions for the condition with 

0.2 of the central arrows pointing in the same direction and a slightly higher level of 

responses away from the peak. As before, if different SDs in the stimulus distribution were 

used for the different difficulty conditions, the model would produce a much smaller miss. 

The RT functions are flat across angles and increase with difficulty, from 469 ms to 519 ms 

to 543 ms. As before, the predicted RTs are less variable in regions off the center of the 

functions (blue brackets) than the data because they had fewer observations.

Experiment 6

This experiment was designed to connect to a frequently-used task in research on motion 

discrimination (Ball & Sekuler, 1982; Britten, Shadlen, Newsome, & Movshon, 1992; 

Newsome & Pare, 1988; Roitman & Shadlen, 2002; Salzman, Murasugi, Britten, & 

Newsome, 1992). In the standard task, the stimuli are displays of moving dots and there is a 

subset of them in which the dots are moving in the same direction. The subjects’ task is to 

decide in which direction the dots of the subset are moving and the response categories are 

discrete (usually, 2, 3, or 4 choices). Subjects are required to respond on a continuous scale.

On each trial, there were four subsets of dots, each of three of the subsets with the dots in it 

moving together (coherently) in the same direction with the three subsets moving at 120 
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degrees to each other. The other subset had the dots redrawn between frames in random 

positions (cf. Niwa & Ditterich, 2008). Stimuli were presented in a circle 100 pixels in 

diameter and were composed of white dots on a black background. Responses were made to 

a circle 140 pixels in diameter concentric with the stimulus circle. In the three subsets with 

coherent motion, a direction for a dominant direction was chosen, and the two other 

directions for the other two subsets of dots were at 120 radial degrees from the others 

(Figure 8A). Fixed orientations were used because if motion directions become close 

together, as they might if random directions were chosen, they become difficult to 

discriminate and fuse together. Difficulty was varied with the proportions of dots that moved 

coherently in each of the three subsets: in one condition, the proportions were 0.5, 0.1, and 

0.1, in another they were 0.4, 0.2, and 0.2, and in the third, they were 0.4, 0.2, and 0.1 (e.g., 

Figure 8A). Subjects were to move their fingers from a start box below the response circle to 

the location on the surrounding circle that matched the direction in which the largest 

proportion of dots was moving.

Method

To begin each trial, a subject placed the first finger of her or his dominant hand on a square 

at the bottom center of the screen. Subjects were to keep their finger on the square for 250 

ms, after which the response circle and a plus sign in the center of the screen were displayed 

for 500 ms. Then the central patch was added to the display and it remained on the screen 

for 350 ms. RTs were measured from the onset of the patch to the time at which the finger 

was lifted from the resting square.

There were 36 directions in which dots could move, separated from each other by 10 

degrees. The direction of the largest proportion of coherently moving dots (0.4, 0.5) was 

chosen randomly from the 36 directions and the directions of the other two, smaller, 

proportions (0.1, 0.2) were each located at 120 degrees from the direction of the largest 

proportion.

Each block of 108 stimuli had each of these 36 directions (for the strong coherences) 

presented 3 times. The coherences were: 0.5/0.1/0.1 for 1/3 of trials, 0.4/0.2/0.1 for 1/3 of 

trials, and 0.4/0.2/0.2 for 1/3 of trials.

The size of each dot was 2×2 pixels. The central patch was a circle 100 pixels in diameter. 

When a dot in a coherent set moved off the circle, it was placed back on the circle 180 

degrees from the position at which it had moved off. The dot motions were presented in 

different frames of the display and the method followed that in Niwa and Ditterich (2008; 

also Ratcliff & Starns, 2013, Experiment 2). The first 5 dots were placed at random positions 

in the patch in the first frame and these were assigned to one of four groups probabilistically. 

For the 0.5/0.1/0.1 condition, for example, a dot was assigned to the 0.5 condition (“1”) with 

probability 0.5, the 0.1 conditions (“2” and “3”) with probability 0.1 each, and to the random 

condition (“4”) with probability 0.3. On frame 2, the “1” dots moved coherently, the “4” 

dots moved randomly, and the others remained in place. On frame 3, the “2” dots moved 

coherently and on frame 4, the “3” dots moved coherently. On frame 5, the dots were 

randomly reassigned to conditions (so a dot could remain in condition 1 or it could be 
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reassigned to one of the other conditions) and dots in the newly assigned conditions “1” and 

“4” moved, and so on.

The location of a correct response was determined by the intersection of a line pointing in 

the direction of the strongest coherence from the center to the surround. It was a box 50 

pixels square at that location. If the response was to the correct location, “correct” appeared 

35 pixels above the response location (so the hand did not obscure it) for 250 ms and if the 

response was outside the 50 pixel square, “ERROR” appeared 35 pixels above the response 

location for 250 ms. RTs were measured from the onset of the first frame to the point at 

which the finger left the resting point. For RTs longer than 1250 ms, a “TOO SLOW” 

message was displayed for 500 ms. For RTs shorter than 150 ms, a “TOO FAST” message 

was displayed for 500 ms.

The experiment was composed of 10 blocks of 108 trials with 36 trials for each of the three 

conditions in random order. Many of the subjects finished the whole experiment and the 

mean number of trials per subject was 943.

Results

Because the movement directions were at 120 degrees from each other, it was easy to rotate 

the data so that the strong stimulus direction was at 180 degrees and the two weaker 

directions were at 60 and 300 degrees. For the 0.4/0.2/0.1 condition, half the time the 

conditions were in this order and half the time they were in the 0.4/0.1/0.2 order (clockwise). 

In these cases, one of them was reflected to align the 0.2 condition on 60 degrees. The A, B, 

C, D, and T areas (A and B for the dominant direction, and C and D for the other two 

directions) were 161–200 degrees, 141–160 and 201–220 degrees, 21–100 degrees, 261–340 

degrees, and T responses were the rest.

The model fit reasonably well with only a few mismatches for the 0.9 quantile. There were 

270 points for response probabilities and there were 258 points with greater than 10 

observations for the quantiles.

Figures 8C and 8D show plots of response proportions and mean RT as a function of angle 

that are constructed in the same way as earlier experiments. The response proportion plots 

match quite well with one exception: the secondary peaks for the model have more 

pronounced peaks than the data. One possible interpretation is that low coherent motion in 

the competing directions has less precision and provides much poorer directional 

information leading to a smearing of the responses over position. As for the earlier 

experiments, this could be addressed by increasing the SD in the drift rate distributions for 

those lower coherence stimuli.

As for the earlier experiments, mean RTs across angles show little difference. Unlike the 

earlier experiments, averaging over all angles, mean RTs differ by a small amount, namely 

18 ms, between the 0.5/0.1/0.1 and the 0.4/0.2/0.2 conditions (the values for the 0.5/0.1/0.1, 

0.4/0.2/0.1, and 0.4/0.2/0.2 conditions were 506, 518, and 525 ms respectively). This 

difference is smaller than the difference as a function of difficulty for Experiment 3 and is 

much smaller than the difference observed in Experiment 1 as a function of difficulty. The 
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small difference is likely because the difference in the dominant motion coherence is 

relatively small for this task (0.5 versus 0.4).

Experiment 7

With this experiment, the computer-mouse response modality was examined. The 

experiment was the same as Experiment 1 in that central patches of colored pixels were 

surrounded by a circular response annulus and subjects were to indicate the color on the 

response annulus that matched the dominant color of the central patch. Subjects indicated 

the color by moving a mouse from a central resting square in which the stimulus appeared to 

a location on a surrounding response annulus that corresponded to the dominant color in the 

stimulus square (Figure 9A). There were the same three conditions as in Experiment 1; the 

proportion of pixels of the dominant color was 0.35, 0.2, or 0.1.

The main finding from this experiment was that the results replicated those of Experiment 1. 

From a practical perspective, eye trackers are expensive and touch screens are specialized 

(though they are common in tablets and cell phones). Almost every PC or laptop system has 

a mouse or is capable of adding a mouse and has software to use a mouse. This allows more 

general opportunities to conduct experiments with continuous stimuli and response scales 

with standard PC based experimental systems. However, just prior to submitting a revision 

of this article, we have implemented our real-time system on cheap chromebook laptop 

convertibles ($250 each) and can collect data from finger movements on these. Because 

movement times are much shorter than for mouse-based experiments (see the analysis later 

in the article) and training for the touch-screen tasks is easier for populations such as older 

adults, we now lean to using touch-screen experiments on chromebooks.

Method

The experiment was composed of 10 blocks of 72 trials (24 for each condition in random 

order) preceded by two practice blocks. There were 16 subjects and the mean number of 

observations per subject was 719.

At the beginning of each trial, a fixation box was presented at the center of the display and 

subjects had to move the mouse into the box and click it. Immediately after the click, the 

box disappeared and was replaced by the stimulus patch and the response annulus. After 250 

ms the patch turned off but the response annulus remained on the screen until the subject 

made a response by clicking the mouse when he or she had moved it to the intended 

location. The central patch was displayed for only 250 ms instead of remaining on the screen 

until a movement was initiated as in Experiment 1. This was because in a pilot study, 

subjects were found to start to move the mouse before they had made a decision which lead 

to curved mouse tracks instead of tracks that went directly to the response location. RT was 

measured from stimulus presentation time to the time the mouse had moved 10 pixels away 

from the position clicked on to initiate the trial.

The position of the mouse was explicitly displayed on the screen as it was moved; it was a 

3×3-pixel black cross (with white pixels in the corners of the 3×3 array) with its location 

refreshed every 10 ms. The track began when the mouse position moved outside a 10-pixel 
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radius from the click position and stopped when the mouse was clicked to indicate the 

response. After the response click, the screen cleared to 50% gray and feedback appeared as 

in Experiment 1, with a “1” for a correct response and “0” for an incorrect response 

presented for 300 ms. If initiation of the mouse motion was too fast, beginning within 300 

ms of stimulus onset or with duration less than 250 ms, a TOO FAST message appeared at 

the center of the screen for 1000 ms, shown before the “1/0” feedback. If the mouse motion 

was too slow, started over 1250 ms after stimulus presentation or with duration greater than 

1250 ms, a TOO SLOW message appeared at the center of the screen for 500 ms before the 

“1/0” feedback. After feedback, the screen cleared to 50% gray for 20 ms.

Results

The locations of the target colors were aligned in the same way as for Experiment 1, with the 

central location at 180 degrees. Responses were also grouped in the same way, into A, B, 

and T areas. The match between the data and predictions for response probabilities and RT 

quantiles (Figure 9B) was good with few serious outliers except for 0.9 quantile RTs that 

were longer than those predicted. There were 144 points for the response proportions (16 

subjects by the A, B, and T response areas, and 3 levels of difficulty) and 114 observations 

for the quantiles (conditions with more than 10 observations). A careful examination of 

response proportions shows a number with experimental values close to zero, but predicted 

values from the model were in the 0.02 to 0.1 range. As noted earlier, this might be 

accommodated with stimulus location dependent noise and this is examined in the 

discussion.

The distributions of responses and mean RTs over position showed similar results as for 

Experiments 1 and 2. The one noticeable difference between predictions and data was that 

the histogram for response probabilities for the most difficult condition (Figure 9C) had a 

wider distribution for the data than the predictions which suggests that the SD in the drift-

rate distribution increases with difficulty as discussed earlier. Mean RTs for the three 

difficulty levels were 532 ms, 554 ms, and 588 ms.

Experiment 8

A key manipulation in experimental and theoretical work in perceptual and cognitive 

decision-making is a manipulation of instructions about speed and accuracy. On some trials, 

subjects are asked to make their responses as quickly as possible and on other trials, as 

accurately as possible. This manipulation gives considerable leverage for testing the model 

because it is assumed in the model that the criteria subjects set to achieve their desired speed 

and accuracy are independent of the information upon which their decisions are based. In 

other words, the only parameter that should change as a function of instructions is the 

decision boundary setting (though in two-choice tasks, there is some evidence that 

nondecision time also changes). The manipulation is also of practical importance because in 

real-world decision making, it is sometimes necessary to respond quickly and sometimes to 

be sure to make the correct decision.
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This experiment was the same as Experiment 7 except for the speed-accuracy manipulation 

and a reduction in the number of levels of difficulty from three to two (to give more 

observations per condition).

Method

The experiment was composed of 12 blocks of 72 trials each with the first 45 trials of the 

first block used as practice. There were 16 subjects. Instructions for speed versus accuracy 

alternated across the blocks; for half the subjects, the first block was an accuracy block and 

for the other half, it was a speed block. There was a mean of 653 observations per subject. In 

the easier condition, 0.25 of the pixels in the central patch were of the dominant color and in 

the more difficult condition, 0.1 of them were.

Results

To apply the model to the data, the only parameter allowed to change between speed and 

accuracy instructions was the decision boundary.

There were two levels of difficulty, speed and accuracy instructions, and three response areas 

(A, B, and T, Figure 2), so there were 192 data points for the 16 subjects, which is the 

number plotted for response proportions in Figure 10B. Quantile RTs were plotted for the 

164 conditions with greater than 10 observations. There are few data points that lay outside 

the maximum 2SD error bars.

Accuracy was little different with speed instructions than accuracy instructions, about 1%. 

Specifically, the proportions of correct responses (the A and B areas combined) with speed 

instructions were 0.98 and 0.86 for the 0.25 and 0.1 levels of difficulty, respectively, and 

0.99 and 0.87 with accuracy instructions. Mean RTs differed by about 70 ms: with speed 

instructions, the means were 523 and 557 ms for the two levels of difficulty, respectively, 

and with accuracy instructions, they were 557 and 639 ms, respectively (for the model, the 

four values were 525, 565, 578, and 637 ms respectively). The smaller difference as a 

function of difficulty with speed than accuracy instructions is captured by the model. The 

predictions of the model for the distribution of responses across angle and mean RT across 

angle matched this well (Figures 10C and 10D).

Model parameters are shown in Tables 1 and 2. The boundary parameters (13.6 and 15.3) 

were significantly different across the 16 subjects, t(15)=5.1, p<0.05.

In this task, it seems that subjects are reluctant to adopt more lax speed-accuracy criteria 

settings that would produce a significant increase in random errors. They are capable of 

slowing down or speeding up a little, but this does not materially change the location at 

which they make their response or the spread in responses over angles. The instructions in 

this experiment were similar to those used in standard two-choice tasks. But they were not 

strong enough to make accuracy fall as it does in standard tasks (Ratcliff, Thapar, & 

McKoon, 2001, 2003, 2004; Thapar, Ratcliff, & McKoon, 2003). If more extreme speed-

stress instructions were used (see Starns, Ratcliff, & McKoon, 2012), subjects might start to 

move the mouse (or eyes in eye movement tasks or their finger in the touch screen tasks) 
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before the decision has been made or they might guess and simply move to a random 

location. If more extreme accuracy-stress instructions were given, subjects might make 

multiple attempts at processing the stimulus. Probably the main difference between the 

continuous response scale and two-choice tasks is that errors in two choice tasks involve one 

alternative that is well defined. But in the continuous task, there is only one small range of 

correct responses but a large number of directions for errors. Subjects are unlikely to want to 

produce a high proportion of completely random responses that could be a large distance 

from the correct response location when waiting a few tens of ms longer will produce higher 

accuracy. These considerations suggest that manipulating speed-accuracy stress in these 

kinds of tasks might not be as straightforward as for two-choice tasks.

Color Biases

The subjects in our experiments showed a bias to respond with primary and additive colors 

and a bias against colors between them. To show this, data from Experiments 1 and 7 are 

used in which the central patches and response annuli were colored pixels and the response 

annulus was a full circle. Responses in Experiment 1 were made by eye movements and in 

Experiment 7, by mouse movements. This bias has rarely been reported in other tasks using 

color response scales because researchers have collapsed over colors when analyzing data. 

However, it is likely present in all experiments in which responses are made on a continuous 

color circle.

Biases like these have been observed in long-term memory for objects (Persaud & Hemmer, 

2016) and in the visual working memory task (Hardman, Vergauwe, & Ricker, 2017). In 

Persaud and Hemmer’s (2016) experiments, colored shapes were presented for study and at 

test, a colored shape was presented and the subject had to decide whether the color was the 

same or different as that in the studied shape. There was a bias to respond “same” when the 

color was a primary or additive color. They also performed experiments that involved 

naming colors and experiments that involved, given a color name, locating the color on a 

color wheel. Both these tasks showed color biases. Hardman et al. also found biases toward 

primary and additive colors. They used the standard visual working memory task (see 

discussion of this task later). Subjects were given several colored squares to remember and 

then they were probed with one square colored grey and were to indicate the color that 

square had appeared in on a color wheel. They modeled the accuracy data with a model with 

both continuous and discrete components with a multinomial model guiding which 

components were used with what probability.

In Experiments 1 and 7, the biases in the data were as large as 3:1. Figure 11A shows 

responses from all the subjects and all of the conditions as a function of the stimulus and the 

response (positions on the color circle). There are some vertical gaps (which are partially 

hidden because of the size of the circles that plot the data) because our colors were from the 

0–253 palette and we plotted in 1-degree increments. Figure 11B shows the distribution of 

stimuli averaged over subjects and conditions. Ideally, this distribution would have been flat, 

that is, the probability of a target at each angle would have been the same, but the sampling 

method used to construct stimuli did not produce this. Figure 11C shows the distribution of 

responses averaged over subjects and conditions and this shows the color biases. There are 
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more responses at red, purple, blue, teal, green, and yellow (the vertical dashed lines on the 

figure) than the colors between them. These biases were hidden when the response angles 

were aligned at 180 degrees and averaged over color for the analyses presented earlier in the 

article. The biases in responses were not due to differences in the stimulus probabilities 

because the peaks of the response frequencies do not correspond to the peaks of the stimulus 

frequencies (Figures 11B and 11C).

In order to examine groups of responses, the data were divided into two groups, in one the 

stimuli are preferred colors and in the other the stimuli are non-preferred. The A, B, C, and 

D panels of Figure 12 illustrate how biases with these two groups of data can be modeled. 

For this illustration, the distributions of evidence from stimuli are assumed to be back-to-

back exponentials rather than the normal distributions in the model, the boundary setting is 

sinusoidal, there is no noise, and the stimulus distribution is multiplied by the boundary to 

give a distribution of responses. This is a simple way of illustrating the main features of the 

data. Figure 12A shows the distribution for an angle at a primary color and 12B shows it for 

angles that are not at primary or additive colors (the dashed lines align on the peak of the 

evidence distribution). Multiplying the exponentials by the sinusoid gives the distributions in 

12C and 12D. When a peak of the exponentials aligns with a peak of the sinusoid, the result 

is a flattened response at the peak and a wider distribution (Figure 12C). This is because (in 

the SCDM), when the peak of the drift rate distribution is at the peak, there is a greater 

tendency for processes to hit the sinusoidal boundaries on the left and right of the peak 

which decreases probabilities at the peak and increases them to the sides of the peak. 

Similarly, when a trough of the exponentials aligns with the peak of the sinusoid (Figure 

12B), the result is a more peaked function (Figure 12D) because processes close to the peak 

of the stimulus distribution tend to hit at the trough of the decision boundary. This also 

produces high side lobes that correspond to the next trough of the boundary sinusoid (Figure 

12D).

The full model, with normal distributions of evidence and continuous noise, is illustrated in 

Figure 12E. The blue line shows the sinusoidal line as the decision criterion. The same 

results would be achieved if the starting points were sinusoidal (the green sinusoid) and the 

decision criterion was a straight line because the model is a linear one and thus the two are 

mathematically equivalent.

To generate predictions for the color biases, the only change in the model is that the decision 

criterion function (or the starting point function) is sinusoidal. Because the primary and 

additive colors are 60 degrees apart on the color wheel, the period of the sinusoidal 

boundary or starting point is fixed. Thus, the only parameter added to the model is the 

amplitude (height) of the sinusoid. To model the data for Experiment 1 and 7, the mean 

values of the best-fitting parameters across subjects were used along with the sinusoidal 

starting point function (the green line in Figure 12E). The amplitude of the sinusoidal was 

determined by trial and error using simulations of the model. For color bias analyses, for 

Experiment 1, the decision criterion was 15.2 and the peak-to-peak height of the starting 

point sinusoid was 3.2 and for Experiment 7, the decision boundary was at 15.4 with the 

peak-to-peak height of the sinusoid 2.0. Two sets of predictions were generated, one with 
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sinusoid aligned so that the peak was at the peak position of the drift rate distribution (e.g., 

180 degrees) and the other with the peak at a trough of the drift rate distribution.

Figure 13 shows the observed and predicted response probabilities as a function of angle for 

the two experiments for the preferred angles (the primary and additive ones) and the non-

preferred ones. The results for Experiment 1 are on the left and those for Experiment 7 are 

on the right. When the trough of the sinusoid is in the preferred direction (i.e., the trough 

aligns with a primary or additive color), both theory and data show peaked functions with 

side lobes (especially in the most difficult, 10%, stimulus condition). When the peak of the 

sinusoid is in the preferred direction, both theory and data show wider functions with flatter 

peaks.

Median RTs are also shown in the figures and the correspondence between them is 

remarkably good with a maximum difference between theory and data of 14 ms. Although 

the shape of the frequency versus angle functions differs quite considerably for preferred 

versus non-preferred directions, median RTs differ little between the two; averaging over all 

levels of difficulty for both experiments, the mean RT difference in preferred and non-

preferred directions for data is 8 ms and for the model 5 ms.

As before, the data in Figure 13 were not fit directly. Choice proportions and RT quantiles 

for Areas A, B, and T (see Figure 2) were fit (earlier) for Experiments 1 and 7 and then one 

additional parameter was added (the amplitude of the sinusoidal starting point) and this 

produced the predictions for the distributions of responses over angle and mean RT in Figure 

13.

The results presented in Figure 13 provide another explanation of why the distributions of 

responses over angle are wider in the data for difficult conditions than for easy conditions 

for the color experiments. For easy conditions, the side lobes for the preferred condition are 

quite small, but for the difficult condition, they are wider and higher. Combining the 

preferred and non-preferred distributions leads to a wider distribution for the difficult 

conditions (bottom two rows) than for the easy conditions (top two rows). However it might 

be that this is not enough and there is additional variability (less precision) in processing 

difficult stimuli which leads to wider distributions of drift rates (which would be needed in 

the non-color experiments).

Hardman et al. (2017) developed a 4-state multinomial model to account for similar effects 

in their visual working memory task. They assumed that responses are a probability mixture 

of stimulus-driven responses and guesses. First, processing a stimulus either finds an item in 

working memory or it does not. If the item is in working memory, then either a response is 

made based on continuous information or it is based on categorical information. If the item 

is not in working memory, either a categorical guess is made or a random guess. There are 

different probabilities of these states and a common noise term. For different set sizes, some 

of these parameters are the same which produces some parameter invariance over conditions.

A major problem with the model is that it makes no predictions about RTs and their 

distributions. In a multistate model like that of Hardman et al., it is extremely unlikely that 

different categories of responses have exactly the same RT distributions. Guesses are not the 
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same thing as stimulus-driven responses and it is unlikely that the time course of making a 

categorical or random guess has exactly the same time course as a response to an item that is 

in working memory. One would expect that the processing time for a strong item would be 

shorter than a weak item and detecting absence from working memory would be a slower 

process. The advantage of the SCDM is that only one process is required to account for what 

is argued by Hardman et al. to be a multistate or multicomponent process (see also Zhang & 

Luck, 2008; Bays et al., 2011; van den Berg et al., 2012, 2014).

To further examine color biases, a number of issues could be explored that involve 

examination of perceptual properties of stimuli. First, in Figure 10C, yellow has a smaller 

number of responses than green. These differences might be able to be modeled with 

modulation of the height of the sinusoidal starting point distribution (e.g., the peak for 

yellow would be lower than the peak for green). However, it may be that the yellow stimuli 

are perceptually more difficult, that is, harder to identify, than red or blue in the 

experimental apparatus used here. This would mean that perceptual properties of our stimuli 

would have to be examined and this would lead into issues of perceptual properties of color 

vision which is beyond the scope of the topic of this article. However, in applications that 

use responses on color scales such as the visual working memory domain, such issues need 

to be examined. Second, if the differences across colors resulted from differences in 

perceptual properties of the stimuli such as luminance, then stimuli with equiluminant 

stimuli might be used instead of the colors used in the experiments presented here. For 

example, color wheels of CIELUV-space stimuli could be used. These have the added 

advantage of making the colors more difficult to name which would reduce possible naming 

biases. Third, an alternative hypothesis is that instead of decision biases, the results in Figure 

10 could be explained by differences in drift rates so that for a primary or additive color, 

drift rate might be higher than for one in between. However, this assumption would not 

produce the difference in the shapes of the response functions in Figure 12 (peaked for on a 

primary or additive color and flattened for between these colors as in Figure 11) and so the 

bias explanation is the one most consistent with the data.

Model-Based Analyses and Experimental Designs

There are four points to discuss about the data and modeling for the 1D tasks for 

Experiments 1–8. First, only few experiments similar to those presented here have been 

conducted in related domains and these few have not collected RT data and have not 

considered modeling the time course of the decision process.

Second, significant effort was put into designing tasks in this article to be “natural,” easy to 

instruct, and easy for a subject to perform. One focus has been on minimizing the initiation 

of responding before the decision has been made. In early versions of several of the tasks, 

many of the movements away from the resting position took hundreds of milliseconds and 

where the tracks could be measured, they were often to intermediate points that were not on 

a line from the fixation to the eventual response (i.e., curved tracks). In some mouse-based 

two-choice tasks, such slow movement is a design target (see discussion in Ratcliff, Smith, 

Brown, & McKoon, 2016), but data from such tasks are not appropriate for the SCDM. (In 
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fact, examining movement times in eye-movement tasks is a separate research domain, cf., 

Kowler & Pavel, 2013).

Third, the fitting methods used here have not been shown to be optimal in any sense and 

more research would be needed to produce better fitting methods. However, the important 

point is that the fitting method produces fits that generate the predictions shown in the 

experimental sections. Better fitting methods might produce better fits and predictions than 

those shown here, but the methods used here show that the model fits data at least as well as 

is shown above. If alternative models are developed (e.g., Smith, 2016) that make 

qualitatively and quantitatively similar predictions, then fitting methods and the properties of 

fitting methods will become important in comparisons among models. Parameter recovery 

studies are presented in the Appendix.

Fourth, the parameter space of the model has not been explored in much detail. For example, 

adding across-trial variability parameters improved the fit, but not in any dramatic 

qualitative way (see the appendix for how the different parameters affect model predictions). 

As more data from more paradigms are collected and the SCDM and related models are fit 

to data, a more comprehensive view of the models and the detailed assumptions in each of 

the models will begin to appear.

Model Parameters, Scaling, and Numerical Goodness-of-Fit

Tables 1 and 2 show the best-fitting model parameters, averaged across subjects, for 

Experiments 1–8. Tables 3 and 4 show SDs across subjects in the model parameters. The 

values of the model parameters are defined in terms of 10 ms time steps and one degree 

spatial steps. To change this scaling of time steps or spatial distance, several model 

parameters need to be adjusted. These changes can be understood by examining the units of 

the various model parameters. For example, drift rate is evidence per unit time so changes in 

time steps will require changes in drift rate. The diffusion coefficient (σ2) has units of 

evidence per unit time and so σ has units of (time)−1/2. Thus the value of σ will be changed 

if the time step is changed. The kernel parameter has units of spatial distance and so changes 

in the number of spatial divisions will change this parameter.

For changing the spatial distance by a factor of x, e.g., moving from 72 5-degree divisions in 

angle to 360 1-degree divisions, x=5, these parameters are adjusted:

1. SD in noise added on each time step in the accumulation process (the parameters 

are scaled to this value) is divided by x.

2. The boundary value and the range in the boundary (a and sa) are divided by x.

3. The SD in the drift rate distribution (sw) and the SD in Gaussian process noise 

(the kernel parameter, r) are both multiplied by x.

4. Drift rate parameter and SD in that parameter (d and sd) stay the same, BUT, 

because they multiply the height of the drift rate distribution and because the 

width is increased (the SD, sw, is increased and multiplied by x), the height of 
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normal drift rate function is x times lower (as is the range of heights), which 

means that d and sd do not change.

For changing the time step by a factor of t, e.g., moving from 10 ms steps to 5 ms steps (t=1/ 

2), these parameters are adjusted:

1. Drift rate peak and range in the peak (d and sd) are divided by t.

2. SD in noise added on each time step (σ) in the accumulation process is divided 

by the square root of t.

3. Boundary parameters, SD in the drift rate distribution and the SD in Gaussian 

process noise (the kernel parameter) all remain the same.

Nondecision times in some of the experiments are close to the minimum that was set in the 

fitting program, namely 175 ms. It is implausible for nondecision time to be less than this 

value because it is close to the time taken for neural signals to be transmitted from the eyes 

to frontal cortex plus the time for signals to be transmitted from frontal cortex to the motor 

system (the sum is about 150 ms). The values for the moving dots and mouse-based 

experiments are larger than 175 ms (Table 1).

Across the experiments presented in this article, boundary settings are between 7 and 15 

units (i.e., a 2:1 ratio) and across-trial range in boundary setting is between 2 and 5 times 

smaller than the value of the boundary setting. The Gaussian process parameter is between 5 

and 30 degrees and the SD in the drift-rate distribution is between 17 and 36 degrees. The 

peak height of the drift-rate distributions varies between 2:1 and 8:1 for the strongest 

stimulus versus the weakest stimulus. These differences in parameter values across tasks are 

similar to the size of differences across tasks in related parameters for the two-choice 

diffusion model.

Generally, the G-square goodness of fit values are acceptable, with values about twice the 

critical value of chi-square. This is consistent with acceptable fits of the two-choice and 

confidence judgment models to data (Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff & 

Starns, 2013).

Parameter Recovery and Correlations Among Model Parameters

In the appendix, parameter recovery simulations are presented and these provide parameter 

values that allow tradeoffs among parameters to be examined. It is important to understand 

tradeoffs among parameters because if there is a difference in one parameter between two 

groups (e.g., a group with a disease or clinical disorder and a control group), it is important 

to know whether this is a real difference or whether it is the result of another parameter 

covarying with it, with no real difference in processing between the two groups.

Parameter recovery with 200 observations per condition (about the same number as in an 

experiment) produces parameter values that are relatively unbiased. There are correlations in 

some of the model parameters so that if one is higher than the value used to generate the 

simulated data, another is lower to compensate. Most of these correlations are readily 

interpretable as is discussed in the Appendix (and in Ratcliff & Tuerlinckx, 2002, for the 
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two-choice model). The impact of these correlations on interpreting the behavior of model 

parameters is qualified by the relative sizes of the SDs in parameters relative to the SDs in 

model parameters across subjects, i.e., individual differences. The SDs across subjects were 

two times or more larger than the SDs in model parameters in the simulations presented in 

the Appendix. This means that the dependencies in the model structure that allow parameters 

to trade off are not likely to be a problem in interpretation of individual or group differences, 

although this issue will have to be examined using simulation methods in any application of 

the model to individual differences.

Are the Across-Trial Variability Parameters Needed and is Normalization 

Needed?

In modeling two-choice tasks, incorrect responses are sometimes slower than correct 

responses and sometimes faster, depending on the task (see the review in Ratcliff & 

McKoon, 2008). A successful way to model this is to let the components of processing, drift 

rates and starting point, vary from trial to trial. In contrast, the results from Experiments 1–8 

(as well as Experiment 9 described below) show little change in RTs across spatial position 

(angle); that is, correct and incorrect responses have similar RTs. Thus it might seem that 

variability across trials is not needed by the SCDM. However, as shown in the appendix, 

there are values of parameters that produce either slow or fast error responses relative to 

correct responses (area T versus A in Figure 2) and the combinations of all the parameters 

are needed to produce the observed behavior.

The original motivation for including across-trial variability in model components is the 

belief that individuals cannot hold components of processing constant across trials. For 

memory, Ratcliff (1978) followed signal detection theory in assuming that memory strength 

(drift rate) varied from trial to trial. Although it was known that this assumption produced 

slow errors, only later was it found that this allowed the model to produce high-quality 

quantitative fits to experimental data (Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & 

McKoon, 1999). Recently, direct evidence has been presented for such variability using a 

double pass procedure in which exact copies of stimuli were repeated in widely separated 

tests (Ratcliff, Voskuilen, & McKoon, 2018). Furthermore, in numerosity discrimination 

tasks, across-trial variability in drift rate is needed to account for otherwise puzzling patterns 

of results in which RTs decrease as difficulty increases and accuracy decreases (Ratcliff & 

McKoon, 2018).

Setting the across-trial variability parameters in the SCDM to zero produced a poorer 

goodness-of-fit. The model was fit to the data from Experiments 1, 3, and 5 (chosen because 

they used different tasks: color, brightness, and arrows) with across-trial variability in drift 

rate and boundary setting set to zero. Results showed that goodness-of-fit, as measured by 

G-square and AIC, was worse than fits with non-zero across-trial variability parameters. For 

Experiments 1, 3, and 5, with across-trial variability, the G-square values were 79.8, 82.4, 

102.0, respectively, and without it, the G-square values were 94.4, 99.0, and 135.8. These are 

large and significant differences. The difference in G-square values has to be at least 6.0 

(chi-square with 2 degrees of freedom) and the difference in AIC values has to be at least 4.0 
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for the fit to be improved with the additional parameters. Thus, across-trial variability in drift 

rates and boundary improves the model’s ability to match data. However, there were no 

visible qualitative differences between the models with and without across-trial variability. 

Thus, this issue needs to be explored when more data sets become available from different 

tasks and when competing models are considered.

To examine whether normalization of evidence was needed, a similar analysis was carried 

out for the data from Experiment 1. Taking out the normalization of evidence at each time 

step allowed evidence to increase or decrease at each location, with the summed evidence 

increasing over time. The G-square value was 93.1 as opposed to 79.8 with normalization in 

the model. As above, the difference in G-squares and in AIC were both large and supported 

the model with normalization. Later we discuss another scheme for normalization.

The Shapes of RT Distributions

The SCDM produces RT distributions that have the same shape across conditions of the 

experiments, across experiments, and the same shape as data from two-choice tasks. 

Furthermore, the SCDM and two-choice models produce RT distributions of the same shape. 

Figure 14A and 14B show examples of predicted RT distributions from the model for one 

condition from Experiment 1 and one condition from Experiment 4. The histogram shape is 

what is usually seen in the majority of simple perceptual and memory tasks. Figure 14C 

shows mean quantiles averaged over subjects from RT distributions from Experiment 1 with 

quantiles from each condition plotted against one of the others (the one marked “1” is the 

standard plotted against itself, i.e,. a straight line). There are 7 instead of 9 for the 9 

conditions because some subjects had no responses in the “T” conditions (Figure 2) for the 

high accuracy conditions (0.35 and 0.20) and so mean quantiles could not be computed. The 

result is a series of straight lines showing that the RT distributions have the same shape. 

Figure 14D shows one of many possible examples in which six of the quantiles from 

Experiment 1 (from those in Figure 14C) are plotted against quantiles of RT distributions 

from the two-choice motion discrimination task in Ratcliff and McKoon (2008, Experiment 

1). The quantile-quantile plots are largely linear showing similar shaped RT distributions. 

These results show once again remarkable invariance in RT distribution shape across 

conditions and tasks (Ratcliff, Smith, & McKoon, 2015). This suggests a general finding and 

that is that models that assume accumulation of evidence to decision criteria naturally 

produce RT distributions of a shape that matches experimental data (Figures 3D–10D).

Modeling Responses in Two Dimensions

The generalization of the one dimensional SCDM to two dimensions represents the decision 

making process as a growth of evidence in a 2D plane to a criterion. This process is 

consistent with neurophysiological results in motor and saccadic systems. In motor cortex, 

evidence accumulation can be viewed as growth of activity in a 2D motor map that 

represents the possible choices. In the saccadic system, evidence accumulation can be seen 

as growth in a 2D motor map in areas such as LIP, FEF, and SC.
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For responses on a line or circle, the theoretical advance is to represent noise in the decision 

process as a continuous 1D variable, and in this case, Gaussian process noise is a natural 

choice. In the 2D case, the natural choice is a Gaussian random field. Just like the Gaussian 

process, the distribution at any point in a Gaussian random field is Gaussian and nearby 

points are correlated with each other.

A Gaussian random field is a simple generalization of the Gaussian process to two 

dimensions (Lord, et al., 2014; Powell, 2014). Gaussian random fields can be generated 

using the same Cholesky decomposition method used in the 1D model but in two 

dimensions. However, this method is quite inefficient: Cholesky decomposition of a NxN 

matrix takes on the order of N3 operations and the matrix-vector multiplication takes on the 

order of N2 operations. A more efficient method is termed circulant embedding which uses a 

property of stationary Gaussian processes: the covariance matrix is invariant under 

translations. This means that the covariance matrix is fully determined by the first row or 

column (hence “circulant”). The method uses Fourier transforms to compute eigenvalues and 

the method takes on the order of Nlog(N) operations. The matlab code in Kroese and Botev 

(2014, page 8) was translated into Fortran for use with the Intel MKL toolkit and 

parallelized the code using openmp. Our parallelization has each simulated decision 

performed on a different core of the workstation. The 2D program takes about 8 hours per 

subject on a 64 core AMD workstation with a 160×100 matrix compared with about 20 

minutes per subject for the 1D model with a 72 element vector.

The model is illustrated in Figure 15 and is a straightforward generalization of the 1D 

model. Figure 15A shows a decision plane, Figure 15B shows a single Gaussian stimulus, 

and Figure 15C shows a single realization of a Gaussian random field. (Any line though the 

plane will produce a realization of Gaussian process.) Figures 15D to 15F show three 

Gaussian random fields with different SD kernel parameters that represent the spatial range 

of the correlations. In the experiment there are three response areas and so there are three 

Gaussian stimuli (there would be three peaks in Figure 15B). In our simulation of this 

process, on each time step (10 ms as for the 1D case), there is an evidence array that 

represents accumulated evidence and to this is added the stimulus (three peaks instead of the 

one in Figure 15B) plus a new realization of the Gaussian random field. This is repeated 

until one point on the evidence array hits the decision plane (if more than one point hits, the 

one with the largest distance above the decision plane is chosen).

The model is fit to data in the same way as for Experiments 1–8. An area around the peak of 

the strongest stimulus is defined as A as in Figure 2. Then an area surrounding that is 

designated B. Other stimuli are designated C and D and the remaining area is designated T 

(tail). The model is used to generate predicted choices and RTs as for Experiments 1–8 and 

plots are shown in Figure 16.

Experiment 9

In this experiment, the stimulus was presented in a 2D plane of black and white pixels. The 

background was 50% white and 50% black pixels and the stimulus was composed of three 

bright patches or three dark patches randomly placed in the plane (Figure 16A). The task 
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used a touch screen display and subjects were required to move their index finger from a 

resting box to the brightest or darkest patch in the display. This is the 2D analog of 

Experiment 4 in which the response was to the brightest or darkest patch on a half annulus.

Method

The same display and apparatus as Experiment 4 were used in this experiment. Sixteen 

undergraduates from the same pool as the other experiments were tested. The stimulus was 

presented in a 320 by 200 array of black and white pixels in a 640 by 480 pixel screen. The 

background was set to 50% black and 50% white pixels. Then three points in the stimulus 

array were randomly selected and a 2D Gaussian with SD radius of 12 pixels was used to 

provide values for the probability of flipping pixels in the stimulus array. There were two 

levels of difficulty with three patches in each difficulty condition. The probability of flipping 

a pixel (from black to white or white to black) at the centers of the three Gaussians was 

either 0.7, 0.5, and 0.4 or 0.6, 0.5, and 0.4. This led to the proportion of white or black pixels 

at the peak of 0.85, 0.75, and 0.70 or 0.80, 0.75, and 0.70. The centers of these patches were 

selected with the restriction that they could not be less than 64 pixels from the left and right 

edges of the stimulus array and 40 pixels from the top and bottom. The peaks of the three 

patches were not closer than 36 pixels.

In the task, a starting box was presented (Figure 16A) below the stimulus at a location 

centered at 320×430 pixels that was 40×40 pixels square. The subject was instructed to place 

their finger in the box to initiate the trial. After a delay of 250 ms, a + sign was presented at 

the center of the stimulus rectangle which remained on for 500 ms, then the screen was 

blanked for 250 ms and then the stimulus array was presented until the finger was lifted 

from the box. Following this, the stimulus array was cleared from the screen.

After the stimulus was presented, the subject moved their finger and placed it at the position 

in the stimulus rectangle corresponding to their decision. If the delay before finger lift after 

stimulus presentation was greater than 600 ms, then a message “TOO SLOW” was presented 

for 500 ms. If the delay between lifting the finger and responding was greater than 300 ms, 

then a “TOO SLOW MOVEMENT” message was presented for 500 ms. If a finger lift 

occurred earlier than 220 ms after the stimulus turned on, the message “TOO FAST” 

appeared for 500 ms. If the subject responded by placing their finger in a square 50 pixels on 

each side centered on the strongest stimulus peak, “2” was presented, if the response was on 

one of the weaker peaks, “1” was presented, and “0” otherwise. Feedback was presented for 

250 ms and 30 pixels above their response.

The stimulus was presented until the finger was lifted which suggests that the subjects could 

have searched the array strategically for the brightest location. But the time limits were made 

short, with the warning “TOO SLOW” after 600 ms and the stimulus display turning off 

after 800 ms, and these encouraged very fast responding. The median RTs were almost all 

below 400 ms which is relatively little time for anything more than a couple of eye fixations. 

In retrospect, the design of this experiment could be improved, but this is what we had at this 

stage of development.
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Results

Because the number of combinations of positions of the three stimuli is very large (infinite), 

they were aligned in a similar way to as was done in Experiments 3 and 4. The strongest 

stimulus was placed at 160×100, the next strongest at 50×100 and the weakest at 210×100. 

Responses at a circular radius of 40 pixels were moved to consistent positions around these 

locations and responses outside the three areas were randomly placed in the rest of the 

space. In future designs, it would be better to select several configurations in terms of the 

angle and separations of the stimuli and use them in some proportion of the trials (e.g., three 

configurations in 40% of the trials) with the configurations rotated and translated from trial 

to trial (e.g., Experiment 6). This would allow specific questions about the distribution of 

responses between stimuli and away from stimuli to be examined, for example, to see if 

stimulus location dependent noise is required.

The model was fit to data from each individual subject in the same way as for Experiments 

1–8. An area around the peak of the strongest stimulus was defined as A as in Figure 2. Then 

an area surrounding that was designated B. Other stimuli were designated C and D and the 

remaining area was designated T (tail). The A region was a 10.8 pixel radius around the 

central peak, the B region was an annulus with inner radius 10.8 pixels and outer radius 39 

pixels.The same SIMPLEX minimization routine was used as in the fits to earlier 

experiments and the same G-square statistic was minimized using choice proportions and 

quantile RTs.

The predicted choice proportions and RT quantiles are plotted against the data in Figure 

16B. The quality of the fits looks similar to those in the earlier experiments, but there are 

some systematic misses. At the bottom left of the response proportion plot there is a vertical 

stack of points in which the theory predicts between 0 and 0.05 proportion of responses, but 

in the data the proportion is near zero for many of the conditions by subjects. Second, there 

are misses in the leading edge of the RT distribution for some conditions and subjects. The 

model predicts larger values than the data especially those in which the 0.1 quantile RTs for 

the data are in the 250–270 ms range. The median RTs fit quite well, and there are a few 

longer 0.9 quantile RTs than the model predicts.

Figure 16C shows plots of the choice proportions for the aligned data for each subject and 

choice. The data around the central peak have too many observations to display, but the 

range and density of the secondary peaks show correspondence between theory and data.

The parameters for Experiment 1–8 are defined in terms of angular distance, while the 

parameters for Experiment 9 are in terms of number of pixels divided by two in the array. 

This means that the parameters sw, r, and sd are not directly comparable unless the scaling 

from pixels to angle is examined.

The 2D model fit the data adequately but not as well as the 1D model fits data from 1D 

tasks. The main issue seems to be that the model predicts more responses at larger distances 

from the stimuli than occur in data. This suggests that noise is too large away from stimuli 

which suggests that one way to deal with this is to make noise larger around the stimuli and 

smaller at larger distances away from the stimuli (cf., something like Poisson noise). The 
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main problem in exploring this model is the high computational cost. But with additional 

computational resources, variants of this model (such as assuming that noise varies as a 

function of the distance from stimuli) will be able to be examined. This model and fits 

should be viewed as highly suggestive, but the fits are not quite good enough yet. Thus, the 

application of this model structure to tasks using responses in 2D space appears promising.

Saccade, Mouse, and Finger Movement Durations

Subjects were asked in our experiments to make rapid one-shot decisions and to make their 

decisions before beginning to move their eyes, fingers, or mice to the target location. In 

contrast to decision times, measured as the time between stimulus onset and movement, 

movement times are defined as the time between the eyes, fingers, or mice moving away 

from their resting position to a response (eyes fixating on a response location, fingers 

pressing on a response location, or a button on a mouse being pressed). We examined the 

distributions of movement times for each experiment and looked to see whether fast versus 

slow movement times affected the accuracy or RTs of decisions. If short decision RTs were 

associated with long movement times and vice versa, then it might be that the decision was 

during the movement time rather than prior to the movement. Thus, analyses of movement 

times provide some evidence as to whether our instructions were sufficient to ensure that the 

decision process was finished before movement began (at least, on most trials).

Figure 17 shows the distributions of movement times for the nine experiments. The first 

thing to notice is that eye movements have differently shaped distributions than finger and 

mouse movements. For Experiments 1 and 3, most of the eye movements were rapid (20–60 

ms) and a few were from a wide distribution that started at about 200 ms. The slower ones 

came from movements to an intermediate position and then a corrective movement to the 

target. For Experiment 5, again most movement times were fast, but a greater number of 

them than for Experiments 1 and 3 were 200 ms and above. (Note that for these experiments, 

the stimulus was erased as soon as the eyes left the fixation point so moving early did not 

allow additional information to be gathered from the stimulus.)

Finger movements on the touch screen have quite narrow distributions of movement times 

(Experiments 2, 4, and 9), consistent with a roughly ballistic movement with the decision 

made before the movement. Movement time is slower for Experiment 6, most likely because 

the finger resting point was farther from the response circle than for the other experiments. 

This would also explain why the distribution is wider than for those from Experiments 2, 4, 

and 9.

The two experiments with mouse responses (Experiments 7 and 8) show considerably wider 

distributions of movement times. This is to be expected because moving and clicking a 

mouse is more complicated than moving eyes or fingers. For Experiment 8, the movement 

distributions for speed instructions largely overlapped with those for accuracy instructions, 

so subjects were not trading the speed and accuracy of decisions against movement time. 

(The much larger movement times for mouse experiments relative to touch screen 

experiments is one reason we now favor touch screen tasks with chromebooks mentioned 

earlier.)
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For each experiment, we calculated the mean RTs for the data averaged over all the 

conditions of the experiment and conditionalized on the movement time, namely the half of 

the RT data based on the fastest half of the movement times and the half based on the 

slowest half of the movement times. For Experiments 1 through 9 respectively, the mean RT 

for the fastest half of the movement times minus the mean for the slowest half was +10 ms, 

+32 ms, +1 ms, +15 ms, −71 ms, −42 ms, +21 ms, +4 (for the speed instruction condition 

and −31 ms for the accuracy instruction condition), and +19 ms. The positive numbers are 

relatively small and show that almost all decisions are made prior to movements. The 

negative numbers are larger and show that slow movement times are associated with slow 

decisions. The largest difference is for Experiment 5, the arrow task. This may represent 

decisions being made after movement begins. But generally, movement times are only 

weakly related to RTs.

For Experiment 6, the finger resting point was below the response circle so that movement 

distance was larger than for the other experiments. The movement times were divided into 

near (bottom half of the response circle) and far (top half). The mean differences in 

movement time (from leaving the resting square to hitting a point on the response annulus) 

were different by about 53 ms, consistent with the distance traveled.

Saccadic eye movements have different properties than finger and mouse movements, which 

may explain why subjects wanted to move their eyes to intermediate locations before a final 

decision. Saccadic eye movements have lower processing costs and in natural situations are 

generated by systems that seem to set global rates of production (Kowler & Pavel, 2013). 

This means that it costs the processing system relatively little effort to make saccades to low 

information targets or even to targets with no useful information. In some paradigms, many 

saccades to low information targets are followed by brief fixations (e.g., 100 ms) that are too 

fast for much useful information to be extracted (Araujo, Kowler, & Pavel, 2001). Although 

this is suboptimal in some laboratory tasks, it may be an important strategy in viewing 

natural scenes in which cognitive operations are decoupled to some degree from the current 

fixation (Kowler & Pavel, 2013). When designing experiments with eye movements, this 

complication should be kept in mind, but in the experiments reported in this article, these 

complications were minimized by the instructions and paradigms, which, except for 

Experiment 5, produced mainly direct eye movements.

Discussion

Previously there have been no models that explain how decisions are made about stimulus 

representations that are continuous in space with responses on continuous dimensions and 

that explain both the accuracy of decisions and the time taken to make them. To construct 

the SCDM (Figure 1), spatially continuously distributed noise represented within-trial 

variability in the decision process (spatially continuous Gaussian process noise or Gaussian 

random field noise for responses in 1D and 2D spaces, respectively). The combination of 

this continuously distributed noise and a continuously distributed stimulus representation 

allowed the model to explain the results from the experiments. Across the experiments, the 

stimuli were displays of black and white and colored arrays of pixels, arrays of arrows, and 

arrays of moving dots, with static and dynamic displays. Responses were made by eye, 
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finger, and mouse movements. In each experiment, there were several levels of difficulty. 

The model accounted for accuracy and RT distributions for all the experiments quite well 

with relatively few outlier responses per experiment. The model captured the spatial 

distributions of responses and the full distributions of RTs.

To fit the model to the data, responses and the model’s predictions were grouped into the A, 

B, and T categories (plus a C or D category for some of the experiments), which 

approximately correspond to correct responses, near-correct responses, and errors (Figure 2). 

Predictions from the model were generated by simulation and a SIMPLEX minimization 

routine was used to find the values of the model’s parameters that provided the best fit of the 

model to the data, that is, to the proportions of responses and the RTs for each of the 

categories. The model was successfully fit to the data from each individual subject, which 

offers the possibility of using the parameters of the model in future studies of differences 

among individuals (e.g., IQ, assessing neuropsychological and clinical deficits).

Surprisingly, there were only small to nonexistent differences in RTs across positions on the 

response dimension (Figures 3D–10D), even when there were competing stimuli (e.g., two 

patches of bright pixels). In other words, incorrect responses had about the same RTs as 

correct ones, a contrast with the two-choice decision model for which RTs are usually 

significantly different for correct and incorrect responses (the differences are explained by 

the two-choice model’s assumptions of across-trial variability in drift rates and starting 

point). This is not to say that there were no RT effects in the experiments here: as difficulty 

increased, RTs increased by over 100 ms in some tasks. For the more difficult conditions in 

some of the experiments, the model’s predictions for the distributions of responses over 

spatial location were wider than the data. However, only one SD in the drift rate 

distribution(s) was used for all the levels of difficulty in an experiment (sw); if the SD 

differed between levels of difficulty (in other words, there was precision and more 

uncertainty in location for weaker stimuli), the model would produce wider distributions. 

For the experiments with colored stimuli, there was an additional salient result; subjects 

were biased in their responses toward primary and additive colors over other colors. These 

biases were explained by assuming a sinusoidal boundary or starting point function so that 

less evidence was needed for a primary or additive color decision than colors between them.

The model fit all the features of the data with relatively few parameters: nondecision time 

and the across-trial variability in it, the response boundary and the across-trial variability in 

it, the Gaussian-process kernel parameter for the continuous distribution of noise in the 

process of accumulating evidence, the across-trial variability in the height of the 

distributions of drift rates, and the SD in the drift-rate distributions, plus a drift-rate 

parameter for each level of difficulty. For the color biases, there was one additional 

parameter for the amplitude of the sinusoidal response boundary (or starting point). Overall, 

this is a dramatic reduction from the number of degrees of freedom that would be needed to 

fit the full distributions of responses and RTs across spatial locations.

At this point the question might arise: why have theories about decision making for 

continuous stimulus and response dimensions not been developed and fit to RT and choice 

proportion data before this? There are a number of tasks for which the stimulus and response 
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dimensions are continuous, but there appear to be no attempts to model choice proportions 

and RT data. Such tasks include working memory tasks (e.g., Zhang & Luck, 2008), number 

line tasks (e.g., Thompson & Siegler, 2010), and tasks for which individuals indicate how 

confident they are in their decisions on a continuous scale (e.g., how confident they are in 

their decision about whether or not a test item had been previously presented in an 

experiment; e.g., Province & Rouder, 2012). One possible answer is that assumptions about 

spatially continuous noise and stimulus representations have not been considered in 

attempting to model such tasks.

An important direction for further research is to link the SCDM to models of perceptual 

processing. In all of the experiments reported here, precise control was not exerted over 

color, luminance, or other physical characteristics of the stimuli. At this point of theory 

development, I was not concerned with the link between precise quantitative perceptual 

characteristics of stimuli and the information actually used in the decision process. The aim 

in this article was to develop and test a model of decision processes. In future research, it 

will be important to link perceptual properties to the distributions of evidence used to make 

decisions, both their heights and their SDs. For example, it might be that perceptual template 

models that specify the representations of perceptual stimuli (Lu & Dosher, 2008) or Smith 

and Ratcliff’s (2009) integrated systems model of attention and perceptual processing could 

be adapted to add the SCDM to account for RTs and choices on continuous scales.

Examining the Structure of the Model and Alternative Assumptions

A number of variants of the SCDM can be explored. First, stimulus variability from trial to 

trial has been represented as variability in the height of the drift-rate function driving the 

decision process. An alternative would be to have the same height, but have the function 

vary from trial to trial in its location on the angle axis. Second, a normal distribution of drift 

rates has been assumed. However, other distributions are possible such as back-to-back 

exponentials or circular Gaussian von Mises distributions (which are similar to normal 

distributions). Third, different distributions for the across-trial variability parameters are 

possible, but it may be that choices of these distributions are not critical and produce similar 

patterns of results to the choices in the model implemented here (e.g., Ratcliff, 2013). 

Fourth, instead of normalizing evidence, perhaps the drift rate distributions could be 

normalized so the average drift is zero. In Figure 1D, this would mean that zero drift would 

be at about 0.3 on the y-axis and drift rates between 120 and 240 degrees would be positive 

and drift rates outside this range would be negative. Then mean evidence would not be set to 

zero after each time step. I have implemented this model and found that it provides 

somewhat better numerical fits for some but not all experiments. But a more comprehensive 

evaluation is needed before it could be used as an alternative to the model used to fit the 

experiments. These examples show that there may be tweaks to the structure of the model 

presented in this article that might provide a better description of the data.

One issue that has not been addressed for circular response dimensions is how to generate 

Gaussian process noise that is continuous across the 360–0 degrees boundary. This is 

because a line was used to represent the circle and Gaussian process was assumed on the 

line. For a circle, the function should be continuous from one end of the line to the other, for 
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example, in Figure 1C, each function at 0 degrees should be the same as the value at 360 

degrees. This is specific to the SCDM and applications to responses on a circular scale. 

However, this is probably not too important because the stimulus was placed away from the 

0 and 360 degree end points and so would only affect model predictions for a relatively 

small number of responses in distances far away from the stimulus.

In several of the experiments, there were two kinds of small but consistent misses between 

the model and data. First, the model overpredicts the probability of responses at distances far 

away from the stimulus. One way to improve the fits would be to change the assumption that 

noise comes from a Gaussian process with constant amplitude. The modification would be to 

assume that the Gaussian process noise is stimulus location dependent so that the amplitude 

of noise is larger at the stimulus location and decreases as a function of distance to a 

constant level outside the range of the drift rate distribution (e.g., constant in the tails outside 

100–260 degrees in Figure 1B). This would lead to fewer responses in locations away from 

the stimulus. The behavior of RTs across spatial position would be a key measure that would 

indicate whether this assumption was reasonable or not. A second issue is that the 

distribution of responses over angle is often wider for the low accuracy conditions than the 

model predicts. It was assumed that the SD in the drift-rate distribution is constant over 

levels of difficulty. But, if that assumption were relaxed and it was assumed that weaker 

stimuli have more variability and wider distributions (less precision), the model would fit the 

data better. These two additional assumptions were not made in the fits presented in this 

article because the aim was to present the simplest model with the fewest degrees of 

freedom, to show how it accounted for data, and to show deviations and suggest what 

assumptions might be needed to accommodate them (because there may be alternatives to 

the ones suggested here).

The Appendix contains examples of how changes in each of the model parameters affects 

the predictions of the model for choices and mean RTs across spatial position as well as RT 

distributions. One prominent finding is that across-trial variability in drift rate and boundary 

setting affect the relative speed of correct and error responses (A and B vs. T in Figure 2) in 

the same way as for the two-choice model: Across-trial variability in drift rate and boundary 

setting produces errors slower than correct responses and errors faster than correct responses 

respectively.

The appendix also shows that for four examples using simulated data, the fitting method 

recovers the parameter values with SDs lower than the SDs across individuals. For two of 

the simulated data sets, tradeoffs among parameter values are examined, and these suggest 

that although there are some large tradeoffs, these are readily interpretable. These results 

mean that the fitting method (at least for these and those with similar parameter values) does 

not introduce biases into the parameter estimates and produces estimates that are sufficient 

for individual difference analyses. In the future, alternative fitting methods can be explored 

(cf., the efforts to develop methods for the two-choice diffusion model, Lerche, Voss, & 

Nagler, 2016; Ratcliff & Childers, 2015; Ratcliff & Tuerlinckx, 2002; Vandekerckhove & 

Tuerlinckx, 2007; Voss & Voss, 2008; Wiecki, Sofer, Frank, 2013). Such studies are 

important if the model is to be applied to examine differences in performance in different 

populations, such as those with cognitive deficits, disease, or development or aging. Using 
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the best method for estimating model parameters will be especially important for examining 

differences among individuals or diagnostic tools.

Cognitive Models that Use Distributed Representations

Spatially continuous distributions of stimulus information like the ones used in this model 

have been used in letter matching and confidence judgment tasks with discrete response 

choices. For tasks in which subjects are asked to decide if one string of letters matches 

another one, it has been assumed that the letter representation for an item just studied is 

distributed over spatial position. Thus, when several letters are presented, the representations 

overlap and this allows the model to account for low accuracy and long RTs when adjacent 

letters are switched in position compared to higher accuracy and shorter RTs when non-

adjacent letters are switched in position. In some models for confidence judgments about 

memory, it has been assumed that memory strength, which determines confidence, is 

continuously distributed.

In the letter-matching task used by Gomez et al. (2008) and Ratcliff (1981, 1987), a string of 

3–7 letters was presented then erased and a second string was presented and the task was to 

respond “same” or “different”. If two adjacent letters were switched in position it was more 

difficult to respond different than if two farther-apart letters were switched. To model this, 

letters in the first string were assumed to be distributed over position. Criteria were placed 

between the letters and the areas between the criteria were summed to provide a measure of 

the degree of match between the first string and the second. This model accounted for all 

combinations of transpositions of letters (adjacent and non-adjacent), replacements of letters 

with new letters, repeated letters, strings of different lengths, letter migrations, and 

transpositions with words and nonwords. Ratcliff (1981) found a linear relationship between 

drift rates from the two-choice diffusion model and overlap in the model, which suggested 

that a combination of these models might explain both accuracy and response time measures 

in this paradigm. The assumption of distributed representations is consistent with the 

assumption in the SCDM.

In a typical confidence judgment procedure, subjects choose which of some small number of 

categories best describes their degree of confidence (e.g., “sure,” “very sure,” and so on). To 

model confidence judgments about memory (the RTCON and RTCON2 models, Ratcliff & 

Starns, 2009, 2013; Voskuilen & Ratcliff, 2016), memory strength was assumed to be 

distributed and confidence criteria were placed on the strength dimension. The area under 

the strength distribution between the criteria provided the drift rate for an accumulator for 

that confidence category. The model accounted well for the proportions of responses for 

each category and their RT distributions.

In an earlier approach, I attempted to use a version of the RTCON model to approximate 

continuous response dimensions with discrete accumulators, one for each small range on the 

continuous scale. If the stimulus distribution was such that the evidence at nearby points was 

correlated, then this might approximate a continuous process. The problem is that there is no 

proof that the limiting version of this would be a continuous process and it is difficult to see 

how to go about developing a proof. In the SCDM, discrete values are used for time steps, 
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stimulus representations, and response dimensions, which might make the model appear to 

be discrete. But the same results are produced (subject to numerical approximation) if the 

size of the discrete steps is made small with appropriate scaling of the model’s parameters. 

In the limit as the step sizes approach zero, the process is continuous.

The stimulus representation used in the RTCON model is similar to the representations used 

in the SCDM and so the combination could be used to compare modeling confidence 

judgments recorded on both continuous and discrete scales.

The Circular Diffusion Model

Smith’s (2016) circular diffusion model was designed to model tasks in which a stimulus is 

presented and a response is made on an annulus (e.g., Experiments 1, 3, 5, 6, 7, and 8). In 

the circular model, a diffusion process in two dimensions begins at the center of a circle and 

evidence is accumulated in two dimensions until the process hits the circumference of the 

circle, which is the decision boundary. The stimulus determines a drift rate which is 

represented by a distribution that causes the process to drift towards one position on the edge 

of the circle. Smith derived exact predictions from the model for the distributions of choices 

at the boundary and their RT distributions and tested them by examining predictions for the 

qualitative effects of standard manipulations of experimental variables in this task (although 

he did not fit data directly). Plots of the model’s predictions for RT quantiles from 

conditions with different drift rates, boundary values, and across-trial variability parameters 

were plotted against the quantiles for one reference condition (Q-Q plots). The results were a 

straight line which indicates that the distribution shape was the same over these different 

conditions (cf. Figure 14 in this article).

The SCDM is more general than Smith’s because it can be applied to a wider range of tasks. 

However, direct comparisons between the two models across a range of tasks and 

manipulations will provide fertile questions for future research. For example, one issue will 

be whether the circular model can account for results when two or more stimuli are 

presented in the same display (e.g., the several bright/dark patches in Experiment 3). The 

simplest assumption would be to combine information from the several stimuli into a single, 

bimodal distribution of drift rates but, contra our data, this would produce an increase in the 

number of responses between the stimuli. Another possibility would be to assume that on 

each trial only one stimulus is encoded so that responses would be a probability mixture of 

responses to the two (or more) individual stimuli.

Population Code and Neural Models

The SCDM can be seen as an implementation of population code models in neuroscience 

(e.g., Beck et al., 2008; Deneve, Latham, & Pouget 1999; Jazayeri & Movshon, 2006; Liu & 

Wang, 2008; Nichols & Newsome, 2002; Pouget et al., 2013). Population code models 

assume that activity is distributed over an array of elements (neurons) and a response to a 

stimulus is a weighted average of the activity in the population. The SCDM extends 

population code models by using a spatially continuous distribution of noise in the decision 

process and by using this, it is able to fit response choices and RTs across spatial locations, 
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including the distributions of RTs. None of these population code models have yet dealt with 

choice proportions and RT distributions from experiments with responses on a continuous 

scale such as the ones here.

Beck et al.’s (2008) Bayesian population code model is similar in many ways to the SCDM. 

It was developed to explain computations carried out in the motion system with assumptions 

about the representation and processing in MT (middle temporal), LIP (lateral intraparietal), 

and SCb (superior colliculus - motor burst neurons). They assume these represent an input 

layer, an evidence accumulation layer, and a readout layer where motor output is generated. 

LIP units accumulate input activity from MT cells that fire in response to a continuously 

changing moving-dot stimulus. Activity is accumulated in a series of accumulators along a 

line and the amounts accumulated are correlated between nearby accumulators (nearby 

locations in the stimulus and noise are also correlated).

The Beck et al. model makes assumptions about short-range activation and long-range 

inhibition within the LIP accumulation layer. However, Ratcliff, Hasegawa, Hasegawa, 

Smith, & Segraves (2011) used simultaneous recordings of pairs of neurons and found no 

evidence of long-range inhibition in buildup neurons in the SC (activity that should mirror 

activity in LIP). The SCDM assumes no such inhibitory interactions. In the Beck et al. 

model, a decision is initiated in the SCb layer which implements a winner-take-all network 

based on an estimate of the probability of firing as opposed to the actual firing rate of a 

neuron.

The Beck et al. model was applied to motion discrimination tasks like our Experiment 6 in 

which subjects decided if the direction of coherently moving dots was to the left or the right 

(or left, right, up or down). The model accounted for choices and mean RTs for correct 

responses in discrete two-choice and four-choice tasks, but it has not accounted for the full 

distributions of RTs or RTs for incorrect responses.

Beck et al. argued that their model can be extended to time-varying stimuli. The model 

assumes that when a stimulus is turned off, the accumulation process stops and evidence 

begins to decay with a some time constant). However, Ratcliff and Rouder (2000; see 

Ratcliff, Smith, et al., 2016 for further discussion) showed that when a stimulus is presented 

briefly, the best model is one in which drift rate is constant; it does not rise with stimulus 

onset and fall to zero with stimulus offset. This is consistent with the Beck et al. proposal if 

their time constant is large (e.g., over 500 ms). Smith and Ratcliff (2009) developed a model 

that accounts for manipulations of attention, contrast, and stimulus duration for briefly 

presented perceptual stimuli. In that model, stimulus information is encoded into a visual 

working memory and a constant output from working memory is used to drive the decision 

process. In the SCDM, brief presentations (e.g., 200–300 ms) are assumed to produce 

constant drift rates, and this can be justified by assuming a stationary drift rate produced 

from a distributed working-memory representation. A related question is whether the model 

should allow drift rate to ramp up over a few 10’s of ms. Ratcliff (2002) showed such 

ramping up is mimicked by a constant drift model and so a constant drift model 

accommodates a model with drift rate ramping up.
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The SCDM is simpler and more general than the Beck et al. model, but it does not deal with 

details of neurophysiology as the Beck model does. It is unclear whether the Beck model 

can account for the aspects of the behavioral data that the SCDM can and whether it can be 

modified to account for decision-making in tasks like those presented in this article. 

However, the similarities between the two models outweigh the differences.

Liu and Wang (2008) developed a model for motion discrimination with (normally 

distributed) evidence from a stimulus driving populations of direction-sensitive neurons. The 

dynamics of evidence accumulation were based on synaptic currents for several types of 

neurotransmitters. As far as I know, this model is too complicated to be explicitly fit to RTs 

and choice probabilities to produce estimates of model parameters. However, the model 

provides a plausible detailed neural implementation of an evidence-accumulation process. 

Liu and Wang generated predictions from the model for accuracy and RT distributions for a 

two-choice task, but the model was not actually fit to data. It was also used to account for 

results from microstimulation experiments in which electrical current is injected into MT 

neurons. At this point it would be a daunting task to fit the Liu and Wang model to data. 

However, in the future, it might be possible to develop a simplified version of the model, as 

Wong and Wang (2006) did for another model for two-choice decisions, and use such a 

simplified model to account for experimental data from the kinds of tasks and data in this 

article.

There are also models in which collections of accumulators are used to represent neural 

population codes (Zandbelt, Purcell, Palmeri, Logan, & Schall, 2014). Such collections 

show similar behavior to single accumulators if there is a modest correlation in firing rates 

between the individual accumulators in the collection. Also, collections with different 

numbers of accumulators show similarities to each other. Early in development of the 

SCDM, models were developed that used arrays of separate accumulators, but as discussed 

above, models with spatially continuous evidence and noise provide a more natural account 

of processing in the tasks used here. However, by using neurophysiological constraints and 

the kinds of models developed by Zandbelt et al. (2014), it might be that a model with 

plausible assumptions about collections of accumulators would show similar behavior to the 

SCDM.

Dynamical-Systems Neural Field Models

Klaes et al. (2012) developed a model that represents activity in a series of 1D continuous 

maps that are similar to those used in our 1D model. The maps proceed from an input map to 

an association field to premotor and motor maps. The motor map is similar to the 

accumulated evidence in the SCDM and the input mapped through the association field is 

similar to our drift rate distribution. The mapping from the stimulus through the association 

field highlights the important insight that a stimulus has to be transformed to a decision-

related representation. For example, the color stimuli in Experiment 1 have to be mapped 

onto a 1D decision representation. The model was applied to reaching data for monkeys (but 

not to RTs). A related model by Wilimzig et al. (2006) was applied to saccadic decision 

making in simple saccadic tasks. As in Klaes et al., there was a field representing the input, 

an initiation field, and a selection field. One difference between their models and ours is that 

Ratcliff Page 47

Psychol Rev. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



noise in the Klaes and Wilimzig models is represented as independent Gaussians in the units 

of the model whereas ours is continuously distributed and correlated across position. The 

Klaes et al. and Wilimzig et al. models are closely related to the SCDM and so the insights 

from those models and similarities between the two kinds of models can help guide future 

modeling.

Visual Search Models

The SCDM is also relevant to visual search models (e.g., Thornton & Gilden, 2007; Wolfe, 

2007) that are applied to tasks for which an array of objects is displayed and subjects decide 

whether there is or is not a particular target object in the array. A common assumption is that 

the objects in an array each have a diffusion process and the processes for all of the objects 

race to a threshold. For the SCDM, it could be assumed that objects are represented in 

continuous space with a peak of activity corresponding to each object in the array. However, 

there are two important questions that this implementation of the SDCM would not address. 

The first is how the system constructs representations of the objects in terms of the 

dimension on which decisions are made. For example, in an array of letters, the task might 

be to choose the letter “x” or it might be to choose the object that was red. Hence, the 

activities for the objects in an array would need to be dependent on the dimension being 

searched for, something the SCDM does not address. An example of how this may be 

accomplished is using a salience map (Klaes et al., 2012) that modulates the 2D 

representation of the stimulus so that only objects with the right color or shape produce 

activation. But this would not answer the questions of why some features are integrated in 

search while others are separable (Garner, 1974) and why some stimuli pop out and others 

do not.

The second question is how the system can make a judgment that the target is not in the 

array. This has been problematic for visual search models and search models in general and 

the SCDM does not address it. However, for a task requiring a present/absent judgment for 

stimuli in a 2D array, the stimuli could be represented by a Gaussian peak for each item in 

the display that has the desired property (brightness, color, shapes, etc.), as in Figure 15B. 

Then a horizontal plane through the representation of the array could be used to separate 

present versus absent stimuli. The integrated activity or peak activity above or below the 

plane could be used as drift rate in a two-choice diffusion model.

The main point is that to produce a reasonably comprehensive model, the relationship 

between stimulus and decision representations has to be understood. This is taken up later in 

this discussion.

Complications in Relationships Between Domains

The relationship between population code models and the SCDM and tasks used to test the 

model was discussed above. However, in research that examines responses on continuous 

scales in neuroscience, there is a great deal of complexity and models of the kind proposed 

here (including population code models and the SCDM) will be only part of the story. Two 

examples that suggest that the relationships are more complicated are presented below.
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Early research found that response areas in motor cortex and in movement-related 

oculomotor areas have maps that represent 2D space. If an individual is to make an arm 

movement to a position in space, then an area in motor cortex corresponding to the direction 

of movement increases its firing rate (e.g., Georgopoulos et al., 1986). Also, if an eye 

movement is to be made to a position in space, then buildup cells in a corresponding area on 

a retinotopic map in the superior colliculus (SC) increase their firing rates (e.g., Wurtz & 

Optican, 1994) and when the firing rates reach a criterial level, burst cells fire and the eyes 

move. Results in both these domains have suggested that winner-take-all networks select the 

reaching or saccade goal. It might seem that it would be relatively easy to add mechanisms 

to population code and winner-take-all models based on these observations to account for 

RTs and choice probabilities.

However, more recent research makes clear that some aspects of the decision processes are 

much more complex. For example, Optican (2009) pointed out that the SC contains a 

spatially coded map, but feedback (the motor error) is temporally coded and so SC output 

must be converted to a temporal code and this has not yet been modeled. Likewise, 

Churchland et al. (2012) argued that reaching should be viewed as a dynamical process 

represented in a state space rather than a simple population code. When the SCDM is at least 

somewhat mature and validated against data, hypotheses about possible relationships 

between it and neural models can be generated and tested and used to examine wider issues 

about neural representations and processes.

Visual Working Memory

The task in Experiment 1 is similar to one that has been used to study visual working-

memory (VWM; Zhang & Luck, 2008, and subsequent studies). In these studies, several 

colored squares were presented briefly at locations around a fixation point. They were 

followed by squares in the same locations but without colors. The lines of one of them were 

bold and for that square, subjects were to move their eyes to the color that that square had 

contained on a circular color wheel. Zhang and Luck proposed that the probability of 

reporting the correct color is a combination of a von Mises distribution over angle on the 

color wheel and guessing. Later models (e.g., Bays et al., 2011) assumed a mixture of von 

Mises distributions or a continuous mixture of them (Bays, 2014; Bays et al., 2011; Zhang & 

Luck, 2008). On some trials of the task, the stimulus was only a single colored square so, to 

prevent subjects anticipating where the color was located on the circular color wheel, the 

wheel was randomly rotated from trial to trial. However, rotating the color wheel means that, 

in addition to making a decision about what color was in the box, there is also a search 

process to find the color. This is why in our color wheel tasks, the wheel was fixed across all 

trials to eliminate search time and avoid having to model that combination of processes.

As just described, patterns of results for VWM tasks have often been modeled with a 

mixture of processes, specifically a process based on memory for the stimulus and a 

guessing process (e.g., Zhang & Luck, 2008). In other domains, it is usually found that 

guessing processes have different time courses from stimulus-based processes (e.g., Luce, 

1986; Ratcliff & Tuerlinckx, 2002). In fact, it would be highly unlikely that stimulus-based 

and guessing processes had identical time courses. However, in the experiments in this 
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article, the RT distributions for processes away from the stimulus and the RT distributions 

for processes near the stimulus were quite similar (Figures 3, 4, 9, and 10). This makes 

mixture models implausible for the experiments presented here. Results from experiments in 

the VWM domain similar to Experiments 1, 2, 7, and 8 in this article have been explained 

with these guessing mixture models, but RT results for the experiments have not been 

reported. In using the SCDM to model these processes, search processes mentioned above 

would have to be eliminated as in Experiments 1 and 2 for example, by fixing the color 

wheel across trials. If results with such a modification to the paradigm were produced and if 

the RT functions were flat across position, then the single process SCDM might explain the 

decision process used in the task with only a single process with continuously varying 

evidence. But if error RTs (in the T area of distributions, Figure 2) were shorter or longer 

than those around the peak, then a mixture model might be more appropriate with some 

proportion of responses based on a zero drift process or some other kind of guess. Such an 

analysis would lead to an explanation of both the spatial distribution of choices and RTs and 

would provide a more complete explanation of processing in this kind of paradigm.

There are other model-based analyses of VWM but these have been based on two-choice 

tasks and not on tasks with responses on continuous scales. For example, Donkin et al. 

(2013) and Pearson et al. (2014) have applied the LBA and LATER models (respectively) to 

two-choice VWM tasks. However, there is some dispute as to whether such two-choice tasks 

are appropriate for examining VWM and it has been argued that continuous scales are 

necessary because they can provide information about the contents of VWM that discrete 

responses cannot (Fougnie et al., 2012; Ma et al., 2014; van den Berg et al., 2012, 2014).

Mapping Between Stimulus and Decision Representations

When a stimulus is presented to the processing system for a decision, information relevant to 

the decision must be extracted from the representation of the stimulus. For example, with a 

letter string as a stimulus, decision tasks with different mappings might be was the string a 

word or nonword, was studied earlier or not, was upper or lower case, was red or green, was 

large or small, etc. Some of these dimensions might be separable (Garner, 1974) in that the 

value on one dimension (e.g., red vs. green) may have no effect on a decision made on 

another dimension (e.g., word vs. nonword), but others may be integral (e.g., a previously 

studied letter string may produce more “word” responses in a word vs. nonword task than an 

unstudied string). For Experiment 3 above, it is the brightest or darkest of the patches that is 

relevant, not whether the brightness of a patch is greater or less than 60% white pixels or 

whether the patches are on the same or different sides of the stimulus annulus. The process 

by which information on the relevant dimension is extracted from the stimulus must take 

some amount of time and in the SCDM that time is part of nondecision time. 

Neurophysiological estimates of encoding and response output put their duration at about 

150 ms so if the translation of the stimulus to a decision variable is more complicated than 

identifying a bright patch on a display, nondecision time should be somewhat larger than 150 

ms.

Studies using EEG measures provide evidence for differences in the representations that 

occur over the time course of processing. Philiastides, Ratcliff, and Sajda (2006) used a 
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face/car discrimination task with briefly displayed degraded pictures. They recorded EEGs 

from multiple electrodes and combined (weighted) the signals to obtain a single number (a 

regressor) for each trial that best discriminated between faces and cars. This single-trial 

regressor was significant at two times, around 180 ms and around 380 ms. Ratcliff, 

Philiastides, and Sajda (2009) reasoned the regressor was an index of how car-like or how 

face-like each stimulus was. So, in each condition of the experiment, subjects’ behavioral 

responses (“car” or “face”) were sorted based on the EEG regressor into ones that were 

closer to faces and ones that were closer to cars. The two-choice diffusion model was fit to 

the two halves of the behavioral data and the drift rates for them differed substantially but 

only for the later component, 380 ms. This shows that the later EEG signal indexes difficulty 

across trials prior to the onset of the decision process (estimated to be at 350–400 ms by fits 

of the model). With these results, it appears that the earlier signal represents perceptual 

encoding from which decision-related information must be extracted. Ratcliff, Sederberg, et 

al. (2016) performed a similar analysis of EEG data from a recognition memory task. In this 

domain, an argument has been made for an early frontal familiarity signal and a later parietal 

recollection signal. However, only the later parietal signal (peaking around 600 ms following 

stimulus presentation) was implicated in decision making because it, and not the earlier 

signal, affected drift rate.

The estimated duration of nondecision time is quite short in some of the tasks, as low as the 

175 ms lower limit placed on the model fitting process. This value is lower than for other 

perceptual tasks with two-choice decisions (e.g., 270 ms, Smith & Ratcliff, 2009 and as low 

as 330 ms over several perceptual tasks in Ratcliff, 2014). It may be that for tasks in which 

the subject is to move his or her eyes or fingers to a location at which the stimulus appears, 

less translation of the stimulus representation is involved, but even so, the short duration of 

nondecision time estimated in some of the experiments presented here is a concern.

The more general issue is that computing a decision representation (sometimes called a 

decision variable) is a key issue that is implicit in much of the current work on decision 

making. In conflict tasks (e.g., the Stroop task, the Simon task, the flanker task), models 

explicitly represent the opposition of different sources of information. But for other tasks, 

memory or perceptual variables are sometimes simply assumed to be available or directly 

mapped from perceptual representations.

An example of how stimulus representations must be transformed to decision 

representations is given by Sperling’s centroid computation task (Drew, Sun, & Sperling, 

2010; Sun, Chubb, Wright, & Sperling, 2016). In this task, dots of different luminances or 

sizes are displayed in a 2D plane and the task of the subject is to point to the centroid.

The model that best explains how the center of mass is computed uses a weighted sum of the 

coordinates of the dots or patches. The x-coordinate is a weighted sum of the x-coordinates 

of the items and the y coordinate is a weighted sum of the y-coordinates. This model could 

be easily integrated with the SCDM by assuming that the representation driving the decision 

process is a weighted sum of stimuli instead of a direct representation of the stimuli 

themselves (as is used for the brightness tasks in Experiments 3 and 4). As discussed earlier, 
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this suggests that the decision variable is a function of the stimulus and the task 

requirements.

Population Code Models and the Two-Choice Diffusion Model

On the face of it, there appears to be a conflict between population code models and 

standard two-choice diffusion models. Population code models and the SCDM require a 

distribution of drift rates to drive the decision process on each trial, but the two-choice 

models have only a single drift rate for each trial. However, for the two-choice models, it 

could simply be assumed that trial-to-trial variability in drift rate represents a distribution of 

drift rates used to drive the decision process instead of a distribution from which a single 

drift rate is selected. The mathematics of the diffusion model is indifferent to these two 

possible accounts of variability in the two-choice model.

This population code assumption would require an identical distribution of drift rate on each 

trial. However, there has to be variability from trial to trial in the stimulus representation 

(Ratcliff, 1978). To have such variability and a population code, a population code 

distribution could be assumed with a mean that varied from trial to trial so the combined SD 

was the across-trial SD in drift rate (as in the RTCON2 model for confidence and 

multichoice decision making; Ratcliff & Starns, 2009, their Figure 2; Ratcliff & Starns, 

2013; Voskuilen & Ratcliff, 2016; Voskuilen, Ratcliff, & McKoon, 2018).

Conclusions

SCDM can be viewed in three ways. For one, it is a generalization of the successful two-

choice diffusion model and it provides a new domain of study for modeling decision 

processes. For another, it adds a decision component to dynamical systems models of 

decisions in a continuous space (eye movements and arm movements). For a third, it adds a 

spatially continuous decision process to neural population code models and so is consistent 

with population code interpretations of neurophysiological data from motor cortex and areas 

involved in generating eye movements. In such neurophysiological data, activity rises in 2D 

planes with the position of the maximum activity corresponding to a movement in space and 

the 2D SCDM can be seen as representing this activity and the process of selecting a 

response.

The SCDM was designed to account for both choice proportions and RT distributions in a 

variety of tasks, but at this point, there has been no attempt to model perceptual processes 

and the processes that translate encoded stimulus information to decision-related 

information (see Klaes et al., 2012, for an example of such modeling in which the mapping 

is 1:1). Integrating models of perception with the SCDM (as in Smith & Ratcliff, 2009, with 

the two-choice diffusion model) will potentially be a fertile domain for understanding the 

transformation of stimulus representations to decision-related representations on continuous 

dimensions.

There are three major features of this research that provide a basis for advancing theory. The 

first is to take continuous spatial dimensions seriously by using continuously distributed 

representations of stimuli. The second is to represent variability in the decision process with 
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continuously distributed Gaussian noise (Gaussian process noise for 1D and Gaussian 

random field noise for 2D). The properties of Gaussian processes and Gaussian random 

fields are active areas of research in machine learning (Lord et al., 2014) and so the SCDM 

offers the possibility of linking research in machine learning with modeling decision-making 

on continuous scales. The third feature is a set of experiments that collect RTs and choices 

on continuous dimensions with a variety of stimulus and response types and tasks. These 

provide a template for paradigms that can be used to collect RT and choice data, but more 

importantly show that patterns of results generalize across stimulus and response modes.

The SCDM also offers the possibility of applications in domains that go beyond simple 

perceptual tasks, including psychometric tasks on continuous scales, any simple rating scale 

judgment (such as preferences for items), and confidence judgments. More generally, it 

offers the possibility of being applied in a wide range of tasks that require responses in a 

continuous 1D or 2D space.
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Appendix

Parameter Behavior, Parameter Recovery, SDs in Model Parameters, and 

Covariance in Model Parameters

In this appendix I show how each of the parameters of the SCDM model affects predictions 

of the model, how well the fitting method recovers model parameters, and how the model 

parameters trade off against each other. Because the SCDM is a new model with no existing 

guidelines for how to fit it, the method I chose to use is one that is robust and has had 

success in other applications (e.g., Ratcliff & Starns, 2013). There is one critical fact to 

stress in evaluating results produced by the fitting method: the model fits the data at least as 

well as is reported in the figures for each experiment and alternative methods can only 

improve on these.

The Effects of Changing Single Parameters

Figure A1 shows predictions from the model for the mean parameter values from 

Experiment 1 (Tables 1, 2, and A1) with the second drift rate (31.3). The plots show the 

results of changing single model parameters to a high and a low value (except mean 

nondecision time which only produces a shift in RTs). The terms correct responses and error 

responses are shorthands for the regions A and T respectively in Figure 2.

A. Drift rate, d (the values were 10 and 50): Increases in drift rate produced more 

peaked distribution of responses over position with more responses in the tail. 

There was also an increase in mean RT over position by over 200 ms. Errors 
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were slower than correct responses for the high drift rate but errors were about as 

fast as correct responses for the low drift rate. The change in the 0.1 quantile RT 

was modest relative to the 200–300 ms change in mean RT.

B. Boundary setting, a (the values were 11.2 and 19.2): Increasing the value of a 
produced a modest increase in the peak of the distribution of responses over 

position but a large increase in mean RT. The 0.1 quantile RT increased 

substantially, by over 200 ms, and mean RT changed by over 300 ms. Errors 

were slower than correct responses for the high boundary setting, but about as 

fast for the low boundary setting. Boundary setting and drift rate affect 

performance in the same way as the corresponding parameters for the two-choice 

model.

C. Across-trial variability (the range) in drift rate, sd (the values were 0.01 and 

1.80): Increases in the range produced similar behavior as for the two-choice 

model. Error responses became slower than correct responses with little change 

in the distribution of choices over position (cf., accuracy in the two-choice 

model).

D. Across-trial variability in boundary setting, sa (the values were 1. and 60.): 

Greater trial-to-trial variability in the boundary setting produced shorter error 

RTs relative to correct RTs, again, similar to the two-choice model. Because the 

SCDM is a linear model, trial-to-trial variability in the boundary with a fixed 

starting point produces identical behavior to the same trial-to-trial variability in 

the starting point with a fixed boundary.

E. Gaussian process kernel parameter, r (the values were 9.0 and 19.0 degrees): 

Increases in this parameter had little effect on the distribution of responses across 

position, but produced longer RTs for larger values of the parameter. If there is 

greater spatial variability (more peaks and troughs, the 1D analog of Figure 

15D), there is more chance for a process at some small range of locations to hit 

the boundary relative to processes with less spatial variability (fewer peaks and 

troughs, the 1D analog of Figure 15F). As the kernel parameter became larger, 

errors tended to become slower than correct responses.

F. Width of the drift rate distribution, sw (the values were 5.0 and 9.0): As this 

became larger, the distribution of responses across position became wider with a 

smaller peak and RTs became longer (because the height became smaller).

G. Range in nondecision time, st (the values were 3 and 73 ms): this had little effect 

on performance and could possibly be dropped from modeling for the tasks with 

short RTs in this article (especially those with nondecision time restricted to be 

no smaller than 175 ms). However, tasks with longer RTs may need the st 

parameter to model the behavior of the leading edge of RT distributions (cf., 

Ratcliff, Gomez, & McKoon, 2004). But more importantly, this parameter is 

included because I subscribe to the view that encoding and response output times 

could not be identical from trial to trial.
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Parameter Recovery

To examine parameter recovery, mean parameter values from Experiments 1 and 3 were 

used to generate simulated data and then the model was fit to these simulated data. These 

experiments were chosen because the first had one central stimulus and the second had two 

stimulus patches. Table A1 shows results from parameter-recovery simulations. The mean 

model parameters were used to generate 32 sets of simulated data with either 4000 

observations per condition or 200 observations per condition. The latter mirrors the number 

of observations in the data per individual subject and reflects what I consider close to the 

minimum number needed for model fitting. Table 1A shows the mean recovered parameter 

values and the SDs in those parameter values. These can be compared with the SDs across 

individuals (which represent individual differences) which are reproduced from Tables 3 and 

4. The simulated data sets are generated with identical parameter values for each set.

First, there are few consistent biases in recovered model parameters across the two sets of 

parameter values. Drift rates are sightly overestimated, but what might be a bias for some of 

the parameters for Experiment 1 has an opposite bias for Experiment 2.

Second, the SDs in recovered parameters from the simulations with identical input 

parameter values and 200 observations per condition are (with a couple of exceptions) 

between 2 and 5 times smaller that the SDs across subjects, i.e., individual differences. For 

4000 observations per condition in the simulated data, the SD’s halve in most cases. It might 

be expected that the SD should be reduced as the ratio of square root of the number of 

observations, then most of the SDs should be reduced by a factor of 4.5. However, the model 

is fit with predictions generated with 10,000 sets of simulated data per condition and the 

variability in the predicted values adds variability in the recovered parameter values reducing 

the ratio.

There does appear to be a systematic bias in nondecision time for 200 observations per 

condition. But this is artificial because the lowest value of nondecision time that I allow is 

175 ms. Thus, if moderately large variability in this parameter occurs because of low 

numbers of observations, fits of the model would attempt to produce a wide difference in the 

nondecision time. But truncation at 175 ms would only allow values of 175 ms and higher to 

be produced and this would result in a value higher than the parameter used to generate the 

simulated data (e.g., 177.5 and 177.9 for Experiments 1 and 3 respectively).

Scaling

In the standard two-choice diffusion model, the parameters are not all identifiable. For drift 

rate, boundary, starting point, and within-trial noise (diffusion coefficient) parameters, 

increasing one by some proportion and increasing or decreasing the others by the same 

proportion produces identical fits. Thus, one of the model parameters, usually the diffusion 

coefficient, is chosen as a scaling parameter and fixed to some value and then the other 

parameters are identifiable. The diffusion coefficient is usually chosen because it reflects 

noise in the accumulation process that is typically assumed not to change with the strength 

of the stimulus (cf., Smith & Ratcliff, 2009).
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In the SCDM, I have chosen the same parameter to scale the other parameters against, 

namely the value of within-trial noise. There are two dimensions for Gaussian process noise, 

the evidence dimension (vertical) and spatial dimension (horizontal, which is controlled by 

the kernel parameter). The model parameters are scaled with respect to the evidence 

dimension. A different issue that is related to the scaling issue is how to change the spatial 

and temporal step sizes in the model simulation. Model parameters can be scaled so that if 

the steps are made smaller, parameters can be adjusted to produce the same fits subject to 

variability in the simulations that generate predictions. Note that there may be some small 

biases if the time or spatial step sizes are too large.

It is plausible that other parameters are subject to scaling issues. I tried fixing some of these 

(such as the kernel parameter, r, or the SD in the evidence distributions, sw), but this resulted 

in fits that got considerably worse as the value of the parameter moved away from the value 

in Table 1A. In fact, changing the kernel parameter to half the value in Table 1A produced 

goodness-of-fit values that were numerically 10 times worse. This suggests that it is not 

possible to replace a pair of model parameters with one parameter that has the same function 

as both of them.

Correlations Among Parameter Values

In interpreting results from model fitting, it is important to understand covariation among 

model parameters that are characterized by correlations in the parameters across sets of 

simulated data. Random variation in data can lead to changes in two or more parameters to 

compensate and this can lead to correlations in the parameters. An example of compensation 

be seen in linear regression. Figure 5 (Ratcliff & Tuerlinckx, 2002) shows how random 

variation in data (bottom panel), especially at the two ends of the line, produces increasing 

intercept and decreasing slope (or vice versa) which produces a high negative correlation 

(−0.85) between slope and intercept (top panel). In the two-choice diffusion model, Ratcliff 

and Tuerlinckx (2002, Figure 7) show how random variation in one quantile RT would 

produce compensatory changes in other model parameters. Table 3 and Figure 6 (Ratcliff & 

Tuerlinckx, 2002) show some quite large correlations between different two-choice diffusion 

model parameters. However, they point out that the SDs in the recovered parameter values 

are much smaller than the SDs across individuals and so they have little impact on parameter 

estimates for the group means and for individual difference analyses for the two-choice 

diffusion model.

Figure A2 and A3 show correlations and scatter plots of parameter values for fits of the 

model to the two simulated data sets in the second and third lines of Table A1. For these 

simulations, there were three stimuli as in the experiment (three drift rates), and 4000 

observations per stimulus condition, and 200 observations per condition.

For the fits to the 4000-observation simulated data, there were large correlations between the 

boundary setting (also trial-to-trial variability in the boundary setting), the Gaussian process 

kernel parameter, and between-trial variability in the height of the drift-rate distribution. The 

interpretation of these is straightforward: Decreasing the kernel parameter makes noise more 

bumpy over spatial position and so provides more opportunities for the process to hit the 

Ratcliff Page 56

Psychol Rev. Author manuscript; available in PMC 2019 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



boundary quickly at some point, because there are more points or regions on the function 

fluctuating randomly. To compensate for this decrease in RT, boundary setting has to be 

higher. Also, more variability (height) in the drift rate function can produce more faster 

responses and to compensate, the boundary setting has to be higher. Although these 

examples have one direction of causality, bidirectional explanations can be shown for each 

pair of the three parameters. In addition to these correlations, there are two other large 

correlations, between the boundary setting and trial-to-trial variability in the boundary 

setting, and between the width of the drift rate distribution and the value of its height. The 

first of these can be seen as a multiplicative scaling effect (the higher the boundary, the more 

variability). The second results from the requirement that probability density has to be 

assigned to the A, B, and T areas. If the width of the drift rate function increased, there 

would be less probability density in the A area and the height of the drift rate function would 

be increased to compensate.

For the fits to the 200-observation simulated data, some of the correlations that were large 

for the 4000-observation simulated data are small. The only large ones are the correlations 

between boundary setting and the kernel parameter and between the drift rate function 

height and width. The interpretations are the same as above. Also, because of the lower 

numbers of observations, there is increased variability in parameter estimates and this might 

be partly responsible for the reductions in the correlations.

Similar results were obtained for the simulations with the parameters values for Experiment 

3. High correlations between the kernel parameter and boundary setting and between the 

height and width of the drift rate function were obtained. The correlation between the kernel 

parameter and trial-to-trial variability in the drift rate function was small for both simulated 

data sets.

Only one drift rate is shown in Figures A2 and A3. However, for Experiments 1 and 3 

respectively, the means over the combinations of pairs of the three drift rates correlate 0.52 

and 0.77 with the 4000 observations per condition and 0.36 and 0.34 with 200 observations 

per condition.

Summary

In conclusion, the parameters of the model have identifiable effects on behavioral data. Error 

RTs (T areas, Figure 2) can be longer than correct RTs if across-trial variability in the height 

of the drift rate distribution is large and they can be shorter than correct RTs if across-trial 

variability in the boundary setting is large. This is similar to the behavior of the two-choice 

model with changes in the sizes of analogous parameters. Parameter recovery with 200 

observations per condition (about the same number as in an experiment) is relatively 

unbiased and variability in model parameters is moderately to much lower than variability 

across individuals. Finally, there are correlations between model parameters that are readily 

interpretable, but because the variability across individuals is larger than the variability in 

the parameter from simulated data, these tradeoffs are not of major concern. The most 

important point here is that the model is fit to data of individual subjects and the fits show 

the matches between theory and data for these individuals.
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Figure 1. 
(A) An example stimulus display for a task in which the subject moves his or her eyes from 

the central fixation square to the brightest area on the surrounding annulus. (B) A 

representation of the normally distributed stimulus representation. (C) Six examples of 

random Gaussian process noise. (D) Five samples of accumulated information with the last 

reaching the decision criterion (the blue horizontal line).
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Figure 2. 
A plot of a hypothetical distribution of responses showing how they are divided into the 

central proportion (A), the side lobes (B), and responses outside the stimulus range (T). This 

division is used to group the data to provide RT distributions for model fitting. When there 

were two or more possible targets, areas C, D, etc. were added for the weaker targets and 

these represented areas A and B combined for those stimuli.
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Figure 3. 
Stimulus and results for Experiment 1. A: An example of the stimulus and response 

configuration. B: Plots of model predictions plotted against data of the proportion of A, B, 

and T responses (see Figure 2) and the 0.1, 0.5 (median) and 0.9 quantile RTs for all the 

conditions for data from each individual subject. The horizontal error bars in the bottom 

right corner represent the minimum and maximum 1 SDs in the quantile RTs derived from a 

bootstrap analysis. The error bars in the top right show a 2 SD error bar from the maximum 

of the error bars in the bottom right corner. This provides an upper bound of the variability 
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in the quantile RTs. C: Histograms of responses for the model and data as a function of 

angle for all data from subjects combined with the stimulus aligned on 180 degrees. D: Plots 

of mean RT for theory and data as a function of angle averaged over subjects. The blue 

brackets show the angles with most responses as shown in Panel C (and hence with lowest 

variability).
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Figure 4. 
The same analysis as in Figure 3 for Experiment 2. Panel E shows the result of aligning the 

stimuli at a common angle (180 degrees). Responses are lost (blue dashed line to the right) 

and areas contain no responses (red dashed line to the right). For full details, see the text.
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Figure 5. 
The same analysis as in Figure 3 for Experiment 3. Panel E shows the result of aligning the 

stimuli at common angles (90 and 270 degrees). When stimuli are moved apart, areas are left 

with no responses (e.g., 135 to 225 degrees - what was at 179 moves to 134 and what was at 

181 moves to 226), and to compensate, responses in areas in which there may be responses 

but disappear, e.g., 45–0-315, the red dashed area, are moved to the 135–225 range.
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Figure 6. 
The same analysis as in Figure 3 for Experiment 4.
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Figure 7. 
The same analysis as in Figure 3 for Experiment 5.
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Figure 8. 
The same analysis as in Figure 3 for Experiment 6.
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Figure 9. 
The same analysis as in Figure 3 for Experiment 7.
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Figure 10. 
The same analysis as in Figure 3 for Experiment 8.
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Figure 11. 
A: plots of response angle versus stimulus angle for all responses from all subjects for 

Experiments 1 and 7. The horizontal blobs show a bias to respond within certain ranges. B: 

plot of the number of stimuli as a function of angle. C: a plot of the number of responses as a 

function of angle. The vertical dashed lines show the center of the primary and additive 

colors (red, yellow, green, teal, blue, and purple). The color scale at the bottom and right 

side shows the colors that corresponds to the angle.
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Figure 12. 
A shows plot of a sinusoidal decision boundary centered on a peak in sinusoid and an 

illustrative stimulus distribution (this is not based on the model). B is an illustrative plot of 

the responses produced by multiplying the stimulus representation by the decision bound 

which shows a flat wide peak. C shows the same plot for the decision boundary centered on 

a trough. D shows that resulting response distribution is highly peaked with side lobes. E 

shows the same accumulation of information as in Figure 1C, but with a blue sinusoidal 
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decision boundary (which is equivalent to a constant boundary but with a sinusoidal starting 

point (the green starting point and red constant boundary).
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Figure 13. 
Plots of the frequency of responses for responses centered on the primary and additive colors 

(“preferred” plots) and those between the primary and additive colors (“nonpreferred” plots) 

for all responses from all subjects for Experiments 1 and 7 for data and model predictions. 

Mean RTs are shown as insets. The data are shown for the two more difficult conditions 

because the easy condition does not show much difference between the two sets of plots. 

Results show the same kind of peaked versus flat response functions as shown in Figures 

12A and B.
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Figure 14. 
A and B show sample RT distributions predicted from the model for Experiments 1 and 4 for 

the easiest condition for correct responses. C shows plots of quantiles from Experiment 1 

from the 7 conditions with enough responses to form quantiles plotted against the quantiles 

from the easiest condition. Results show straight lines which shows similar distribution 

shapes across condition. D shows plots of quantile RTs averaged over subjects for 6 

conditions from Experiment 1 (a continuous color identification task) plotted against 6 

conditions from Experiment 1 in Ratcliff and McKoon (2008 - a two choice motion 

discrimination task) which again show straight lines which suggests similar distribution 

shapes between tasks and subjects.
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Figure 15. 
A representation of the 2D model. A shows a decision plane, B shows a 2D normal 

distribution of drift rates, and C shows the Gaussian random field noise distribution (by 

analogy to the Gaussian process distributions in Figure 1). D-E show examples of Gaussian 

random field with different kernel SD parameters.
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Figure 16. 
A shows an example stimulus with three bright patches. B shows plot of response 

proportions and quantile RTs for theory plotted against data with error bars produced in the 

same way as for Figure 3. C shows plots of the data and theoretical predicted responses for 

all subjects for each condition with the data aligned with the strongest stimulus patch in the 

middle (100×180), the next strongest at 100×60, and the weakest at 100×270.
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Figure 17. 
Plots of the movement times from the time at which the eyes, finger or mouse left the 

resting/fixation point until it reached the response target for all the experiments. Exp. means 

Experiment.
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Figure A1. 
Predictions for the parameter values in top line of Table A1 with the value of one parameter 

changed per panel. The values of the parameters changed are presented in the text. For each 

panel, the distribution of responses over position and mean RTs over position are shown. 

The inset for the mean RT plots show quantile RTs. The black lines in the plots are 

predictions for the parameter values in the top line of Table A1, the green/light gray lines are 

for low values of the parameter and the dark gray/red lines are for the high values of the 

parameter.
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Figure A2. 
Scatter plots, histograms, and correlations for SCDM model parameters for fits to simulated 

data with 40,000 observations per condition. Each dot represents the parameter values for 

one of the 32 simulated data sets. The identity of the comparison in each off-diagonal plot or 

correlation is obtained from the task labels in the corresponding horizontal and vertical 

diagonal plots. The lines in the scatter plots are lowess smoothers (from the R package).
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Figure A3. 
The same plots as in Figure A2 but for simulated data with 200 observations per condition.
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Table 2:

SCDM drift rates

Task Exp. Conditions d1 d2 d3

Color 72 eye 1 0.35, 0.20, 0.10 42.7 31.3 16.7

Color 72 touch 2 0.35, 0.20, 0.10 29.3 25.8 19.4

Dynamic bright eye 3
0.62, 0.58 26.2 12.2

0.58, 0.54 14.6 5.1

Static bright touch 4
0.75, 0.65 26.7 13.4

0.65, 0.60 20.6 12.2

Arrows 72 eye 5 0.60, 0.40, 0.20 31.1 23.4 13.2

Moving dots touch 6

0.5, 0.1,0.1 33.6 5.6 6.0

0.4, 0.2, 0.1 25.3 9.6 3.3

0.4, 0.2, 0.2 21.9 6.9 5.6

Color 72 mouse 7 0.35, 0.20, 0.10 30.0 25.8 18.0

Color sp/acc mouse 8 0.25, 0.10 32.1 21.4

2D brightness touch 9
0.70, 0.50, 0.40 18.1 10.6 6.6

0.60, 0.50, 0.40 16.3 12.1 8.3

di is the height of the drift rate distribution. Exp. means Experiment.
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Table 3:

SDs in SCDM parameters

Task Exp. Ter St a sa sw r Sd

Color 72 eye 1 12.4 13.2 2.6 2.5 2.4 10.0 0.47

Color 72 touch 2 81.8 3.8 1.3 1.9 2.9 6.0 0.46

Dynamic bright eye 3 20.7 15.7 1.8 0.9 2.2 5.5 0.25

Static bright touch 4 39.3 6.6 1.4 0.7 3.5 5.7 0.11

Arrows 72 eye 5 12.6 2.0 1.3 0.6 1.7 4.9 0.13

Moving dots touch 6 57.4 14.2 1.5 0.6 2.9 5.8 0.22

Color 72 mouse 7 41.7 6.3 2.6 1.3 3.9 0.3 0.46

Color sp/acc mouse 8 30.6 1.8 2.3
3.2 0.8 3.7 0.9 0.28

2D brightness 9 6.9 4.0 0.9 0.4 1.8 17.2 0.05
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Table 4:

SDs in SCDM drift rates

Task Exp. Conditions d1 d2 d3

Color 72 eye 1 0.35, 0.20, 0.10 11.2 5.9 3.9

Color 72 touch 2 0.35, 0.20, 0.10 4.6 3.5 3.7

Dynamic bright eye 3 0.62, 0.58 3.2 2.6

3 0.58, 0.54 2.8 2.4

Static bright touch 4 0.75, 0.65 2.4 1.3

4 0.65, 0.60 2.3 1.8

Arrows 72 5 0.60, 0.40, 0.20 3.1 2.7 1.9

Moving dots 6 0.5, 0.1,0.1 4.3 2.8 3.4

6 0.4, 0.2, 0.1 4.4 2.4 1.9

6 0.4, 0.2, 0.2 4.3 1.8 1.8

Color 72 mouse 7 0.35, 0.20, 0.10 5.4 5.1 4.5

Color sp/acc mouse 8 0.25, 0.10 5.3 4.4

2D brightness 9 0.70, 0.50, 0.40 1.4 1.1 1.1

9 0.60, 0.50, 0.40 1.3 1.1 0.9
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