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Abstract

Early vigour of seedlings is a beneficial trait of field pea (Pisum sativum L.) that contributes

to weed control, water use efficiency and is likely to contribute to yield under certain environ-

ments. Although breeding is considered the most effective approach to improve early vigour

of field pea, the absence of a robust and high-throughput phenotyping tool to dissect this

complex trait is currently a major obstacle of genetic improvement programs to address this

issue. To develop this tool, separate trials on 44 genetically diverse field pea genotypes

were conducted in the automated plant phenotyping platform of Plant Phenomics Victoria,

Horsham and in the field, respectively. High correlation between estimated plant parameters

derived from the automated phenotyping platform and important early vigour traits such as

shoot biomass, leaf area and plant height indicated that the derived plant parameters can be

used to predict vigour traits in field pea seedlings. Plant growth analysis demonstrated that

the “broken-stick” model fitted well with the growth pattern of all field pea genotypes and can

be used to determine the linear growth phase. Further analysis suggested that the estimated

plant parameters collected at the linear growth phase can effectively differentiate early vig-

our across field pea genotypes. High correlation between normalised difference vegetation

indices captured from the field trial and estimated shoot biomass and top-view area con-

firmed the consistent performance of early vigour field pea genotypes under controlled and

field environments. Overall, our results demonstrated that this robust screening tool is highly

applicable and will enable breeding programs to rapidly identify early vigour traits and utilise

germplasm to contribute to the genetic improvement of field peas.

Introduction

Field pea (Pisum sativum L.) is a legume crop that is widely grown around the world with

annual production of c. 11 million metric tonnes produced from 6.9 million hectares of culti-

vated land [1]. Australia is among the 10 largest field pea producing countries, where the crop
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accounts for 20% of pulse production in South Australia and Victoria, and is the second largest

pulse crop grown in Western Australia and third in New South Wales [2]. The Australian field

pea industry produces approximately 400,000 metric tonnes of grain annually. Of this, about

191,000 metric tonnes are exported with the market value of $A80 million [3]. Field pea pro-

duction brings profit for growers as a cash crop and provides other benefits for the farming

systems such as non-cereal crop rotation and biological nitrogen fixation. Field pea and other

crop legumes annually contribute approximately 5–7 million metric tonnes of biologically

fixed nitrogen to cultivated soil, saving farmers $US 8–12 billion on nitrogen fertilizer costs

globally [4, 5].

Like many other agricultural crops, field pea production is critically affected by biotic and

abiotic stresses such as weeds, drought and heat [6]. Competition from weeds is one of the

major biotic constraints affecting field pea production, which can result in yield loss up to 25%

[7]. Field pea is a very poor competitor against weeds compared to other crops due to its weak

early vigour at the seedling stage [8, 9]. Globally, herbicides are widely used for weed control

during pea cultivation, and although instantly effective, overuse of herbicides with similar

active ingredients and modes of action is resulting in herbicide resistant weed biotypes [10]

and increased production costs [11]. Herbicides can also potentially affect rhizobium and sym-

biotic nitrogen fixation with field pea, causing smaller positive impacts on subsequent crop

rotations [12]. Likewise, drought and heat stresses cause particularly greater yield losses in

field pea crops [13, 14]. These abiotic stresses can have critical effects if they occur during flow-

ering and grain filling by affecting reproductive organs and pod setting, thus reducing seed

number [15, 16].

Previous studies suggest that breeding for tolerant varieties is one of the most effective strat-

egies to cope with biotic and abiotic stresses, and early vigour traits have been considered an

important selection criterion by field pea breeders [6, 17–19]. Although early vigour can be

improved by using higher sowing rates and applying more nitrogen fertilizer, studies suggest

that enhancing early vigour by genetic improvement is more effective and reliable [20]. Early

vigour is the plant’s ability to establish quickly after sowing at the seedling stage and has been

studied extensively in rice, wheat and other cereals [21–23]. Genetic studies in wheat showed

that seedlings of vigorous genotypes can produce biomass rapidly, tiller earlier, have more

leaves and have greater water and nitrogen use efficiency [24–26].

Although weed control can be managed by herbicides and other agronomical practices

such as planting density, row spacing and orientation, use of vigorous genotypes with greater

competitiveness is the most effective, non-chemical and environmentally friendly strategy [18,

27, 28]. Early vigour is also an important breeding trait for higher water use efficiency, espe-

cially in Mediterranean environments, since it minimizes soil water evaporation by boosting

early vegetative ground cover [17, 29]. In water-limited environments, wheat genotypes with

early vigour decreased water evaporation from the soil surface by reducing water loss by 90–

110 mm and increased transpiration efficiency by 10% [30]. As a result, genotypes with early

vigour have greater carbohydrate reserves before anthesis that can compensate for a photosyn-

thesis reduction of up to 36% if drought occurs during the grain fill stage [31]. Early vigour is

also an ideal trait of tropical crops grown in cold environments because it confers chilling tol-

erance [32]. Seedlings with high early vigour have a higher nitrogen uptake and photosynthetic

nitrogen use efficiency [26, 33, 34]. Moreover, early vigour field pea varieties showed broader

adaptation and yield maintenance under unfavorable growth conditions [35–37]. Thus, there

is a pressing need to develop early vigour field pea genotypes via breeding in response to biotic

and abiotic stresses.

Early vigour is a polygenic trait that requires a large volume of high quality phenotypic data

to dissect its genetic composition into smaller manageable and measurable components [38].

Phenotyping for early vigour of field pea seedlings by colour imaging technology
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Conventionally, early vigour trait assessment involves manual methods such as visual scoring,

and measuring leaf area, plant height, and shoot biomass [18, 39]. Although attainable, these

methods are labor intensive, subjective and prone to human errors, and are not suitable for

large scale trials. Therefore, robust and high-throughput phenotyping tools and platforms that

can generate reliable and high quality phenotypic data for genomic selection have become the

rate-limiting step in field pea’s genetic improvement [40].

Non-destructive phenotyping technology using sensors and cameras can offer high-

throughput and reproducible screens of large scale trials as well as reliable, high quality data

and dynamic growth analysis of crops [41]. This technology has also been recommended for

studying early vigour for nitrogen use efficiency in agricultural crops [22]. The technology was

built to detect and quantify the spectral reflectances resulting from the interaction between

plant parts and electromagnetic radiation at different spectral regions such as visible (VIS,

400–700 nm), near infrared (NIR, 700–1000 nm) and short-wave infrared (SWIR, 1000–2500

nm) [41, 42]. Software and computer vision enable the analysis of these reflectances to derive

digital plant objects that can be used as surrogates for plant architectural morphology, biomass,

and grain yield [43]. Several automated plant phenotyping platforms that comprise of growth

facilities, sensors and cameras are commercially available and have been successfully applied

in crop research under controlled and field conditions [22, 44–47]. For example, an automated

high throughput phenotyping platform, PlantScreen (Photon Systems Instruments, Brno,

Czech Republic) was used to assess the cold tolerance of field pea using digital colour imaging

technology under controlled environments [48]. Similarly, Roth et al. [49] applied an aerial-

based imaging phenotyping platform to estimate field pea biomass under field conditions.

Vegetation indices such as normalized difference vegetation index (NDVI) derived from opti-

cal sensors has been used to analyse the growth of field pea and other crops under various field

conditions [50, 51].

Here we report on the development of a high-throughput phenotyping method to evaluate

early vigour of field pea in a controlled environment using an automated colour imaging tech-

nology and a comparative performance of the same genotypes under field conditions. The role

of early seedling vigour in field pea breeding and production is also discussed.

Materials and methods

Plant material and experimental design

Forty-four genetically diverse field pea genotypes were used in these experiments to investigate

early seedling vigour traits (S1 Table) [52]. Field pea seeds were carefully selected to ensure

that seeds of the same genotype had similar size and shape to guarantee a similar level of ger-

mination. In the first experiment, field pea plants were grown in the greenhouse of Plant Phe-

nomics Victoria, Horsham. Euro white pots (200 mm diameter x 190 mm deep, Garden City

Plastics, Victoria, Australia) were filled by weight with 3.5 liters of potting mix consisting of

1,000 L legume mix (Biogro, SA), 1 kg Floranid 32, 1 kg Blue Macracote Coloniser Plus, 1 kg

Nutricote N16, 1 kg Microplus trace element fertilizers, 225 g LibFer SP, 2 kg SaturAid, and 25

kg Lime. The pots were watered prior to sowing and placed on white saucers throughout the

experiment to avoid water leaking on to the system. Three seeds were sown per pot and these

were kept on rolling benches in the greenhouse of Plant Phenomics Victoria, Horsham. Each

pot was thinned to one plant after seeds had germinated, approximately seven days after sow-

ing (DAS), and blue wire cages were inserted into the pots to support plant growth. The col-

ored cages facilitated differentiation of plant material from the support structure for imaging.

The first set of 352 plants (8 replicates per 44 genotypes) were loaded onto the fully auto-

mated plant phenotyping system of Plant Phenomics Victoria, Horsham, ten DAS and

Phenotyping for early vigour of field pea seedlings by colour imaging technology
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arranged in a randomised complete block design (RCBD). The automated plant phenotyping

system is housed in a climate-controlled greenhouse and consists of conveyor belts, watering

and weighing stations, and an imaging chamber with a Scannalyzer 3D imaging system (Lem-

naTec GmbH). A second set of 132 plants (44 genotypes, 3 replicates each) were grown on roll-

ing benches for destructive harvest. The growth conditions in the greenhouse were controlled

to 24˚C during the day and 18˚C during the night with a 12 h photoperiod. Enough water was

applied automatically to maintain healthy plant growth during the experimental period and

recorded into the system’s database (LemnaBase, LemnaTec GmbH).

In a second field experiment, all 44 pea genotypes were trialed in a RCBD design with three

replicates during the 2016 winter–spring cropping season at the Plant Breeding Centre of Agri-

culture Victoria in Horsham, Victoria, Australia (36.74oS, 142.103oE; 133 m altitude). The

experimental site has Vertosol heavy clay soil characteristics and a temperate climate with

medium average annual rainfall of 450 mm [51]. Seeds were machine sown in plots (1 m width

x 5 m length) at a density of 60 plants m-2. Fertilizer application and crop management for

weed, pest and disease control were carried out in accordance with the standard practices in

the area.

Image capture and processing

After loading onto the automated phenotyping system, plants were imaged daily by the Scan-

nalyzer 3D plant-to-sensor imaging system which consists of two 28.8 megapixel red–green–

blue (RGB) cameras (a side and a top camera), model Prosilica GT6600C (Allied Vision Tech-

nologies, Stadtroda, Germany). Side-view RGB images were acquired from three sides of the

plant after consecutive rotations of 0, 120 and 240 degrees, and a top-view RGB image was

taken from above the plant (Fig 1A and 1B). Captured images were automatically recorded in

LemnaBase and analyzed by LemnaGrid software (LemnaTec GmbH).

The region of interest consisting of the whole plant in raw images was separated from the

background by LemnaGrid. In the subsequent steps, the image noise was removed from the

region of interest and clear digital plant objects were determined (Fig 1C and 1D). The pixel

sums of digital plant objects were generated by LemnaMiner software (LemnaTec GmbH) and

subsequently used to estimate several morphological and physiological features of the plants

(Table 1).

Manually destructive harvest

The second set of 132 field pea plants were destructively harvested at 25 DAS after being

loaded onto the automated plant phenotyping platform and imaged the night before. Whole

plants were weighed using a UniBloc electronic balance (Shimadzu, Melbourne, Australia) to

determine fresh shoot biomass per pot (Table 1). The plant height of single plants was deter-

mined by measuring from the cut end from immediately above the soil to the tip of the main

stalk (Table 1). All leaves from single plants were detached from stalks and leaf area was mea-

sured by a Portable Area Meter, model LI-3050A (LI-COR Inc., Lincoln, Nebraska, USA)

(Table 1). The remaining 352 field pea plants were unloaded from the automated plant pheno-

typing platform and destructively harvested at 39 DAS. Fresh shoot biomass was determined

as described above.

Normalized difference vegetation index (NDVI) measurements

Early vigour of pea genotypes grown in the field in the second experiment was assessed by a

crop growth index NDVI derived from spectral reflectance measured by the Crop Circle sens-

ing equipment (ACS-470; Holland Scientific Inc., Lincoln, NE, USA). NDVI was calculated

Phenotyping for early vigour of field pea seedlings by colour imaging technology
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using the formula from Rouse et al. [54]; (R760 –R670)/(R760+R670), where R670 and R760

are reflectance (R) at 670 nm (VIS region) and 760 nm (NIR region), respectively. Spectral

reflectance signals were captured by scanning Crop Circle horizontally 0.75–0.90 m over the

plant canopy at 52 DAS as described by Nguyen et al. [51].

Plant growth model and statistical analyses

Since biomass accumulation of cereal crops generally follows a nonlinear growth pattern [55],

the “broken-stick” statistical model fitting two straight lines using regression split-line func-

tion of GENSTAT statistical software version 18.0 (VSN International Ltd, Hemel Hempstead,

UK) was used to identify the linear growth phase of field pea plants as described by Kong et al.
[56] and Kholová et al. [57].

Imaging-derived and manually measured data were checked for outliers by using boxplot

function of GENSTAT statistical software and presented as means of eight replicates per geno-

type, with exception to the plants destructively harvested at 25 DAS as this data was a mean of

three replicates. One-way analysis of variance (ANOVA) was performed to determine any

Fig 1. Image acquisition and analysis by the Scannalyzer 3D, plant-to-sensor imaging system. (a) and (b) are raw

images of a side-view and top-view (pea cv. Alma); (c) and (d) processed images showing the identification of the

corresponding side-view and top-view objects (bright green plant). Estimated shoot biomass is the pixel sum of

highlighted green objects in processed images (c, d). The height of the pink rectangle in (c) is the plant height. The

perimeter enveloped by the pink line in (d) is the top-view convex hull.

https://doi.org/10.1371/journal.pone.0207788.g001

Phenotyping for early vigour of field pea seedlings by colour imaging technology

PLOS ONE | https://doi.org/10.1371/journal.pone.0207788 November 19, 2018 5 / 19

https://doi.org/10.1371/journal.pone.0207788.g001
https://doi.org/10.1371/journal.pone.0207788


varietal effects and linear regressions and Pearson’s correlation coefficients (r) were used to

determine the relationship between estimated and measured plant traits by using R statistical

software (version R-3.5.0) [58].

Results

Validation of nondestructive imaging phenotyping of growth indices

To validate the suitability of image analysis to predict the early vigour phenotype of field pea

under controlled environments, we first analysed the estimated values captured through imag-

ing against the measured values from destructive analysis of morphological and physiological

parameters of 44 field pea genotypes (Table 1; Fig 1). The results showed that the estimated

and measured traits are highly correlated for all 44 field pea genotypes (Fig 2). The most

important estimated trait, estimated biomass (EB) is strongly correlated with measured traits

such as measured biomass (MB) and leaf area (LA) with high Pearson’s correlation coefficients

(r = 0.92 and 0.98, respectively; Fig 2). Similarly, two estimated traits top-view area (TVA) and

top-view convex hull (TVCH) were also highly correlated with LA (r = 0.94 and 0.74; Fig 2).

Other estimated traits such as estimated height (EH) and estimated water use efficiency

(eWUE) also show high correlation with the corresponding measured traits (r = 0.95 and 0.92,

respectively; Fig 2). Overall, these estimated and manually measured morphological and physi-

ological parameters are highly correlated.

Dynamic growth analysis of field pea genotypes

Since early seedling vigour is strongly influenced by shoot biomass accumulation during the

linear growth phase, we determined the earliest time point where estimated early vigour can

be used to compare the performance of all field pea genotypes. Unlike conventionally destruc-

tive sampling methods, nondestructive digital imaging allows the calculation and observation

of dynamic growth and shoot biomass accumulation of plants over time. Our data showed that

the mean EB increased over the period from 11 to 39 DAS (Fig 3).

These boxplots showed that the EB of 44 field pea genotypes could be separated into two

distinct stages; the lag and the linear phases (Fig 3). Using the broken-stick statistical model,

we identified the coordinates X which is the reference point of the days after sowing and Y, the

Table 1. List of field pea traits measured using digital colour imaging and conventional destructive methods.

Traits Abbreviation Unit Description

Estimated shoot biomass EB kilopixel

(kPix)

Estimated biomass accumulation of plants calculated from pixel sums of three side-view and top-view

images of the plant

Top-view area TVA kPix Estimated pixel sums of the top-view image

Top-view convex hull TVCH kPix The smallest perimeter enveloping the top-view image of the plant

Top-view compactness TVCOM Generic The ratio of leaf area per top-view convex hull area

Estimated plant height EH Pixel (Pix) Estimated maximum distance from bottom to top of plant

Estimated water use

efficiency

eWUE kPix.

kgwater-1
The ratio of estimated biomass per total amount of supplied water

Relative growth rate RGR kPix.day-1
RGR = (lnðW2Þ � lnðW1Þ)/(t2-t1), where lnðW1Þ and lnðW2Þ are means of ln-transformed estimated shoot

biomass at days t1 and t2 [53]

Measured plant height MH cm Maximum distance from the cut end to the tip of the main stalk

Measured shoot biomass MB Gram (g) Destructive biomass harvest at 25 and 39 DAS

Measured leaf area LA cm2 Total leaf area per plant per pot

Measured water use

efficiency

mWUE g.kg water-1 The ratio of measured shoot biomass per total amount of supplied water

https://doi.org/10.1371/journal.pone.0207788.t001
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estimated biomass at X of the breakpoints that separate the two growth phases for each geno-

type of field pea (Table 2). Data showed that the broken-stick model fitted well with the growth

of all field pea varieties as indicated by the high adjusted coefficients of determination (R2

>0.99; Table 2). The slope of the regression after the breakpoint (slope 2) of all varieties

exceeds that before the breakpoint (slope 1).

Pearson’s correlation analysis between MB, and parameters of the broken-stick model

showed that MB was highly negatively correlated with X coordinate, while it was highly posi-

tively correlated with Y coordinate, slope 1 and slope 2 (Fig 4).

Data also showed that X coordinates of several varieties were between 21–23 DAS; such as

Alma, Dunn, and Whero, whereas many other varieties had their X coordinates at later dates

over 26 DAS; Bluey, King, Maki, Mukta, PBA Pearl, PBA Twilight, Sturt, and Yarrum

(Table 2). The latest X coordinates of several field pea genotypes was approximately 26.3 DAS,

Fig 2. Relationship between estimated with measured morphological and physiological parameters of pea genotypes. The cyan

panels are the histograms of individual traits. Panels above and below the diagonal of each cyan panel are Pearson’s correlation

coefficients (r) and bivariate scatter plots with trend lines, respectively. The asterisks indicate the statistically significant level (���

p<0.001). MB, measured shoot biomass; EB, estimated shoot biomass; LA, measured leaf area; TVA, top-view area; TVCH, top-

view convex hull; MH, measured plant height; EH, estimated plant height; mWUE, measured water use efficiency; eWUE,

estimated water use efficiency; sample number = 44.

https://doi.org/10.1371/journal.pone.0207788.g002
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suggesting that any growth points after this date fell into linear growth phase and only EB val-

ues from this point forward should be used for the comparison of early vigour across 44 field

pea varieties (Table 2). For consistency, we used the estimated morphological and physiologi-

cal values collected at 27 DAS hereafter to compare the performance of field pea genotypes in

the following sections.

Assessment of early vigour traits of field pea genotypes

To determine how well the estimated traits correlate with early seedling vigour of field pea, we

compared the MB harvested at 39 DAS, a time point lying in the linear growth phase, against

estimated morphological and physiological values of 44 pea genotypes at 27 DAS (Table 3).

Overall, the performance of all varieties estimated morphological and physiological values per

genotype were relatively consistent with MB (Table 3, Fig 2). However, there was significant

variation among estimated traits, with the most consistent traits relative to MB being EB,

TVA, eWUE and to a lesser extent for TVCH, EH, and RGR, while TVCOM was the least con-

sistent trait (Table 3, Fig 2). For example, varieties Alma, Laura, Cressy Blue, and Cooke are

the most vigorous genotypes, whereas, Santi, PBA Oura, Mukta, and Yarrum are the least

Fig 3. Dynamic growth of field pea genotypes. Boxplots of the estimated shoot biomass accumulation over the growth period for 44 field

pea genotypes. EB, estimated shoot biomass; DAS, days after sowing. In each box, the black line is the median; the blue squares are the

mean; the light green dots are EB of individual field pea genotypes.

https://doi.org/10.1371/journal.pone.0207788.g003

Phenotyping for early vigour of field pea seedlings by colour imaging technology

PLOS ONE | https://doi.org/10.1371/journal.pone.0207788 November 19, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0207788.g003
https://doi.org/10.1371/journal.pone.0207788


Table 2. Regression parameters as determined by the split-line linear regression model of 44 field pea genotypesa.

No Variety Coordinate X (day)b Coordinate Y (kPix) Slope 1 Slope 2

1 Alma 20.40 104.50 9.18 42.16

2 Bluey 26.11 89.69 5.71 23.03

3 Bohatyr 24.48 166.20 12.06 40.04

4 Bonzer 25.79 93.86 6.10 21.44

5 Bundi 25.77 90.49 5.83 19.20

6 Collegian 25.52 209.20 13.65 47.16

7 Cooke 25.65 189.00 12.84 56.16

8 Cressy Blue 23.42 160.50 12.60 49.27

9 Derrimut 23.50 159.50 12.31 48.08

10 Dinkum 25.83 108.43 7.32 27.95

11 Dunn 22.40 138.40 11.30 32.93

12 Dundale 24.43 156.80 11.15 39.22

13 Dunwa 23.52 124.82 8.95 30.77

14 Excell 25.81 95.75 6.16 23.26

15 Glenroy 25.63 161.81 10.48 34.41

16 Helena 25.53 145.73 10.05 40.03

17 Jupiter 24.41 113.94 7.92 29.52

18 Kaspa 25.61 91.73 5.86 20.26

19 Kiley 25.64 97.58 6.36 19.34

20 King 26.22 107.66 6.65 30.91

21 Laura 25.63 165.30 11.37 45.51

22 Magnet 25.56 93.93 6.32 23.98

23 Maitland 25.80 137.93 8.62 31.56

24 Maki 26.01 84.65 5.33 20.33

25 Moonlight 25.59 97.33 6.27 21.78

26 Morgan 25.88 110.42 6.90 24.94

27 Mukta 26.26 78.10 4.65 17.46

28 Parafield 23.53 136.10 10.05 35.95

29 Paravic 25.98 93.54 6.12 22.40

30 PBA Gunyah 25.56 96.06 6.20 20.00

31 PBA Oura 25.87 77.13 4.79 18.05

32 PBA Pearl 26.03 84.67 5.42 20.11

33 PBA Percy 25.71 175.42 11.42 42.23

34 PBA Twilight 26.14 83.16 5.05 18.12

35 PBA Wharton 25.51 87.60 5.55 18.73

36 Santi 25.97 81.05 5.08 18.78

37 Snowpeak 25.58 101.93 6.95 25.09

38 Soupa 25.65 187.80 12.61 48.05

39 Sturt 26.16 153.58 9.66 45.74

40 SW Celine 25.95 93.74 6.07 23.42

41 Whero 22.59 162.20 12.70 34.60

42 White Brunswick 25.68 193.67 12.77 49.75

43 Wirrega 25.94 177.10 11.67 49.85

44 Yarrum 26.15 75.42 4.82 14.44

aAdjusted R2 > 99%
bCoordinate X is the reference point of the days after sowing and Y is the estimated biomass at X, where the linear regression was split or “broken”; slope 1, the

coefficient of the regression before breakpoint; slope 2, the coefficient of the regression after the breakpoint.

https://doi.org/10.1371/journal.pone.0207788.t002
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vigorous genotypes in respect of MB (Table 3). However, Laura has a significantly smaller EB,

TVA, EH, and eWUE compared to Cressy Blue.

As expected, conventionally leafed field pea genotypes had higher biomass accumulation

and TVCOM than semi-leafless lines, indicating their stronger early vigour. Nevertheless, it’s

noteworthy to mention that some semi-leafless varieties such as Glenroy and Maitland also

had strong early vigour as indicated by high biomass accumulation (Table 3).

Correlation between normalized difference vegetation index captured in

the field with estimated shoot biomass and top-view area in controlled

environment

To compare the performance of pea genotypes in the field and controlled environment, we

identified the association between NDVI values collected from the field trial and EB and TVA

derived from imaging-based phenotyping in the Plant Phenomics Victoria, Horsham (Fig 5).

Fig 4. Relationship between early vigour of field pea genotypes and parameters of the “broken-stick” model. The cyan

panels are the histograms of measured biomass and parameters of the broken-stick model. Panels above and below the diagonal

of each cyan panel are Pearson’s correlation coefficients and bivariate scatter plots with trend lines, respectively. The asterisks

indicate the statistically significant level (��� p<0.001). MB, measured shoot biomass; X and Y coordinates, the reference points

of the days after sowing and the estimated biomass at X; Slope 1, the coefficient before the break point; Slope 2, the coefficient

after the break point; sample number = 44.

https://doi.org/10.1371/journal.pone.0207788.g004
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Table 3. Comparative performance of pea genotypes for early vigoura.

Ranking Variety Leaf type MB EB TVA TVCH TVCOM EH RGR eWUE

1 Alma C 44.96 370.40 142.61 298.39 0.49 1148.75 0.13 189.34

2 Laura C 40.65 237.32 92.13 175.10 0.53 876.25 0.14 122.27

3 Cressy Blue C 39.04 317.51 121.13 257.44 0.48 1231.50 0.15 165.59

4 Cooke C 39.00 277.25 91.61 163.89 0.58 1043.50 0.14 146.98

5 Glenroy SL 38.76 216.88 75.71 251.45 0.32 1088.25 0.12 112.96

6 Dunn C 38.69 283.58 112.49 259.72 0.46 991.38 0.15 152.33

7 Derrimut C 37.50 310.81 105.97 202.29 0.56 1004.13 0.14 163.21

8 Maitland SL 37.04 186.55 67.25 253.68 0.28 1165.63 0.13 96.51

9 Wirrega C 36.79 241.75 82.10 150.91 0.55 988.88 0.13 123.26

10 Bohatyr C 36.36 259.45 80.93 144.81 0.56 651.75 0.12 134.19

11 Whero C 35.90 298.66 119.36 233.38 0.52 1116.00 0.12 151.24

12 Soupa C 35.35 261.15 81.58 144.28 0.58 898.75 0.12 133.25

13 Dundale C 35.01 251.54 92.98 169.53 0.55 1019.50 0.12 131.90

14 White Brunswick C 34.90 268.41 84.34 155.34 0.55 1074.00 0.12 138.85

15 Parafield C 34.85 245.31 85.38 199.62 0.48 813.88 0.11 127.77

16 PBA Percy C 33.09 234.82 83.56 175.92 0.51 994.38 0.12 124.48

17 Collegian C 32.99 284.99 91.29 162.04 0.57 980.25 0.11 146.14

18 Helena C 32.25 211.37 77.33 138.72 0.56 879.63 0.13 108.89

19 Sturt C 32.05 205.84 74.67 143.46 0.53 992.63 0.13 105.41

20 Jupiter C 31.39 187.12 62.48 123.49 0.52 632.63 0.13 95.05

21 Kiley SL 31.09 145.33 32.39 134.62 0.25 522.63 0.11 64.84

22 Dunwa C 30.79 221.54 83.97 171.84 0.50 1014.63 0.12 118.38

23 Dinkum SL 29.94 148.44 31.35 128.18 0.30 585.50 0.13 74.21

24 Moonlight SL 29.54 133.41 29.48 178.40 0.18 757.25 0.13 67.99

25 Excell SL 28.40 128.68 28.60 85.82 0.34 560.25 0.12 68.31

26 Paravic SL 28.13 123.24 23.49 81.98 0.30 577.50 0.13 62.17

27 Snowpeak SL 27.86 141.92 30.81 146.91 0.22 674.13 0.13 73.96

28 Morgan SL 27.80 145.70 44.21 171.78 0.26 1126.13 0.12 77.97

29 Bundi SL 27.74 118.50 25.86 93.52 0.30 608.75 0.12 62.50

30 Bluey SL 27.64 117.92 23.97 80.96 0.34 449.86 0.12 59.24

31 Magnet SL 27.55 132.57 33.83 139.77 0.24 572.13 0.14 67.39

32 PBA Gunyah SL 27.51 128.43 28.34 117.36 0.26 609.00 0.12 65.84

33 King C 27.44 141.69 41.43 71.16 0.60 456.50 0.11 72.28

34 SW Celine SL 27.14 125.54 25.23 104.04 0.24 591.13 0.12 67.20

35 Bonzer SL 26.38 125.79 30.60 105.32 0.32 601.63 0.12 64.12

36 Kaspa SL 25.75 123.93 27.93 134.95 0.22 605.50 0.13 63.18

37 PBA Pearl SL 25.55 110.04 23.32 101.65 0.23 680.13 0.12 57.03

38 Maki SL 25.14 110.17 23.81 72.28 0.38 502.38 0.11 56.12

39 PBA Wharton SL 24.53 118.67 26.10 115.04 0.25 612.38 0.12 63.91

40 PBA Twilight SL 24.19 103.62 22.29 96.21 0.24 569.25 0.11 55.87

41 Santi SL 22.93 105.58 24.13 91.93 0.28 496.63 0.11 54.78

42 PBA Oura SL 21.95 101.39 22.99 92.14 0.26 538.25 0.12 54.13

43 Mukta SL 21.79 96.17 20.15 77.05 0.27 472.38 0.11 48.76

44 Yarrum SL 18.64 92.02 18.01 59.48 0.31 429.00 0.11 49.30

ANOVA
p - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.047 <0.001

s.e.d - 2.36 20.2 7.6 25.4 0.038 58.56 0.011 10.34

(Continued)
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Our data showed that NDVI values captured by Crop Circle are highly correlated with EB and

TVA for all pea genotypes with correlation coefficients (r) of 0.7 and 0.75, respectively (Fig 5).

This suggests that field pea genotypes selected for early vigour using this imaging method from

the greenhouse are likely to show their early vigour under field conditions.

Table 3. (Continued)

Ranking Variety Leaf type MB EB TVA TVCH TVCOM EH RGR eWUE

LSD (p = 0.05) - 4.65 39.8 15 50 0.076 115.24 0.022 20.34

a Early vigour traits are represented by measured fresh biomass harvested at 39 DAS and estimated morphological and physiological values at 27 DAS.

Data are means (n = 8). In a column: dark green cells, the highest values; dark red cells, the lowest values; C, conventional; SL, semi-leafless; MB, measured shoot

biomass (g); EB, estimated shoot biomass (kPix); TVA, estimated top-view area (kPix); TVCH, estimated top-view convex hull (kPix); TVCOM, estimated top-view

compactness; EH, estimated plant height (Pix); RGR, relative growth rate (kPix.day-1); eWUE, estimated water use efficiency; s.e.d, standard error differences of the

means.

https://doi.org/10.1371/journal.pone.0207788.t003

Fig 5. Comparative performance of 44 field pea genotypes under field and controlled environment. The cyan

panels are the histograms of estimated biomass (EB) and top-view area (TVA) collected at 27 DAS in Plant Phenomics

Victoria, Horsham and the vegetation indices (NDVI) measured by Crop Circle at 52 DAS in the field. Panels above

and below the diagonal of each cyan panel are Pearson’s correlation coefficients and bivariate scatter plots with trend

lines, respectively. The asterisks indicate the statistically significant level (��� p<0.001). Sample number = 44.

https://doi.org/10.1371/journal.pone.0207788.g005
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Discussion

The overall aim of this research was to develop a high-throughput and reliable phenotyping

method to rapidly assess early seedling vigour of field pea using digital colour imaging technol-

ogy in a controlled environment. This is a crucial trait that contributes to biological weed con-

trol [27], drought tolerance and water use efficiency [17, 29, 30], and improved carbohydrate

reserves [31] and nutrient uptake [26, 34, 59] in crops. Genetic improvement for early vigour

has been proposed for many agricultural crops such as rice [38, 60], wheat [24, 61] and maize

[62]. Therefore, developing new genotypes with improved early seedling vigour is a priority

for field pea breeding programs [6, 17]. However, early seedling vigour is a complex trait [38]

and the lack of a robust, high-throughput, and reliable phenotyping method that is powerful

enough to dissect the component traits for genetic improvement is a bottleneck [63, 64]. The

development and validation of high throughput phenotyping techniques, such as this one, will

help to remove this limitation.

Seedling vigour can be broken down into several components including biomass accumula-

tion, canopy coverage, and plant height. These components are generally evaluated visually

and destructively [18, 35, 39]. The recent emergence of digital colour imaging techniques for

plant phenotyping has provided opportunities to non-destructively evaluate morphological

and physiological features of agricultural crops such as field pea, wheat, maize, barley and rice

under various growing conditions [43, 48, 65–67]. To identify a robust and high-throughput

plant phenotyping method applicable to screen field pea for early vigour traits, an experiment

on genetically diverse field pea genotypes was conducted on the automated plant phenotyping

platform of Plant Phenomics Victoria, Horsham over the winter–spring cropping season of

2016. The digital colour imaging data acquired by the plant phenotyping platform showed that

estimated traits such as EB, TVA, EH, are highly correlated with shoot biomass accumulation,

leaf area coverage and plant height. This confirms that they can be used as representations of

these traits to predict the early vigour of field pea. These high correlations between digitally

estimated and conventionally measured morphological and physiological traits were also

observed by other studies using a similar automated imaging phenotyping system [55, 68]. The

data also demonstrated that the early vigour across field pea genotypes can be quantitatively

assessed as early as 27 DAS without destructive analysis of the plants, that can contribute to a

cost-effective screen of field pea plants. Economical rapid assessment of less than 30 days will

also allow for the rapid assessment of larger populations of accessions from genebanks for

gene discovery, or even breeding populations for the development of varieties with a combina-

tion of desirable traits including early vigour.

Water use efficiency is one beneficial trait in field pea breeding for water-limited environ-

ments [19]. It can be defined as a unit of crop production gain per unit of water supply, and

increased WUE is generally associated with higher grain yield [11]. The plant phenotyping

platform used here can capture digital imaging data to assess early vigour traits and precisely

record the amount of water supplied to each pot, which has also been reported by Ge et al.
[69]. This is one advanced feature of an automated plant phenotyping method in comparison

to conventional methods, where the former allows precise monitoring and documenting of the

supplied water amount. Therefore, eWUE can be directly determined by the estimated bio-

mass and known water usage for each field pea genotype. Armstrong et al [37] used a conven-

tional phenotyping method to study WUE in field peas and discovered that conventionally

leafed and vigorous varieties, such as Dundale and Wirrega, had higher WUEs than the most

vigorous semi-leafless variety Dinkum, which is in line with findings from the current

research. This again confirms the feasibility of the automated imaging phenotyping system for

WUE studies. However, it’s important to note that estimated traits do not fully account for the
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variation observed in measured traits when compared to other imaging methods due to over-

lapping leaves that cannot be differentiated in the captured images (Fig 1). This limitation of

the phenotyping method by imagery has been discussed extensively elsewhere [70]. Some esti-

mated traits are more highly correlated with measured traits than others. These variations sug-

gest that multiple estimated traits should be taken into consideration when comparing early

vigour of field pea genotypes to ensure the selection of the best performers.

Most of the semi-leafless field pea genotypes have reduced internode length and this genetic

combination is favoured by field pea breeding programs due to improved lodging tolerance

and greater air flow through the canopy that results in reduced disease pressure [71]. However,

the trait combination of semi-leafless and short internode length has a direct impact on early

seedling vigour, leaf area index, and ground cover [35]. Interestingly, some semi-leafless varie-

ties such as Glenroy and Maitland had very strong early seedling vigour. Thus, such early vig-

our semi-leafless genotypes identified in the present study might possess multiple desirable,

inheritable attributes, and should be recommended for selection as parents in field pea breed-

ing programs.

Although greenhouse screening may be a cost-effective method to select the best performers

for breeding programs, the screening outcomes need to be further validated under field condi-

tions, as crop performance is highly influenced by environmental conditions such as soil,

water availability, and temperature [17, 72, 73]. In the present study, NDVI values as a proxy

of early vigour collected from the field trial using Crop Circle were well associated with EB and

TVA, confirming that selecting field pea genotypes using the automated imaging phenotyping

method were reasonably reliable under field conditions. The stronger correlation between

NDVI and TVA was probably due to both metrics being derived from 2D observations down-

ward from sensors to the top of the plants and canopies, respectively; whereas, EB was calcu-

lated from 3D observations of plants. Digital cameras have been successfully applied to study

early vigour traits and ground cover percentage of field pea and other crops [35, 67, 74]. There-

fore, it is possible that similar sensory or imagery systems mounted on ground- or aerial-vehi-

cles could be applied to render the high-throughput phenotyping of pea under field conditions

[22, 44, 46, 49, 75–77] and this should be included in future investigations.

Generally, early seedling vigour directly contributes to crop establishment, biotic and abi-

otic stress tolerance and finally, grain yield at harvest [19]. However, no direct association

between early seedling vigour with grain yield of crops grown under favourable conditions has

been reported [24, 78]. In contrast, there is mounting evidence of a relationship between early

seedling vigour and grain yield of field pea under adverse growing conditions such as limited

rainfall environments [37]. Early seedling vigour of some crops including field pea is not a

trait suitable for all environmental conditions, but it could be a valuable phenotypic trait for

targeted environments [50]. In sub-tropical environments where crops rely on water availabil-

ity stored in the soil profile, early seedling vigour might even be a harmful trait, since plants

exhaust reserved water quickly resulting in terminal drought at the reproductive phase. In tem-

perate and Mediterranean type climates such as southern Australia, cropping systems mainly

depend on seasonal rainfall where early vigour enhances ground cover, minimizing water

losses through run-off and evaporation, and facilitating crop growth [11, 14].

Armstrong and Pate [36] reported on the trialing of six contrasting morphological field pea

genotypes at three different rainfall locations in Western Australia. Their results showed that

Wirrega, a conventionally leafed and early vigorous variety, outperformed other varieties in

the dry regions, which was attributed to better ground cover, long main stem, and larger green

area index; whereas, its performance was much poorer than the others under cool and high

rainfall environments [36]. In the present study, no grain yield data of the pea genotypes was

collected, though it might be noteworthy to investigate the contribution of early vigor to grain
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yield in future studies, particularly under adverse growing conditions. Apparently, weak vig-

our genotypes are undesirable for any growth conditions and too vigorous genotypes are also

not ideal for some environments. Therefore, genotypes with certain degrees of early vigour

should be selected so that they can perform best in targeted environments.

Conclusions

We have developed a high-throughput digital image phenotyping method to assess early seed-

ling vigour of genetically diverse field pea genotypes using an automated plant phenotyping

platform. Our results have demonstrated that the imaging method is fully capable of detecting

variations of early vigour traits of field pea varieties under controlled environments, and this

has been further validated for their comparative performance under field conditions. There-

fore, this robust screening method is highly applicable and will enable breeding programs to

rapidly identify early vigour traits and utilise germplasm to contribute to the genetic improve-

ment of field peas. To our best knowledge, this is a very first method detailing the application

of high-throughput automated imaging phenotyping technology to assess early vigour of field

pea under a controlled environment.

Supporting information

S1 Table. Origin of 44 genetically diverse field pea varieties used in this study.

(DOCX)

Acknowledgments

Special thanks are given to our late colleague, Kevin Murray, for his significant contribution in

conducting the greenhouse experiments. Authors wish to thank George Alcock and Nicole

Sawyer for assistance in conducting greenhouse experiments; Debra Partington and Matthew

Hayes for critical suggestions and comments on crop growth analysis.

Author Contributions

Conceptualization: Giao N. Nguyen, Sally L. Norton, Garry M. Rosewarne, Anthony T.

Slater.

Data curation: Giao N. Nguyen, Sally L. Norton, Garry M. Rosewarne, Laura E. James.

Formal analysis: Giao N. Nguyen, Sally L. Norton.

Funding acquisition: Sally L. Norton, Garry M. Rosewarne.

Investigation: Giao N. Nguyen, Laura E. James.

Methodology: Giao N. Nguyen, Sally L. Norton, Garry M. Rosewarne.

Project administration: Sally L. Norton, Garry M. Rosewarne.

Supervision: Sally L. Norton, Garry M. Rosewarne, Anthony T. Slater.

Writing – original draft: Giao N. Nguyen, Sally L. Norton.

Writing – review & editing: Giao N. Nguyen, Sally L. Norton, Garry M. Rosewarne, Laura E.

James, Anthony T. Slater.

References
1. FAOSTAT. 2014 [30 August 2018]. Available from: http://faostat.fao.org

Phenotyping for early vigour of field pea seedlings by colour imaging technology

PLOS ONE | https://doi.org/10.1371/journal.pone.0207788 November 19, 2018 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207788.s001
http://faostat.fao.org
https://doi.org/10.1371/journal.pone.0207788


2. ABARES. Australian crop report. February 2018, Canberra: Australian Bureau of Agricultural and

Resource Economics and Sciences, 2018.

3. Pulse Australia. Field Pea 2018. Available from: http://www.pulseaus.com.au/growing-pulses/bmp/

field-pea. [verified 30 August 2018].

4. Foyer CH, Lam H-M, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD, et al. Neglecting legumes

has compromised human health and sustainable food production. Nat Plants. 2016; 2:16112. https://

doi.org/10.1038/nplants.2016.112 PMID: 28221372

5. Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agricultural sys-

tems. Plant Soil. 2008; 311(1):1–18. https://doi.org/10.1007/s11104-008-9668-3

6. Siddique KHM, Erskine W, Hobson K, Knights EJ, Leonforte A, Khan TN, et al. Cool-season grain

legume improvement in Australia—use of genetic resources. Crop Pasture Sci. 2013; 64(4):347–60.

https://doi.org/10.1071/CP13071.

7. Pandey A, Prasad K, Singh P, Singh R. Comparative yield loss assessment and crop-weed association

in major winter crops of Mid Hills of NW Himalayas. Indian J Weed Sci. 1998; 30(1 & 2):54–7.

8. Spies JM, Warkentin TD, Shirtliffe SJ. Variation in field pea (Pisum sativum) cultivars for basal branch-

ing and weed competition. Weed Sci. 2011; 59(2):218–23. https://doi.org/10.1614/WS-D-10-00079.1

9. Lemerle D, Verbeek B, Coombes N. Losses in grain yield of winter crops from Lolium rigidum competi-

tion depend on crop species, cultivar and season. Weed Res. 1995; 35(6):503–9. https://doi.org/10.

1111/j.1365-3180.1995.tb01648.x

10. Bajwa AA, Akhter MJ, Iqbal N, Peerzada AM, Hanif Z, Manalil S, et al. Biology and management of

Avena fatua and Avena ludoviciana: two noxious weed species of agro-ecosystems. Environ Sci Pollut

Res. 2017; 24(24):19465–79. https://doi.org/10.1007/s11356-017-9810-y PMID: 28766148

11. Siddique KHM, Johansen C, Turner NC, Jeuffroy M-H, Hashem A, Sakar D, et al. Innovations in agron-

omy for food legumes. A review. Agron Sustain Dev. 2012; 32(1):45–64. https://doi.org/10.1007/

s13593-011-0021-5

12. Drew EA, Gupta VVSR, Roget DK. Herbicide use, productivity, and nitrogen fixation in field pea (Pisum

sativum). Aust J Agric Res. 2007; 58(12):1204–14. https://doi.org/10.1071/AR06394.

13. Jha UC, Bohra A, Parida SK, Jha R. Integrated “omics” approaches to sustain global productivity of

major grain legumes under heat stress. Plant Breeding. 2017; 136(4):437–59. https://doi.org/10.1111/

pbr.12489

14. Blessing CH, Mariette A, Kaloki P, Bramley H. Profligate and conservative: water use strategies in grain

legumes. J Exp Bot. 2018; 69(3):349–69. https://doi.org/10.1093/jxb/erx415 PMID: 29370385

15. Jeuffroy M, Lecoeur J, Roche R. The seed number. In: Munier-Jolain N, Biarnès V, Chaillet I, Lecoeur J,

Jeuffroy M, editors. Physiology of the pea crop. Enfield, NH: CRC Press; 2010. p. 104–31.
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