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Abstract

Purpose: We recently introduced a multispectral (MS) nonlocal (NL) filter based on maximum 

likelihood estimation (MLE) of voxel intensities, termed MS-NLML. While MS-NLML provides 

excellent noise reduction and improved image feature preservation as compared to other NL or MS 

filters, it requires considerable processing time, limiting its application in routine analyses. In this 

work, we introduced a fast, simple, and robust filter, termed nonlocal estimation of multispectral 
magnitudes (NESMA), for noise reduction in multispectral (MS) magnetic resonance imaging 

(MRI).

Methods: Through extensive simulation and in-vivo analyses, we compared the performance of 

NESMA and MS-NLML in terms of noise reduction and processing efficiency. Further, we 

introduce two simple adaptive methods that permit spatial variation of similar voxel, R, used in the 

filtering. The first method is semi-adaptive and permits variation of R across the image by using a 

relative Euclidean distance (RED) similarity threshold. The second method is fully adaptive and 

filters the raw data with several RED similarity thresholds to spatially determine the optimal 

threshold value using an unbiased criterion.

Results: NESMA shows very similar filtering performance as compared to MS-NLML, however, 

with much simple implementation and very fast processing time. Further, for both filters, the 

adaptive methods were shown to further reduce noise in comparison with the conventional non-

adaptive method in which R is set to a constant value throughout the image.

Conclusions: NESMA is fast, robust, and straightforward to implement filter. These features 

render it suitable for routine clinical use and analysis of large MRI datasets.
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1- INTRODUCTION

Image filtering for noise reduction has been broadly applied in magnetic resonance imaging 

(MRI) to improve diagnostic accuracy, quality of image registration and segmentation (1), 

and parameter estimation (2–6). The enhancement in signal-to-noise ratio (SNR) can be used 

to improve temporal or spatial resolution. Local image filtering methods estimate the true 

intensity of a given voxel using neighboring voxels. A popular method of local filtering is 

based on local kernel convolution with the original image to provide a weighted-average 

estimate of the intensity for the voxel of interest (i.e. index voxel). Unlike local kernel 

methods such as boxcar or Gaussian averaging, nonlocal (NL) filtering algorithms permit the 

inclusion of non-neighboring voxels in the intensity estimation of an index voxel (7–9). 

Rather than using spatial proximity as a criterion for inclusion in the intensity estimate, NL 

filters use the similarity of signal intensities between voxels (7–10). This increases the 

number of similar voxels available while not forcing inclusion of dissimilar ones, leading to 

improved denoising and feature preservation.

MRI studies often involve acquiring multispectral (MS) images, e.g. images obtained at 

different echo times (TEs), repetition times (TRs), flip angles, or diffusion b-values (9–19). 

These image sets provide varying contrast that reflect the evolution of the MR signal for 

different tissues with respect to the varied acquisition parameter. While noise may make two 

dissimilar tissues appear similar within a given image, the overall evolution of intensity 

across MS images improves discrimination between different tissue types leading to 

improved filtering (9–11).

We have recently introduced a new MS nonlocal maximum likelihood (MS-NLML) filter (9) 

and demonstrated its superior performance as compared to current advanced filters in terms 

of noise reduction and feature preservation. This filter restores the amplitude of an index 

voxel using a maximum likelihood estimation (MLE) based on R pre-selected voxels with 

similar MS signal patterns. However, the MS-NLML filter is relatively complex to 

implement and requires lengthy processing times, especially for large datasets, due to the 

MLE calculation. Here, we introduce a new filter, termed nonlocal estimation of 
multispectral magnitudes (NESMA), which replaces the MLE with a mean estimate of R 
similar voxels; this greatly simplifies implementation and accelerates processing time. Note 

that the MS-NLML and NESMA filters are similar in that they are both non-local estimates 

of index voxel intensity based on incorporating data from voxels deemed similar to the index 

voxel. However, in practical terms, they are very different, due to the use of simple 

averaging in NESMA as opposed to maximum likelihood estimation in MS-NLML.

The number of similar voxels used in nonlocal MLE filters, including in our previous MS-

NLML filter, is conventionally set to a fixed value, R, throughout the image (8, 9, 20). In 

many instances this includes too many or too few voxels, depending upon the local structure 

of the image. For example, if there are relatively few voxels similar to the index voxel, as is 

the case for heterogeneous regions and near object edges, fixing R may force inclusion of 

dissimilar voxels and cause blurring. In contrast, if R is too small for an index voxel in 

which there are many similar voxels, as in homogenous regions, the denoising process will 

be suboptimal. Previous implementations of adaptive filtering have used different 
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approaches to overcome this limitation. Rajan et al. introduced a method to compare the 

MLE of local noise variance, based on a progressively increasing number of NL voxels, to 

the noise variance estimated from the image background. The optimal value of R for each 

index voxel was then defined as the value yielding the closest match (21). The same authors 

proposed a method to replace the Euclidean distance with a Kolgomorov-Smirnov test to 

evaluate the difference between the neighborhoods surrounding the index voxel, i, and a 

candidate voxel, j, to determine if the difference was Gaussian-distributed (22). However, 

these approaches involve a complex definition of voxel similarity or lengthy processing 

times. Here we introduce two new, easy-to-implement, adaptive methods that permit spatial 

variation of R. We term these methods semi-adaptive (SA) and fully-adaptive (FA).

The plan of the paper is as follows. First, we describe and detail the implementation of the 

MS-NLML and NESMA filters. We then outline the two new adaptive methods for 

determining R. Finally, we present the results and discuss the filtering performance of the 

MSNLML and NESMA filters. Analyses were performed on both synthetic and in vivo 
datasets.

2- THEORY

We assume that the data consists of a multispectral set of registered images S defined on a 

discrete grid I, given by S = Sk i | i ∈ I, Sk i ∈ ℝK , where K is the total number of 

images in the spectral dimension. Each measured signal intensity Sk(i) and true intensity 

Ak(i) for index voxel i and spectral image k follows a Rician-distributed conditional 

probability density function P(Sk(i)|Ak(i),σ) given by

P Sk Ak, σ ==
Sk

σ2 exp −
Sk

2 + Ak
2

2σ2 . I0
SkAk

σ2 , (1)

where Sk represents the measured signal intensity in spectral image k, Ak represents the 

underlying true signal intensity of spectral image k, σ is the standard deviation (SD) of the 

noise, and I0 is the modified zero-order Bessel function of the first kind. We assume that the 

images include background regions with zero signal intensity from which σ can be 

accurately estimated through the Rayleigh distribution (9, 23, 24), and that σ is stationary 

and constant throughout S.

2.1. The multispectral nonlocal maximum likelihood (MS-NLML) filter

The NLML filter was introduced by He et al. (8) and extended by Bouhrara et al. (9) to 

incorporate multispectral information (MS-NLML). Voxel similarity for the MS-NLML 

filter is defined according to:

d i, j = ∑
k = 1

K
Sk i − Sk j 2, (2)
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where d(i,j) is the distance in signal intensity between the index voxel i and candidate voxel 

j. The search for candidate voxels is restricted to a large search window, W, centered on the 

index voxel. d(i,j) between i and each candidate voxel j belonging to W is calculated and 

arranged in ascending order, with the R voxels having the smallest distance being 

incorporated into the MLE of its true intensity through

Ak i = argmaxAk
∑
i = 1

R
log

Sk i

σ2 − ∑
i

R Sk
2 i + Ak

2

2σ2 + ∑
i = 1

R
log I0

Sk i ⋅ Ak

σ2 . (3)

where Ak i  is the estimated true intensity of spectral image k and index voxel i. The size of 

the window W must be sufficiently large to ensure inclusion of an adequate number of 

similar voxels, and sufficiently restricted to ensure that the transmission and reception B1 

fields is approximately constant within the window (25, 26).

2.2. The nonlocal estimation of multispectral magnitudes (NESMA) filter

As previously mentioned, the NESMA filter utilizes the nonlocal filtering paradigm, but 

replaces the MLE with Rician-corrected average estimates given by

Ak i = max
∑ j = 1

R Sk
2 j

R − 2σ2, 0 . (4)

This correction scheme follows from the second moment of the Rician distribution given by

S2 = A2 + 2σ2, (5)

where S is the measured signal intensity and A is the true intensity (23, 27, 28). As in 

MSNLML, NESMA uses Eq. 2 to define voxel similarity, with the R voxels with the 

smallest distances d(i,j) used for averaging. The NESMA and MS-NLML filters using this 

non-adaptive (NA) method for selecting similar voxels are termed NA-NESMA and NA-

MS-NLML respectively.

2.3. Adaptive selection of similar voxels

In both the MS-NLML and NESMA filters described above, the true underlying intensity for 

each voxel is estimated based on a set of R similar voxels. We introduce two methods for 

defining R according to the local image structure, and compare the results to those obtained 

with the conventional NA approach where R is predefined and spatially fixed (8, 9, 20). Note 

that these adaptive methods apply to both the MS-NLML and NESMA filters.

Semi-adaptive method: We normalize the distance between the index voxel i and a 

candidate voxel j (Eq. 2) by the sum over the squared multispectral intensities of the index 
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voxel to create a relative distance. The relative Euclidean distance (RED) metric is therefore 

defined as

RED i, j =
∑k = 1

K Sk i − Sk j 2

∑k = 1
K Sk i 2 . (6)

A global threshold value t for the RED is then specified as a cutoff, with voxels exhibiting 

RED < t considered as being sufficiently similar to the index voxel and incorporated into its 

filtered value according to Eq. 4. This method is termed semi-adaptive (SA), with the 

threshold value t specified by the user. Note that while t is global, the resulting value of R, 

calculated for each voxel based on t, varies across the image. The NESMA and MS-NLML 

filters using this semi-adaptive (SA) method for selecting similar voxels are termed SA-

NESMA and SA-MS-NLML, respectively.

Fully-adaptive method: A fully-adaptive (FA) implementation of this approach seeks to 

eliminate the requirement for the user to select an RED threshold as described in the SA 

method above. Instead, an optimal threshold T for each index voxel is defined by

T(i) = min
t

1
R ⋅ K ∑

k = 1

K
∑
j = 1

R
Sk( j)2 − Ak, t( j)2 − 2σ2 (7)

where Ak, t j  is the estimated signal intensity of the voxel j within the search window W of 

spectral image k using threshold t. This criterion for an optimal threshold arises from the 

fact that for each voxel, the relationship between the observed intensity and the true 

underlying intensity follows the second moment of the Rician distribution (Eq. 5) (23, 27, 

28). As t approaches the optimal value, Ak, t i  approaches the true underlying intensity 

value, and the objective function in Eq. 7 is minimized. In this manner, Eq. 7 is used to 

evaluate the quality of filtering and determine the optimal value of T. Specifically, for each 

index voxel i, the objective function, given by the Eq. 7, was calculated for several values of 

t, and the threshold for which T(i) = 0 is found by linear interpolation. For each t, the 

number of similar voxels, R, are defined according to the procedure outlined above for the 

SA method. The NESMA and MS-NLML filters using this FA method for selecting similar 

voxels are termed FA-NESMA and FA-MS-NLML, respectively.

3- METHODS

3.1. Simulation datasets

Synthetic multislice T2-weighted (T2W) brain datasets were obtained from BrainWeb, (29) 

from which a T2 map was generated. Representative T2 values for white matter, gray matter, 

and cerebrospinal fluid were chosen as 60 ms, 85 ms, and 180 ms, respectively. T2W brain 

images were then generated with twenty values of TE ranging uniformly from 10 ms to 200 

ms. Rician-distributed noise was incorporated into the noise-free images to create datasets 
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with SNR values of 10 or 25 (30). SNR was defined as the peak signal intensity at TE = 0 

ms divided by σ.

3.2. In vivo datasets

Experimental analyses were performed on an in vivo brain dataset acquired from a healthy 

23-year-old female using a 3T whole-body MRI system (Achieva, Phillips Medical Systems, 

Best, Netherlands) equipped with an internal quadrature body coil for transmission and 

reception. An axial brain T2W dataset was acquired using a single-slice spin-echo imaging 

sequence with repetition time of 1300 ms, 32 echo times ranging uniformly from 7 ms to 

224 ms, field of view 22 cm x 19.2 cm, matrix size of 448 × 440, and slice thickness of 2 

mm. The total acquisition time was 10 minutes. σ was determined from background regions 

(23).

3.3. Filtering analysis

NA, SA, and FA methods were implemented using a search window size of 15 × 15 × 3 for 

the multislice synthetic images and 25 × 25 × 1 for the single-slice in vivo images. For the 

NA and SA methods, we used a conservative value for R and RED threshold, t, respectively. 

While this may penalize homogenous regions where large values of R or t would provide 

further increase in SNR, our analysis showed that larger values led to blurring in regions 

with smaller structures. R was fixed to 50 for the NA filtering, while for SA filtering the 

RED thresholds were fixed to 10% and 4% for SNRs of 10 and 25 respectively. The FA 

filters were evaluated using 2%, 3%, 4%, 5% thresholds for the synthetic dataset with SNR 

= 25, and 0%, 4%, 8%, 15%, 20% thresholds for the in vivo dataset. For analysis of 

simulated images, all filters were evaluated using the known input σ, while for in vivo 
analysis σ was calculated from image background regions (23).

Evaluation of filtering performance was based upon the extent of noise reduction and feature 

preservation. Mean squared error (MSE) and structural similarity (SSIM) index values (31) 

were calculated for synthetic images. Voxels from the image background were not included 

in the MSE or SSIM calculations. In vivo datasets were evaluated by visual inspection of 

filtered images since there was no ground truth to calculate SSIM or MSE. Maps showing 

the spatial variation of R, termed R-maps, were calculated for the SA and FA methods, while 

maps of the threshold T, termed T-maps, were constructed for the FA method. For further 

comparison, a reference R-map was determined by finding the true number of similar voxels 

at each point in the noise-free image.

Computation time was compared for the NESMA and MS-NLML filters for images of 

different sizes. The computation times reported represent the cumulative time taken to 

complete filtering for the specified number of voxels. For the FA method, this includes the 

time required to calculate the optimal threshold for each voxel. All calculations were 

performed using MATLAB R2016a (MathWorks, Natick, MA) on a computer with an Intel 

Xeon E5–2680 CPU, NVIDIA Quadro K2200 GPU, and 128 GB RAM.
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4- RESULTS

Fig. 1 shows a comparison of the filtering performance of the NA, SA, and FA NESMA and 

MSNLML filters on a synthetic T2W dataset generated with SNR = 25. NA-NESMA and 

NA-MS-NLML filtered images showed comparable levels of noise reduction and have 

nearly identical MSE values, 0.027 and 0.029, respectively, and identical SSIM values (0.95) 

(Table 1). However, the zoomed-in images in Fig. 1 show that noise reduction for both filters 

is not optimal in white matter regions. While noise reduction could be improved in these 

regions by increasing R, this would come at the expense of blurring of fine structures in 

inhomogeneous regions by incorporating dissimilar voxels in the estimation of their true 

intensity. Improved noise reduction was achieved using the SA method (Fig. 1). The filtered 

images clearly show reduced random variation, especially in the white matter regions. This 

was supported by the identical SSIM and nearly identical MSE values for SA-NESMA and 

SA-MS-NLML (Table I). The improved performance can be attributed to the spatial 

variation of R as seen in the R-maps (Fig. 1). Indeed, the R-maps show that the value of R 
can be substantially greater than 50 in homogenous regions (e.g. white matter regions), 

while remaining in the range of 10–50 in inhomogeneous regions (e.g. gray matter regions) 

(Fig. 1). Finally, nearly identical MSE values and identical SSIM values were obtained with 

the FA and SA methods across both NESMA and MS-NLML filters (Table 1).

Fig. 2 shows the computation time required for filtering a multispectral dataset as a function 

of image size measured in voxels. As shown, the NESMA filters require about two orders of 

magnitude less computational time than the corresponding MS-NLML filters. Each 

implementation of the FA method requires several implementations of the SA method to 

establish the optimal threshold for each voxel. This time-consuming process, with 

computation time roughly proportional to the number of thresholds evaluated, represents the 

bulk of the implementation time for the FA filter, rendering it relatively insensitive to image 

size.

Fig. 3 shows the filtering performance of the NA, SA, and FA methods for both NESMA 

and MS-NLML on an in vivo T2W dataset. Consistent with the synthetic dataset analyses 

(Fig. 2), the NA and SA implementations of NESMA show nearly the same level of noise 

reduction as their MS-NLML counterparts. However, the filtered images for the FA-MS-

NLML and FANESMA filters differed in the posterior gray matter regions (white arrows). 

This was attributed to the FA-NESMA filter selecting fewer voxels in these regions. Further, 

both FA filters selected noticeably different values for R compared to their respective SA 

filters; most visible in the ventricles (black arrows).

Fig. 4 compares the filtering performance of the SA-NESMA and SA-MS-NLML filters for 

different SNR values. The SA method was selected to show optimal filtering performance 

using identical values for R at each location in the image. This permits direct comparison 

between the denoising algorithms used in NESMA and MS-NLML. Filtered images from 

the SA-NESMA and SA-MS-NLML filters show similar levels of noise reduction and 

feature preservation. This is highlighted by the nearly identical SSIM and MSE values 

(Table 2) for both SNR = 10 and SNR = 25. This shows that, even in the setting of low SNR, 
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NESMA provides essentially indistinguishable denoising performance compared to the MS-

NLML filter.

5- DISCUSSION

We present a new nonlocal multispectral filter, NESMA, which greatly simplifies 

implementation and reduces computational time as compared with MLE-based filters, 

including the MS-NLML filter. We show that filtering quality is retained with respect to 

noise reduction and feature preservation. Furthermore, we propose two simple approaches 

for spatially varying the number of similar voxels, R, used in denoising. Our analyses of 

synthetic and in vivo data show that the SA method provides an improvement over the NA 

method due to the spatial variation in the number of voxels included in the denoising 

process. However, in the SA method, selection of the threshold is crucial. In the expression 

for RED (Eq. 6), we can see that for an index voxel of high intensity and a given difference 

between itself and a candidate voxel (i.e. constant numerator), the distance d(i,j) will be 

smaller than for an index voxel of low intensity, due to the magnitude of the respective 

denominator. The effect of this can be seen in the T-maps in Fig.1 where the FA method 

selected lower thresholds in the ventricles (white arrows) compared to the white matter, 

despite having similar values of R. This effect also means that it is not possible to choose a 

threshold (i.e. RED) that is optimal across the entire image. Depending on the threshold 

chosen, high signal-intensity regions may be susceptible to blurring while low signal-

intensity regions may be susceptible to suboptimal noise reduction. While this is not always 

an issue, improved performance may be obtained by permitting spatial variation in the RED 

threshold. This can be seen in Fig. 3 where the FA filters selected smaller values for R in the 

ventricles than their respective SA filters, thereby further reducing the small amount of 

blurring (black arrows).

The simple averaging process that forms the basis of NESMA greatly reduces the 

computational burden as compared to MLE-based filters (Eq. 3). This permits the processing 

of large datasets, including those incorporating the multiple contrast mechanisms often 

obtained in a clinical setting. Thus, the NESMA filter may be widely applicable, rather than 

useful only for specialized applications. As noted above, there are fundamental operational 

differences between the MS-NLML and NESMA filters. We have summarized these in the 

following table (Table 3). Note that these differences in basic filter design lead overall to 

near-equivalent performance with over three orders of magnitude more rapid processing with 

NESMA, permitting routine clinical application.

Differences in computation time for the SA method relative to the NA method for each filter 

can be attributed to two factors: the inclusion of more voxels in the denoising process, and 

thresholding the distances as opposed to sorting them to find the R smallest distances. The 

SA method permits much higher values for R in homogeneous regions, while maintaining 

relatively similar values of R for heterogeneous regions, as compared to the NA method. 

This leads to the inclusion of many more voxels in the denoising process as compared to the 

NA method (Figs. 1 and 3) and an overall increase in computation time. The number of 

calculations required to select voxels based on a RED threshold value, as is required for the 

SA method, increases linearly, O(n), with respect to the number of voxels n within the 
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search window. The number of computations required for sorting, as required for the NA 

method in which distances are calculated for all voxels in the search window and then 

sorted, increases by O(n·log(n)). This difference is particularly evident for larger window 

sizes and dominates the relative speed of the NA and SA methods. The SA and FA methods 

increase values of R as compared to the NA method in homogeneous image regions, while 

maintaining low values of R for regions with small structures. The superior filtering quality 

is due to the adaptive and appropriate selection of R for each voxel individually.

In our analysis, image noise is assumed to be spatially stationary. In multi-channel 

acquisitions, such as parallel imaging or phased array acquisition (24), this assumption does 

not hold. However, even in this setting, using one of several methods that have been 

introduced to estimate local background noise (21, 32, 33) would permit application of the 

NESMA and MSNLML filters through incorporating spatially varying noise. In addition to 

relaxing the stationary noise assumption, local noise estimation would allow for filtering of 

images that lack available background for noise estimation.

6- CONCLUSION

We have introduced a new fast multispectral nonlocal filter, NESMA, and two adaptive 

variants, for filtering magnitude MR images. In addition to its robust filtering performance, 

NESMA is straightforward to implement and requires minimal user-defined parameters. 

These features render it suitable for routine clinical use and analysis of large datasets.
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Figure 1. 
Filtering performance of non-adaptive (NA), semi-adaptive (SA), and fully-adaptive (FA) 

NESMA and MS-NLML filters on a synthetic T2W dataset generated with SNR = 25. 

Results are shown for TE = 60 ms. The grayscale is consistent across all filtered and 

zoomed-in images. R-maps and T-maps show the respective values of the number of voxels 

and threshold selected at each location for the NESMA and MS-NLML filters. The reference 

R-map represents the optimal number of voxels selected at each point in the image. The 

filtered images demonstrate the nearly identical noise reduction and feature preservation of 

the NESMA filter as compared to the MSNLML filter for NA, SA, and FA methods. Further, 

both adaptive methods demonstrate superior noise reduction compared to their NA 

counterparts for both the NESMA and MS-NLML filters.
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Figure 2. 
Computation time of the non-adaptive (NA), semi-adaptive (SA), and fully-adaptive (FA) 

NESMA and MS-NLML filters. Computation time is plotted as a function of the number of 

voxels. It is evident that the NESMA filters require two orders of magnitude less 

computation time than the MS-NLML filters.
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Figure 3. 
Filtering performance of non-adaptive (NA), semi-adaptive (SA), and fully-adaptive (FA) 

NESMA and MS-NLML filters on an in vivo T2W dataset. Results are shown for three 

different TEs. The grayscale is consistent across filtered images and across TEs. Noisy 

images are shown for comparison. R-maps and T-maps show, respectively, number of voxels 

and threshold selected at each location for the NESMA and MS-NLML filters. SA-NESMA 

and SAMS-NLML filtered images show similar noise reduction. However, FA-NESMA and 

FA-MSNLML show slight differences in filtering, which can be attributed to the FA method 

selecting different values for R (white arrows). Also, it can be seen in the ventricles that the 

FA method selected fewer voxels compared to the SA method, leading to less blurring (black 

arrows).
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Figure 4. 
Filtering performance of SA-NESMA and SA-MS-NLML on synthetic datasets of SNR 10 

and 25. Two TEs are shown to illustrate each filter’s performance at different contrasts. The 

grayscale is consistent across filtered images and across TEs. Noisy images are shown for 

comparison. The thresholds used for both filters were 10% and 5% for SNR 10 and 25 

respectively. The filtered images demonstrate that the NESMA and MS-MLML denoising 

methods differ minutely, if at all, even at very low SNR.
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Table 1.

PERFORMANCE OF FILTERS AND ADAPTIVE METHODS. The MSE and SSIM values demonstrate that 

the NESMA and MS-NLML filters have nearly identical filtering performance for the NA, SA, and FA 

methods. Further, both adaptive methods exhibit better filtering performance than the NA method.

MSE SSIM

Method NESMA MS-NLML NESMA MS-NLML

NA 0.027 0.029 0.95 0.95

SA 0.003 0.004 0.99 0.99

FA 0.004 0.006 0.99 0.99
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Table 2.

FILTERING PERFORMANCE FOR DIFFERENT SNR LEVELS. The MSE and SSIM values demonstrate 

that these filters have nearly identical performance even at very low SNR.

MSE SSIM

SNR NESMA MS-NLML NESMA MS-NLML

10 0.079 0.079 0.91 0.91

25 0.003 0.004 0.99 0.99
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Table 3.

MS-NLML vs. NESMA. Feature comparison of the MS-NLML and NESMA filters.

MS-NLML NESMA

Performance High High

Computational speed Slow Fast

Spatially adaptive Yes Yes

Implementation Complex Simple
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